Effects of SARS-CoV-2 Vaccination on Menstrual Cycle: An Italian Survey-Based Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hui, D.S.; Azhar, E.I.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchugh, T.D.; Memish, Z.A.; Drosten, C.; et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect Dis. 2020, 91, 264–266. [Google Scholar] [CrossRef] [PubMed]
- Ciotti, M.; Angeletti, S.; Minieri, M.; Giovannetti, M.; Benvenuto, D.; Pascarella, S.; Sagnelli, C.; Bianchi, M.; Bernardini, S.; Ciccozzi, M. COVID-19 Outbreak: An Overview. Chemotherapy 2019, 64, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Incognito, G.G.; Distefano, R.E.C.; Campo, G.; Gulino, F.A.; Gulisano, C.; Gullotta, C.; Gullo, G.; Cucinella, G.; Tuscano, A.; Bruno, M.T.; et al. Comparison of Maternal and Neonatal Outcomes between SARS-CoV-2 Variants: A Retrospective, Monocentric Study. J. Clin. Med. 2023, 12, 6329. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Sun, Z.; Wu, L.; Zhu, Z.; Zhang, F.; Shang, Z.; Jia, Y.; Gu, J.; Zhou, Y.; Wang, Y.; et al. Prevalence and risk factors for acute posttraumatic stress disorder during the COVID-19 outbreak. J. Affect Disord. 2021, 283, 123–129. [Google Scholar] [CrossRef]
- Kwong, A.S.; Pearson, R.M.; Adams, M.J.; Northstone, K.; Tilling, K.; Smith, D.; Fawns-Ritchie, C.; Bould, H.; Warne, N.; Zammit, S.; et al. Mental health before and during the COVID-19 pandemic in two longitudinal UK population cohorts. Br. J. Psychiatry 2021, 218, 334–343. [Google Scholar] [CrossRef]
- Zhou, W.; Jiang, L.; Liao, S.; Wu, F.; Yang, G.; Hou, L.; Liu, L.; Pan, X.; Jia, W.; Zhang, Y. Vaccines’ New Era-RNA Vaccine. Viruses 2023, 15, 1760. [Google Scholar] [CrossRef]
- Hadj Hassine, I. COVID-19 vaccines and variants of concern: A review. Rev. Med. Virol. 2022, 32, e2313. [Google Scholar] [CrossRef]
- Jamous, Y.F.; Alhomoud, D.A. The Safety and Effectiveness of mRNA Vaccines Against SARS-CoV-2. Cureus 2023, 15, e45602. [Google Scholar] [CrossRef]
- Farmaco, A.I.D. Agenzia Italiana del Farmaco. Available online: https://www.crob.it/files/docs/11/29/43/DOCUMENT_FILE_112943.pdf (accessed on 25 October 2023).
- Alvergne, A.; Kountourides, G.; Argentieri, M.A.; Agyen, L.; Rogers, N.; Knight, D.; Sharp, G.C.; Maybin, J.A.; Olszewska, Z. A retrospective case-control study on menstrual cycle changes following COVID-19 vaccination and disease. iScience 2023, 26, 106401. [Google Scholar] [CrossRef]
- Alvergne, A.; Kountourides, G.; Argentieri, M.A.; Agyen, L.; Rogers, N.; Knight, D. COVID-19 vaccination and menstrual cycle changes: A 2 United Kingdom (UK) retrospective case-control study. MedRXiv 2021, preprint. [Google Scholar] [CrossRef]
- Mahfouz, M.S.; Abdelmageed, M.M.; Alqassim, A.Y.; Hakami TK, M.; Alshekh, M.M.; Hamithi DM, A.; Alakhdar FD, H.; Ayyashi, N.M.; Madkhali RM, A. Menstrual irregularities associated with COVID-19 vaccines among women in Saudi Arabia: A survey during 2022. Open Med. 2023, 18, 20230804. [Google Scholar] [CrossRef] [PubMed]
- Petruk, A.O.; Lytvak, O.O. Clinical Profiles and Characteristics of Menstrual Dysfunction in Women after Suffering from COVID-19 or Vaccination. Wiad. Lek. 2023, 76, 2252–2257. [Google Scholar] [CrossRef] [PubMed]
- Almomani, E.Y.; Hajjo, R.; Qablan, A.; Sabbah, D.A.; Al-Momany, A. A cross-sectional study confirms temporary post-COVID-19 vaccine menstrual irregularity and the associated physiological changes among vaccinated women in Jordan. Front. Med. 2023, 10, 1211283. [Google Scholar] [CrossRef] [PubMed]
- Khan, G.A.; Althubaiti, A.; Alshrif, A.; Alsayed, Z.; Jifree, H. Dysmenorrhea, intermenstrual bleeding, menstrual flow volume changes, and irregularities following COVID-19 vaccination and the association with vaccine skepticism: A retrospective observational study. Women’s Health 2023, 19, 17455057231210094. [Google Scholar] [CrossRef] [PubMed]
- Bertone-Johnson, E.R.; Ronnenberg, A.G.; Houghton, S.C.; Nobles, C.; Zagarins, S.E.; Takashima-Uebelhoer, B.B.; Faraj, J.L.; Whitcomb, B.W. Association of inflammation markers with menstrual symptom severity and premenstrual syndrome in young women. Hum. Reprod. 2014, 29, 1987–1994. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Hosono, A. No association between HPV vaccine and reported post-vaccination symptoms in Japanese young women: Results of the Nagoya study. Papillomavirus Res. 2018, 5, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Kharat, I.; Nair, N.S.; Dhall, K.; Sawhney, H.; Krishna, U.; Shahani, S.M.; Banerjee, A.; Roy, S.; Kumar, S.; Hingorani, V.; et al. Analysis of menstrual records of women immunized with anti-hCG vaccines inducing antibodies partially cross-reactive with hLH. Contraception 1990, 41, 293–299. [Google Scholar] [CrossRef]
- Colafrancesco, S.; Perricone, C.; Tomljenovic, L.; Shoenfeld, Y. Human papilloma virus vaccine and primary ovarian failure: Another facet of the autoimmune/inflammatory syndrome induced by adjuvants. Am. J. Reprod. Immunol. 2013, 70, 309–316. [Google Scholar] [CrossRef]
- Costeira, R.; Lee, K.A.; Murray, B.; Christiansen, C.; Castillo-Fernandez, J.; Ni Lochlainn, M.; Capdevila Pujol, J.; Macfarlane, H.; Kenny, L.C.; Buchan, I.; et al. Estrogen and COVID-19 symptoms: Associations in women from the COVID Symptom Study. PLoS ONE 2021, 16, e0257051. [Google Scholar] [CrossRef]
- Critchley, H.O.D.; Maybin, J.A.; Armstrong, G.M.; Williams, A.R.W. Physiology of the Endometrium and Regulation of Menstruation. Physiol. Rev. 2020, 100, 1149–1179. [Google Scholar] [CrossRef]
- Robinson, E.; Boyland, E.; Chisholm, A.; Harrold, J.; Maloney, N.G.; Marty, L.; Mead, B.R.; Noonan, R.; Hardman, C.A. Obesity, eating behavior and physical activity during COVID-19 lockdown: A study of UK adults. Appetite 2021, 156, 104853. [Google Scholar] [CrossRef] [PubMed]
- Nagma, S.; Kapoor, G.; Bharti, R.; Batra, A.; Batra, A.; Aggarwal, A.; Sablok, A. To evaluate the effect of perceived stress on menstrual function. J. Clin. Diagn. Res. 2015, 9, QC01–QC3. [Google Scholar] [CrossRef] [PubMed]
- McDade. The ecologies of human immune function. Annu. Rev. Anthropol. 2005, 34, 495–521. [Google Scholar] [CrossRef]
- Wilson, H.W.; Amo-Addae, M.; Kenu, E.; Ilesanmi, O.S.; Ameme, D.K.; Sackey, S.O. Post-Ebola Syndrome among Ebola Virus Disease Survivors in Montserrado County, Liberia 2016. Biomed. Res. Int. 2018, 2018, 1909410. [Google Scholar] [CrossRef] [PubMed]
- Hughes, G.C. Progesterone and autoimmune disease. Autoimmun. Rev. 2012, 11, A502–A514. [Google Scholar] [CrossRef] [PubMed]
- Maybin, J.A.; Critchley, H.O. Menstrual physiology: Implications for endometrial pathology and beyond. Hum. Reprod. Update 2015, 21, 748–761. [Google Scholar] [CrossRef] [PubMed]
- Chadchan, S.B.; Popli, P.; Maurya, V.K.; Kommagani, R. The SARS-CoV-2 receptor, angiotensin-converting enzyme 2, is required for human endometrial stromal cell decidualization†. Biol. Reprod. 2021, 104, 336–343. [Google Scholar] [CrossRef]
- Kong, S.; Yan, Z.; Yuan, P.; Liu, X.; Chen, Y.; Yang, M. Comprehensive evaluation of ACE2 expression in female ovary by single-cell RNA-seq analysis. BioRxiv 2021, preprint. [Google Scholar] [CrossRef]
- Alvergne, A.; Vlajic Wheeler, M.; Högqvist Tabor, V. Do sexually transmitted infections exacerbate negative premenstrual symptoms? Insights from digital health. Evol. Med. Public Health 2018, 2018, 138–150. [Google Scholar] [CrossRef]
- Sharp, G.C.; Fraser, A.; Sawyer, G.; Kountourides, G.; Easey, K.E.; Ford, G.; Olszewska, Z.; Howe, L.D.; Lawlor, D.A.; Alvergne, A.; et al. The COVID-19 pandemic and the menstrual cycle: Research gaps and opportunities. Int. J. Epidemiol. 2022, 51, 691–700. [Google Scholar] [CrossRef]
- Dawood, M.Y. Dysmenorrhoea and prostaglandins: Pharmacological and therapeutic considerations. Drugs 1981, 22, 42–56. [Google Scholar] [CrossRef] [PubMed]
- Lethaby, A.; Augood, C.; Duckitt, K.; Farquhar, C. Nonsteroidal anti-inflammatory drugs for heavy menstrual bleeding. Cochrane Database Syst. Rev. 2007, CD000400. [Google Scholar] [CrossRef][Green Version]
- Pendergrass, P.B.; Scott, J.N.; Ream, L.J.; Agna, M.A. Effect of small doses of aspirin and acetaminophen on total menstrual loss and pain of cramps and headache. Gynecol. Obstet. Investig. 1985, 19, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Warner, P.; Whitaker, L.H.R.; Parker, R.A.; Weir, C.J.; Douglas, A.; Hansen, C.H.; Madhra, M.; Hillier, S.G.; Saunders, P.T.K.; Iredale, J.P.; et al. Low dose dexamethasone as treatment for women with heavy menstrual bleeding: A response-adaptive randomised placebo-controlled dose-finding parallel group trial (DexFEM). EBioMedicine 2021, 69, 103434. [Google Scholar] [CrossRef]
- Araujo, P.; Polesel, D.N.; Hachul, H.; Bittencourt, L.R.A.; Tufik, S.; Andersen, M.L. Oxygen saturation during sleep as a predictor of inflammation in anovulatory women. Sleep Breath 2021, 25, 1247–1255. [Google Scholar] [CrossRef]
Pre-pandemic rhythm | Total | |||
regular | irregular | |||
Rhythm during pre-vaccination pandemic phase | regular | 388 94.6% | 8 13.1% | 396 84.1% |
irregular | 22 5.4% | 53 86.9% | 75 15.9% | |
Total | 410 100.0% | 61 100.0% | 471 100.0% | |
Pre-pandemic rhythm | Total | |||
regular | irregular | |||
Rhythm after first vaccination | regular | 344 83.9% | 16 26.2% | 360 76.4% |
irregular | 66 16.1% | 45 73.8% | 111 23.6% | |
Total | 410 100.0% | 61 100.0% | 471 100.0% | |
Pre-pandemic rhythm | Total | |||
regular | irregular | |||
Rhythm after second vaccination | regular | 329 80.2% | 18 29.5% | 347 73.7% |
irregular | 81 19.8% | 43 70.5% | 124 26.3% | |
Total | 410 100.0% | 61 100.0% | 471 100.0% |
Pre-pandemic length | Total | ||||
1–3 days | 4–7 days | >7 days | |||
Length during pre-vaccination pandemic phase | 1–3 days | 44 95.7% | 6 1.5% | 0 0.0% | 50 10.6% |
4–7 days | 2 4.3% | 399 98.0% | 4 22.2% | 405 86.0% | |
>7 days | 0 0.0% | 2 0.5% | 14 77.8% | 16 3.4% | |
Total | 46 100.0% | 407 100.0% | 18 100.0% | 471 100.0% | |
Pre-pandemic length | Total | ||||
1–3 days | 4–7 days | >7 days | |||
Length after first vaccination | 1–3 days | 35 76.1% | 18 4.4% | 0 0.0% | 53 11.3% |
4–7 days | 11 23.9% | 380 93.4% | 8 44.4% | 399 84.7% | |
>7 days | 0 0.0% | 9 2.2% | 10 55.6% | 19 4.0% | |
Total | 46 100.0% | 407 100.0% | 18 100.0% | 471 100.0% | |
Pre-pandemic length | Total | ||||
1–3 days | 4–7 days | >7 days | |||
Length after second vaccination | 1–3 days | 33 71.7% | 25 6.1% | 0 0.0% | 58 12.3% |
4–7 days | 13 28.3% | 366 89.9% | 8 44.4% | 387 82.2% | |
>7 days | 0 0.0% | 16 3.9% | 10 55.6% | 26 5.5% | |
Total | 46 100.0% | 407 100.0% | 18 100.0% | 471 100.0% |
Pre-pandemic quantity | Total | ||||
light | normal | heavy | |||
Quantity during pre-vaccination pandemic phase | light | 37 82.2% | 11 3.6% | 3 2.4% | 51 10.8% |
normal | 5 11.1% | 282 93.1% | 18 14.6% | 305 64.8% | |
heavy | 3 6.7% | 10 3.3% | 102 82.9% | 115 24.4% | |
Total | 45 100.0% | 303 100.0% | 123 100.0% | 471 100.0% | |
Pre-pandemic quantity | Total | ||||
light | normal | heavy | |||
Quantity during pre-vaccination pandemic phase | light | 41 91.1% | 26 8.6% | 19 15.4% | 86 18.3% |
normal | 1 2.2% | 232 76.6% | 20 16.3% | 253 53.7% | |
heavy | 3 6.7% | 45 14.9% | 84 68.3% | 132 28.0% | |
Total | 45 100.0% | 303 100.0% | 123 100.0% | 471 100.0% | |
Pre-pandemic quantity | Total | ||||
light | normal | heavy | |||
Quantity during pre-vaccination pandemic phase | light | 37 82.2% | 36 11.9% | 22 17.9% | 95 20.2% |
normal | 5 11.1% | 224 73.9% | 17 13.8% | 246 52.2% | |
heavy | 3 6.7% | 43 14.2% | 84 68.3% | 130 27.6% | |
Total | 45 100.0% | 303 100.0% | 123 100.0% | 471 100.0% |
Pre-pandemic cycle rhythm and pre-vaccination pandemic rhythm | ||
Sample size | 471 | |
Exact two-tailed significance | 0.108 a | |
McNemar’s test was used. a Binomial distribution. | ||
Pre-pandemic flow duration Pre-vaccination pandemic duration | Pre-pandemic flow quantity Pre-vaccination pandemic quantity | |
Z | −1.604 | −1.665 |
Asymptotic two-tailed significance | 0.119 a | 0.096 a |
The Wilcoxon test was used. a Based on positive ranks. |
Variable | Phase | Percentage of Transition from Regularity to Irregularity | Comparison and p-Value |
---|---|---|---|
Rhythm | A. During pre-vaccination pandemic phase | 5.4% | A vs. B p < 0.001 |
B. After first vaccination | 16.1% | A vs. C p < 0.001 | |
C. After second vaccination | 19.8% | B vs. C p = 0.139 | |
Length | From 4–7 days to 1–3 days | ||
A. During pre-vaccination pandemic phase | 1.5% | A vs. B p = 0.008 | |
B. After first vaccination | 4.4% | A vs. C p < 0.001 | |
C. After second vaccination | 6.1% | B vs. C p = 0.242 | |
From 4–7 days to >7 days | |||
A. During pre-vaccination pandemic phase | 0.5% | A vs. B p < 0.024 | |
B. After first vaccination | 2.2% | A vs. C p < 0.001 | |
C. After second vaccination | 3.9% | B vs. C p = 0.129 | |
Quantity | From normal to light | ||
A. During pre-vaccination pandemic phase | 3.6% | A vs. B p = 0.001 | |
B. After first vaccination | 8.6% | A vs. C p < 0.001 | |
C. After second vaccination | 11.9% | B vs. C p = 0.095 | |
From normal to heavy | |||
A. During pre-vaccination pandemic phase | 3.3% | A vs. B p < 0.001 | |
B. After first vaccination | 14.9% | A vs. C p < 0.001 | |
C. After second vaccination | 14.2% | B vs. C p = 0.761 |
Menstrual Cycle Phase | Patients (n) | Patients (%) |
---|---|---|
Early proliferative phase | 17 | 15.3 |
Advanced proliferative phase | 65 | 58.6 |
Secretive phase | 29 | 26.1 |
Total | 111 | 100.0 |
Menstrual Cycle Phase | Patients (n) | Patients (%) |
---|---|---|
Early proliferative phase | 26 | 21.0 |
Advanced proliferative phase | 68 | 54.8 |
Secretive phase | 30 | 24.2 |
Total | 124 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granese, R.; Incognito, G.G.; Gulino, F.A.; Casiraro, G.; Porcaro, P.; Alibrandi, A.; Martinelli, C.; Ercoli, A. Effects of SARS-CoV-2 Vaccination on Menstrual Cycle: An Italian Survey-Based Study. J. Clin. Med. 2023, 12, 7699. https://doi.org/10.3390/jcm12247699
Granese R, Incognito GG, Gulino FA, Casiraro G, Porcaro P, Alibrandi A, Martinelli C, Ercoli A. Effects of SARS-CoV-2 Vaccination on Menstrual Cycle: An Italian Survey-Based Study. Journal of Clinical Medicine. 2023; 12(24):7699. https://doi.org/10.3390/jcm12247699
Chicago/Turabian StyleGranese, Roberta, Giosuè Giordano Incognito, Ferdinando Antonio Gulino, Giorgia Casiraro, Paola Porcaro, Angela Alibrandi, Canio Martinelli, and Alfredo Ercoli. 2023. "Effects of SARS-CoV-2 Vaccination on Menstrual Cycle: An Italian Survey-Based Study" Journal of Clinical Medicine 12, no. 24: 7699. https://doi.org/10.3390/jcm12247699
APA StyleGranese, R., Incognito, G. G., Gulino, F. A., Casiraro, G., Porcaro, P., Alibrandi, A., Martinelli, C., & Ercoli, A. (2023). Effects of SARS-CoV-2 Vaccination on Menstrual Cycle: An Italian Survey-Based Study. Journal of Clinical Medicine, 12(24), 7699. https://doi.org/10.3390/jcm12247699