Lung Ultrasound Elastography by SWE2D and “Fibrosis-like” Computed Tomography Signs after COVID-19 Pneumonia: A Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Procedures
3. Results
3.1. Descriptive and Bivariate Analysis
3.1.1. General Characteristics of the Participants
3.1.2. Computed Tomography
- At the first evaluation, 16 among 79 patients (20%) (eight females and eight males; 25 to 66 years old) showed no abnormalities; imaging was performed after 65 to 353 days from disease onset. They were admitted to hospital 2 to 20 days after disease onset; during the acute phase, two of them were admitted to the Intensive Care Unit.
- At the second evaluation, 30 among 74 patients (40%) (16 females and 14 males; 25 to 71 years old) showed no abnormalities; imaging was performed after 150 to 442 days from disease onset; the range of their clinical evolution from disease onset to hospital admission was the same; during the acute phase, three of them were admitted to the Intensive Care Unit.
- At the third evaluation, 36 among 77 patients (46%) (19 females and 17 males; 25 to 71 years old) showed no abnormalities; imaging was performed after 199 to 571 days from disease onset; the range of their clinical evolution from disease onset to hospital admission was the same; during the acute phase, five of them were admitted to the Intensive Care Unit.
3.1.3. LUS with Elastography
3.1.4. Respiratory Function Test
3.2. Multivariate Analysis
3.2.1. General Covariates
3.2.2. Respiratory Function Covariates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delorey, T.M.; Ziegler, C.G.K.; Heimberg, G.; Normand, R.; Yang, Y.; Segerstolpe, Å.; Abbondanza, D.; Fleming, S.J.; Subramanian, A.; Montoro, D.T.; et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 2021, 595, 107–113. [Google Scholar] [CrossRef]
- D’Agnillo, F.; Walters, K.A.; Xiao, Y.; Sheng, Z.M.; Scherler, K.; Park, J.; Gygli, S.; Rosas, L.A.; Sadtler, K.; Kalish, H.; et al. Lung epithelial and endothelial damage, loss of tissue repair, inhibition of fibrinolysis, and cellular senescence in fatal COVID-19. Sci. Transl. Med. 2021, 13, eabj7790. [Google Scholar] [CrossRef] [PubMed]
- Bocchino, M.; Rea, G.; Capitelli, L.; Lieto, R.; Bruzzese, D. Chest CT Lung Abnormalities 1 Year after COVID-19: A Systematic Review and Meta-Analysis. Radiology 2023, 308, e230535. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Ye, T.; Sun, P.; Gui, S.; Liang, B.; Li, L.; Zheng, D.; Wang, J.; Hesketh, R.L.; Yang, L.; et al. Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19). Radiology 2020, 295, 715–721. [Google Scholar] [CrossRef]
- Rubin, G.D.; Ryerson, C.J.; Haramati, L.B.; Sverzellati, N.; Kanne, J.P.; Raoof, S.; Schluger, N.W.; Volpi, A.; Yim, J.-J.; Martin, I.B.K.; et al. The Role of Chest Imaging in Patient Managemalest During the COVID-19 Pandemic. A Multinational Consensus Statemalest From the Fleischner Society. Chest 2020, 158, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Solomon, J.J.; Heyman, B.; Ko, J.P.; Condos, R.; Lynch, D.A. CT of Post-Acute Lung Complications of COVID-19. Radiology 2021, 301, E383–E395. [Google Scholar] [CrossRef] [PubMed]
- Wells, A.U.; Devaraj, A.; Desai, S.R. Interstitial Lung Disease after COVID-19 Infection: A Catalog of Uncertainties. Radiology 2021, 299, E216–E218. [Google Scholar] [CrossRef]
- Tabatabaei, S.M.H.; Rajebi, H.; Moghaddas, F.; Ghasemiadl, M.; Talari, H. Chest CT in COVID-19 pneumonia: What are the findings in mid-term follow-up? Emerg. Radiol. 2020, 27, 711–719. [Google Scholar] [CrossRef]
- Gulati, A.; Lakhani, P. Interstitial lung abnormalities and pulmonary fibrosis in COVID-19 patients: A short-term follow-up case series. Clin. Imaging 2021, 77, 180–186. [Google Scholar] [CrossRef]
- Caruso, D.; Guido, G.; Zerunian, M.; Polidori, T.; Lucertini, E.; Pucciarelli, F.; Polici, M.; Rucci, C.; Bracci, B.; Nicolai, M.; et al. Postacute sequelae of COVID-19 pneumonia: 6-month chest CT follow-up. Radiology 2021, 301, E396–E405. [Google Scholar] [CrossRef]
- Han, X.; Fan, Y.; Alwalid, O.; Li, N.; Jia, X.; Yuan, M.; Li, Y.; Cao, Y.; Gu, J.; Wu, H.; et al. Six-month follow-up chest CT findings after severe COVID-19 pneumonia. Radiology 2021, 299, E177–E186. [Google Scholar] [CrossRef]
- Ribeiro Carvalho, C.R.; Lamas, C.A.; Chate, R.C.; Salge, J.M.; Sawamura, M.V.Y.; de Albuquerque, A.L.P.; Junior, C.T.; Lima, D.M.; Garcia, M.L.; Scudeller, P.G.; et al. Long-term respiratory follow-up of ICU hospitalized COVID-19 patients: Prospective cohort study. PLoS ONE 2023, 18, e0280567. [Google Scholar] [CrossRef] [PubMed]
- Zapol, W.M.; Trelstad, R.L.; Coffey, J.W.; Tsai, I.; Salvador, R.A. Pulmonary fibrosis in severe acute respiratory failure. Am. Rev. Respir. Dis. 1979, 119, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Madotto, F.; McNicholas, B.; Rezoagli, E.; Pham, T.; Laffey, J.G.; Bellani, G.; ESICM Trials Group. Death in hospital following ICU discharge: Insights from the LUNG SAFE study. Crit. Care 2021, 25, 144. [Google Scholar] [CrossRef]
- Salehi, S.; Abedi, A.; Balakrishnan, S.; Gholamreza-Nezhad, A. Coronavirus disease 2019 (COVID-19): A systematic review of imaging findings in 919 patients. Am. J. Roentgenol. 2020, 215, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, G.; De Michele, L.; De Ceglie, M.; Pierucci, P.; Mirabile, A.; Vita, M.; Palmieri, V.O.; Carpagnano, G.E.; Scardapane, A.; D’Agostino, C. Lung ultrasonography for long-term follow-up of COVID-19 survivors compared to chest CT scan. Respir. Med. 2021, 181, 106384. [Google Scholar] [CrossRef] [PubMed]
- Ökmen, K.; Yildiz, D.K.; Soyaslan, E.; Ceylan, I.; Sayan, H.E.; Aytünür, C.S. Comparison of two different lung ultrasound imaging protocols in COVID-19 pneumonia. Ultrasonography 2022, 41, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Yang, X.; Zhang, X.; Curran, W.J.; Liu, T. Ultrasound Elastography for Lung Disease Assessmalest. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 2249–2257. [Google Scholar] [CrossRef]
- Ramos Hernández, C.; Tilve Gomez, A.; Sánchez Fernández, A.; Cordovilla, R.; Núñez Ares, A.; Ordoñez Gómez, P.; Pérez, A.W.; Anón, O.C.; Ramírez, J.G.; Salas, M.V.; et al. Multicentre study on the accuracy of lung ultrasound in the diagnosis and monitoring of respiratory sequelae in the medium and long term in patients with COVID-19. Front. Med. 2023, 10, 1199666. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, B.; Osborn, T.; Bartholmai, B.; Kalra, S. Lung ultrasound surface wave elastography for assessing interstitial lung disease. IEEE Trans. Biomed. Eng. 2019, 66, 1346–1352. [Google Scholar] [CrossRef]
- Cooper, B.G. An update on contraindications for lung function testing. Thorax 2011, 66, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Hansell, D.M.; Bankier, A.A.; MacMahon, H.; McLoud, T.C.; Müller, N.L.; Remy, J. Fleischner Society: Glossary of terms for thoracic imaging. Radiology 2008, 246, 697–722. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.A.; Maklouf, H.A. B-lines: Transthoracic chest ultrasound signs useful in assessmalest of interstitial lung disease. Ann. Thorac. Med. 2014, 9, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statemalest. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis. Curr. Dir. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Lorent, N.; Vande Weygaerde, Y.; Claeys, E.; Caamano Fajardo, I.G.; De Vos, N.; De Wever, W.; Salhi, B.; Gyselinck, I.; Bosteels, C.; Lambrecht, B.N.; et al. Prospective longitudinal evaluation of hospitalized COVID-19 survivors 3 and 12 months after discharge. ERJ Open Res. 2022, 8, 00004. [Google Scholar] [CrossRef] [PubMed]
- Vexler, A.; Polyansky, I.; Gorodetsky, R. Evaluation of skin viscoelasticity and anisotropy by measurement of speed of shear wave propagation with viscoelasticity skin analyser. J. Investig. Dermatol. 1999, 113, 732–739. [Google Scholar] [CrossRef]
- Stumpf, S.; Jaeger, H.; Graeter, T.; Oeztuerk, S.; Schmidberger, J.; Haenleet, M.; Kratzer, W.; The Elasto-Study Group Ulm. Influence of age, sex, body mass index, alcohol, and smoking on shear wave velocity (p-SWE) of the pancreas. Abdom. Radiol. 2016, 41, 1310–1316. [Google Scholar] [CrossRef]
- Rossi, A.; Ganassini, A.; Tantucci, C.; Grassi, V. Aging and the respiratory system. Aging 1996, 8, 143–161. [Google Scholar] [CrossRef]
- Dyer, C. The interaction of ageing and lung disease. Chron. Respir. Dis. 2012, 9, 63–67. [Google Scholar] [CrossRef]
- Enomoto, T.; Usuki, J.; Azuma, A.; Nakagawa, T.; Kudoh, S. Diabetes mellitus may increase risk for idiopathic pulmonary fibrosis. Chest 2003, 123, 2007–2011. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xue, Q.; Miao, L.; Cai, L. Pulmonary fibrosis: A possible diabetic complication. Diabetes Metab. Res. Rev. 2011, 27, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Wendel-Garcia, P.D.; Moser, A.; Jeitziner, M.M.; Aguirre-Bermeo, H.; Arias-Sanchez, P.; Apolo, J.; Roche-Campo, F.; Franch-Llasat, D.; Kleger, G.R.; Schrag, C.; et al. Dynamics of disease characteristics and clinical management of critically ill COVID-19 patients over the time course of the pandemic: An analysis of the prospective, international, multicentre RISC-19-ICU registry. Crit. Care. 2022, 26, 199. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.; Flor, N.; Casella, F.; Ippolito, S.; Leidi, F.; Casazza, G.; Radovanovic, D.; Vezzulli, F.; Santus, P.; Cogliati, C. Lung ultrasound in the follow-up of severe COVID-19 pneumonia: Six months evaluation and comparison with CT. Intern. Emerg. Med. 2022, 17, 2261–2268. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, G.; Gargani, L.; Lepri, V.; Spinelli, S.; Romei, C.; De Liperi, A.; Chimera, D.; Pistelli, F.; Carrozzi, L.; Corradi, F.; et al. Long-term lung ultrasound follow-up in patients after COVID-19 pneumonia hospitalization: A prospective comparative study with chest computed tomography. Eur. J. Intern. Med. 2023, 110, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Dawod, Y.T.; Cook, N.E.; Graham, W.B.; Madhani-Lovely, F.; Thao, C. Smoking-associated interstitial lung disease: Update and review. Expert. Rev. Respir. Med. 2020, 14, 825–834. [Google Scholar] [CrossRef]
Variable | All (n = 79) | Females (n = 30) | Males (n = 49) | p | |||
---|---|---|---|---|---|---|---|
Mean (S.D.) | Range | Mean (S.D.) | Range | Mean (S.D.) | Range | ||
Years of age | 52.3 (13.9) | 25–85 | 52.4 (12.2) | 28–71 | 52.3 (15.0) | 25–85 | - |
Body Mass Index at hospital admission | 30 (5.4) | 23.2–51 | 32.3 (6.6) | 23.2–51 | 28.6 (4.0) | 23.2–43 | 0.002 |
Days from symptom onset to hospitalization | 9.3 (4.0) | 1–22 | 8.1 (3.6) | 1–15 | 9.9 (4.1) | 2–22 | - |
Days in hospital | 11.3 (10.8) | 1–61 | 11.5 (12.8) | 1–61 | 11.1 (9.4) | 1–52 | - |
Oxygen saturation at hospital admission (%) | 81.2 (11.6) | 49–96 | 78.8 (12.6) | 49–96 | 81.9 (11.0) | 56–96 | - |
Oxygen saturation at hospital discharge (%) | 93.8 (2.3) | 88–98 | 93.4 (2.6) | 88–98 | 94.0 (2.1) | 90–98 | - |
n | % | n | % | n | % | ||
Ever smokers | 21 | 26.5% | 5 | 16% | 16 | 33% | |
Systemic high blood pressure | 29 | 36.7% | 14 | 46% | 15 | 31% | |
Type 2 diabetes | 32 | 40.5% | 17 | 56% | 15 | 30.6% | 0.02 |
Intensive care during hospitalization | 14 | 17.5% | 6 | 20% | 8 | 16% | - |
Lung Lobe | Evaluation 1 (n = 79) | Evaluation 2 (n = 74) | Evaluation 3 (n = 77) | (F Value) p Value |
---|---|---|---|---|
Mean (S.D.) | Mean (S.D.) | Mean (S.D.) | ||
Right superior | 2.30 (0.47) | 2.25 (0.43) | 2.14 (0.47) | (4.86) <0.01 |
Right middle | 2.31 (0.57) | 2.29(0.49) | 2.07 (0.61) | (6.33) <0.0001 |
Right inferior | 2.40 (0.57) | 2.24 (0.45) | 2.10 (0.57) | (11.00) <0.0001 |
Left superior | 2.34 (0.45) | 2.18 (0.37) | 2.13 (0.41) | (8.38) <0.0001 |
Left inferior | 2.38 (0.61) | 2.20 (0.48) | 2.09 (057) | (10.26) <0.0001 |
Variable | Evaluation 1 (n = 79) | Evaluation 2 (n = 74) | Evaluation 3 (n = 77) | (F Value) p Value |
---|---|---|---|---|
Mean (S.D.) | Mean (S.D.) | Mean (S.D.) | ||
Spirometry | ||||
Forced vital capacity (FVC) (L) | 3.5 (1.0) | 3.6 (1.0) | 3.6 (0.9) | (6.951) 0.001 * |
1st sec forced expiratory volume (FEV1) (L) | 2.8 (0.8) | 3.0 (0.8) | 3.0 (0.8) | (6.062) 0.002 * |
FEV1/FVC ratio | 82.1 (5.6) | 82.2 (5.3) | 82.3 (5.4) | - |
Forced expiratory flow (FEF) | ||||
25% (L) | 6.3 (2.9) | 5.8(2.4) | 5.2 (1.8) | (5.974) 0.003 * |
50% (L) | 3.4 (2.0) | 3.5 (1.3) | 3.3 (1.2) | - |
75% (L) | 1.4 (1.7) | 1.3 (0.4) | 1.1 (0.3) | - |
Peak expiratory flow (PEF) (L) | 7.5 (2.8) | 7.4 (2.4) | 6.7 (1.7) | (3.658) 0.028 |
Blood Gases | ||||
Partial pressure of carbon dioxide (mm Hg) | 36.7 (3.2) | 35.7 (3.0) | 36.1 (3.4) | - |
Partial pressure of oxygen (mm Hg) | 62.5 (13.0) | 64.8 (8.8) | 66.1 (9.6) | - |
Concentration of bicarbonate (mEq/L) | 23.9 (1.7) | 23.6 (1.6) | 23.8 (1.1) | - |
Oxygen saturation (%) | 89.5 (10.5) | 91.9 (4.6) | 91.7 (4.6) | - |
Relative excess or deficit of base (mmol/L) | −0.5 (1.8) | −0.7 (1.8) | −0.3 (1.5) | - |
Lactate (mmol/L) | 1.3 (0.6) | 1.3 (0.5) | 1.2 (0.5) | - |
Lung Lobe | Right Superior | Right Middle | Right Inferior | Left Superior | Left Inferior | |||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | F Value | p Value | F Value | p Value | F Value | p Value | F Value | p Value | F Value | p Value |
Intercept | 77.138 | <0.00001 | 63.468 | <0.00001 | 74.212 | <0.00001 | 131.372 | <0.00001 | 56.712 | <0.00001 |
Age | 7.653 | 0.007 * | 4.390 | 0.040 * | 4.846 | 0.031 * | 2.14965 | 0.14758 | 2.98758 | 0.088 |
Body mass index at admission (BMI) | 8.380 | 0.005 * | 9.784 | 0.002 * | 16.02 | 0.0001 * | 16.921 | 0.0001 * | 9.43672 | 0.003 * |
Days until hospitalization (Time) | 8.461 | 0.005 * | 3.804 | 0.055 | 4.626 | 0.035 * | 2.96932 | 0.089 | 9.524 | 0.003 * |
>6 months after disease onset (6M) | 3.055 | 0.085 | 4.376 | 0.040 * | 2.288 | 0.135 | 0.975 | 0.327 | 1.177 | 0.282 |
Intensive care unit (ICU) | 2.530 | 0.116 | 4.563 | 0.036 * | 1.111 | 0.295 | 4.592 | 0.035 * | 3.782 | 0.056 |
Diabetes (DM) | 4.189 | 0.044 * | 0.034 | 0.853 | 7.401 | 0.008 * | 5.429 | 0.023 * | 7.818 | 0.006 * |
6M*UCI | 4.866 | 0.031 * | 2.472 | 0.120 | 0.844 | 0.361 | 2.438 | 0.123 | 0.990 | 0.323 |
6M*DM | 1.201 | 0.277 | 1.192 | 0.279 | 1.1954 | 0.278 | 1.833 | 0.180 | 0.055 | 0.813 |
UCI*DM | 14.604 | 0.0003 * | 1.649 | 0.203 | 14.576 | 0.0003 * | 10.93 | 0.001 * | 9.237 | 0.003 * |
6M*ICU*DM | 3.183 | 0.079 | 3.230 | 0.077 | 3.232 | 0.076 | 5.329 | 0.024 * | 2.142 | 0.14 |
Lung Lobe | Right Superior | Right Middle | Right Inferior | Left Superior | Left Inferior | |||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | F Value | p Value | F Value | p Value | F Value | p Value | F Value | p Value | F Value | p Value |
Evaluation 1 | ||||||||||
Intercept | 35.582 | <0.0001 * | 27.472 | <0.0001 * | 33.551 | <0.0001 * | 28.296 | <0.0001 * | 23.211 | <0.0001 * |
FEV1 | 18.048 | <0.0001 * | 12.296 | 0.001 * | 19.999 | <0.0001 * | 11.866 | 0.001 * | 24.020 | <0.0001 * |
FEF25 | 8.329 | 0.005 * | 2.932 | 0.091 | 16.972 | <0.0001 * | 7.213 | 0.009 * | 12.891 | 0.001 * |
HCO3 | 4.041 | 0.048 * | 3.825 | 0.054 | 5.060 | 0.027 | 1.775 | 0.187 | 1.816 | 0.182 |
SEX | 6.948 | 0.010 * | 3.408 | 0.069 | 15.407 | <0.0001 * | 14.540 | <0.0001 * | 11.020 | 0.001 * |
Evaluation 2 | ||||||||||
Intercept | 28.471 | <0.0001 * | 21.759 | <0.0001 * | 23.956 | <0.0001 * | 35.952 | <0.0001 * | 43.686 | <0.0001 * |
FEV1 | 19.176 | <0.0001 * | 7.549 | 0.008 * | 8.365 | 0.005 * | 4.545 | 0.037 * | 15.610 | <0.0001 * |
FEF25 | 3.300 | 0.074 | 1.106 | 0.297 | 1.276 | 0.263 | 0.015 | 0.904 | 1.536 | 0.219 |
HCO3 | 2.082 | 0.154 | 2.753 | 0.102 | 2.860 | 0.095 | 5.847 | 0.018 * | 9.913 | 0.002 * |
SEX | 14.639 | <0.0001 * | 3.945 | 0.051 | 7.136 | 0.009 * | 3.264 | 0.075 | 17.108 | <0.0001 * |
Evaluation 3 | ||||||||||
Intercept | 10.672 | 0.002 * | 8.002 | 0.006 * | 5.250 | 0.025 * | 3.313 | 0.073 | 7.095 | 0.010 * |
FEV1 | 4.514 | 0.037 * | 2.945 | 0.091 | 3.692 | 0.059 | 1.779 | 0.187 | 7.785 | 0.007 * |
FEF25 | 3.627 | 0.061 | 3.621 | 0.061 | 6.423 | 0.014 * | 9.053 | 0.004 * | 9.132 | 0.004 * |
HCO3 | 1.731 | 0.193 | 1.607 | 0.209 | 0.587 | 0.446 | 0.036 | 0.851 | 1.001 | 0.321 |
SEX | 2.908 | 0.093 | 0.930 | 0.338 | 3.175 | 0.079 | 0.806 | 0.372 | 3.792 | 0.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paredes-Manjarrez, C.; Avelar-Garnica, F.J.; Balderas-Chairéz, A.T.; Arellano-Sotelo, J.; Córdova-Ramírez, R.; Espinosa-Poblano, E.; González-Ruíz, A.; Anda-Garay, J.C.; Miguel-Puga, J.A.; Jáuregui-Renaud, K. Lung Ultrasound Elastography by SWE2D and “Fibrosis-like” Computed Tomography Signs after COVID-19 Pneumonia: A Follow-Up Study. J. Clin. Med. 2023, 12, 7515. https://doi.org/10.3390/jcm12247515
Paredes-Manjarrez C, Avelar-Garnica FJ, Balderas-Chairéz AT, Arellano-Sotelo J, Córdova-Ramírez R, Espinosa-Poblano E, González-Ruíz A, Anda-Garay JC, Miguel-Puga JA, Jáuregui-Renaud K. Lung Ultrasound Elastography by SWE2D and “Fibrosis-like” Computed Tomography Signs after COVID-19 Pneumonia: A Follow-Up Study. Journal of Clinical Medicine. 2023; 12(24):7515. https://doi.org/10.3390/jcm12247515
Chicago/Turabian StyleParedes-Manjarrez, Carlos, Francisco J. Avelar-Garnica, Andres Tlacaelel Balderas-Chairéz, Jorge Arellano-Sotelo, Ricardo Córdova-Ramírez, Eliseo Espinosa-Poblano, Alejandro González-Ruíz, Juan Carlos Anda-Garay, José Adan Miguel-Puga, and Kathrine Jáuregui-Renaud. 2023. "Lung Ultrasound Elastography by SWE2D and “Fibrosis-like” Computed Tomography Signs after COVID-19 Pneumonia: A Follow-Up Study" Journal of Clinical Medicine 12, no. 24: 7515. https://doi.org/10.3390/jcm12247515
APA StyleParedes-Manjarrez, C., Avelar-Garnica, F. J., Balderas-Chairéz, A. T., Arellano-Sotelo, J., Córdova-Ramírez, R., Espinosa-Poblano, E., González-Ruíz, A., Anda-Garay, J. C., Miguel-Puga, J. A., & Jáuregui-Renaud, K. (2023). Lung Ultrasound Elastography by SWE2D and “Fibrosis-like” Computed Tomography Signs after COVID-19 Pneumonia: A Follow-Up Study. Journal of Clinical Medicine, 12(24), 7515. https://doi.org/10.3390/jcm12247515