Beyond Conventional Operations: Embracing the Era of Contemporary Minimally Invasive Cardiac Surgery
Abstract
:1. Introduction
2. Minimally Invasive Cardiac Surgery: Development and Current Standard
2.1. Minimally Invasive Coronary Revascularization
2.1.1. Coronary Artery Bypass Grafting (CABG)
2.1.2. Hybrid Coronary Revascularization (HCR)
2.2. Minimally Invasive Valve Surgery (MIVS)
2.3. Minimally Invasive Aortic Valve Surgery (MIAVS)
2.4. Minimally Invasive Aortic Surgery (MIAS)
2.5. Minimally Invasive Mitral Valve Surgery (MIMVS)
2.6. Minimally Invasive Tricuspid Valve Surgery (MITVS)
2.7. Minimally Invasive Surgery for Atrial Fibrillation (AF)
2.8. Minimally Invasive Ventricular Assist Device Implantation
3. Emerging Technologies in Minimally Invasive Cardiac Procedures
3.1. Robotic Cardiac Surgery
3.2. Virtual Reality (VR) Technology
4. Disadvantages of Minimally Invasive Cardiac Procedures
5. Directions for Future Research
6. Conclusions
Funding
Conflicts of Interest
References
- Iribarne, A.; Easterwood, R.M.; Chan, E.Y.; Yang, J.; Soni, L.; Russo, M.J.; Smith, C.R.; Argenziano, M.; Bostock, I.C.; Nammalwar, S.; et al. The golden age of minimally invasive cardiothoracic surgery: Current and future perspectives. Future Cardiol. 2011, 7, 333–346. [Google Scholar] [CrossRef]
- Doenst, T.; Diab, M.; Sponholz, C.; Bauer, M.; Färber, G. The opportunities and limitations of minimally invasive cardiac surgery. Dtsch. Ärzteblatt Int. 2017, 114, 777–784. [Google Scholar] [CrossRef]
- Chitwood, W.R. Historical evolution of robot-assisted cardiac surgery: A 25-year journey. Ann. Cardiothorac. Surg. 2022, 11, 564–582. [Google Scholar] [CrossRef]
- Cerny, S.; Oosterlinck, W.; Onan, B.; Singh, S.; Segers, P.; Bolcal, C.; Alhan, C.; Navarra, E.; Pettinari, M.; Van Praet, F.; et al. Robotic cardiac surgery in Europe: Status 2020. Front. Cardiovasc. Med. 2021, 8, 827515. [Google Scholar] [CrossRef]
- Göbölös, L.; Ramahi, J.; Obeso, A.; Bartel, T.; Hogan, M.; Traina, M.; Edris, A.; Hasan, F.; Banna, M.E.; Tuzcu, E.M.; et al. Robotic Totally Endoscopic Coronary Artery Bypass Grafting: Systematic Review of Clinical Outcomes from the Past two Decades. Innovations 2019, 14, 5–16. [Google Scholar] [CrossRef]
- Bonatti, J.; Wallner, S.; Crailsheim, I.; Grabenwöger, M.; Winkler, B. Minimally invasive and robotic coronary artery bypass grafting-a 25-year review. J. Thorac. Dis. 2021, 13, 1922–1944. [Google Scholar] [CrossRef]
- Bonatti, J.; Crailsheim, I.; Grabenwöger, M.; Winkler, B. Minimally Invasive and Robotic Mitral Valve Surgery: Methods and Outcomes in a 20-Year Review. Innovations 2021, 16, 317–326. [Google Scholar] [CrossRef]
- Seese, L.; Ashraf, S.F.; Davila, A.; Coyan, G.; Joubert, K.; Zhang, D.; Kaczorowski, D.; West, D.; Sultan, I.; Bonatti, J. Robotic totally endoscopic coronary artery bypass grafting—Port placements, internal mammary artery harvesting and anastomosis techniques. J. Vis. Surg. 2023, 9, 4. [Google Scholar] [CrossRef]
- Beckmann, A.; Meyer, R.; Lewandowski, J.; Markewitz, A.; Blaßfeld, D.; Böning, A. German heart surgery report 2021: The annual updated registry of the german society for thoracic and cardiovascular surgery. Thorac. Cardiovasc. Surg. 2022, 70, 362–376. [Google Scholar] [CrossRef]
- Davierwala, P.M.; Seeburger, J.; Pfannmueller, B.; Garbade, J.; Misfeld, M.; Borger, M.A.; Mohr, F.W. Minimally invasive mitral valve surgery: “The Leipzig experience”. Ann. Cardiothorac. Surg. 2013, 2, 744–750. [Google Scholar]
- Chang, C.; Raza, S.; Altarabsheh, S.E.; Delozier, S.; Sharma, U.M.; Zia, A.; Khan, M.S.; Neudecker, M.; Markowitz, A.H.; Sabik, J.F.; et al. Minimally Invasive Approaches to Surgical Aortic Valve Replacement: A Meta-Analysis. Ann. Thorac. Surg. 2018, 106, 1881–1889. [Google Scholar] [CrossRef]
- Brown, M.L.; McKellar, S.H.; Sundt, T.M.; Schaff, H.V. Ministernotomy versus conventional sternotomy for aortic valve replacement: A systematic review and meta-analysis. J. Thorac. Cardiovasc. Surg. 2009, 137, 670–679.e5. [Google Scholar] [CrossRef]
- Phan, K.; Xie, A.; Di Eusanio, M.; Yan, T.D. A meta-analysis of minimally invasive versus conventional sternotomy for aortic valve replacement. Ann. Thorac. Surg. 2014, 98, 1499–1511. [Google Scholar] [CrossRef]
- Harky, A.; Al-Adhami, A.; Chan, J.S.K.; Wong, C.H.M.; Bashir, M. Minimally Invasive Versus Conventional Aortic Root Replacement—A Systematic Review and Meta-Analysis. Heart Lung Circ. 2019, 28, 1841–1851. [Google Scholar] [CrossRef]
- Sündermann, S.H.; Sromicki, J.; Biefer, H.R.C.; Seifert, B.; Holubec, T.; Falk, V.; Jacobs, S. Mitral valve surgery: Right lateral minithoracotomy or sternotomy? A systematic review and meta-analysis. J. Thorac. Cardiovasc. Surg. 2014, 148, 1989–1995.e4. [Google Scholar] [CrossRef]
- Modi, P.; Hassan, A.; Chitwood, W.R. Minimally invasive mitral valve surgery: A systematic review and meta-analysis. Eur. J. Cardiothorac. Surg. 2008, 34, 943–952. [Google Scholar] [CrossRef]
- STS National Database. Executive Summary; Duke Clinical Research Institute: Durham, NC, USA, 2003. [Google Scholar]
- Schmitto, J.D.; Mokashi, S.A.; Cohn, L.H. Minimally-invasive valve surgery. J. Am. Coll. Cardiol. 2010, 56, 455–462. [Google Scholar] [CrossRef]
- Buffolo, E.; de Andrade, C.S.; Branco, J.N.; Teles, C.A.; Aguiar, L.F.; Gomes, W.J. Coronary artery bypass grafting without cardiopulmonary bypass. Ann. Thorac. Surg. 1996, 61, 63–66. [Google Scholar] [CrossRef]
- Cao, C.; Indraratna, P.; Doyle, M.; Tian, D.H.; Liou, K.; Munkholm-Larsen, S.; Uys, C.; Virk, S. A systematic review on robotic coronary artery bypass graft surgery. Ann. Cardiothorac. Surg. 2016, 5, 530–543. [Google Scholar] [CrossRef]
- Mihaljevic, T.; Cohn, L.H.; Unic, D.; Aranki, S.F.; Couper, G.S.; Byrne, J.G. One thousand minimally invasive valve operations: Early and late results. Ann. Surg. 2004, 240, 529–534; discussion 534. [Google Scholar] [CrossRef]
- Grossi, E.A.; Loulmet, D.F.; Schwartz, C.F.; Ursomanno, P.; Zias, E.A.; Dellis, S.L.; Galloway, A.C. Evolution of operative techniques and perfusion strategies for minimally invasive mitral valve repair. J. Thorac. Cardiovasc. Surg. 2012, 143 (Suppl. S4), S68–S70. [Google Scholar] [CrossRef]
- Shah, V.N.; Kilcoyne, M.F.; Buckley, M.; Sicouri, S.; Plestis, K.A. The mini-Bentall approach: Comparison with full sternotomy. JTCVS Tech. 2021, 7, 59–66. [Google Scholar] [CrossRef]
- Olds, A.; Saadat, S.; Azzolini, A.; Dombrovskiy, V.; Odroniec, K.; Lemaire, A.; Ghaly, A.; Lee, L.Y. Improved operative and recovery times with mini-thoracotomy aortic valve replacement. J. Cardiothorac. Surg. 2019, 14, 91. [Google Scholar] [CrossRef]
- Dieberg, G.; Smart, N.A.; King, N. Minimally invasive cardiac surgery: A systematic review and meta-analysis. Int. J. Cardiol. 2016, 223, 554–560. [Google Scholar] [CrossRef]
- Dogan, S.; Aybek, T.; Risteski, P.S.; Detho, F.; Rapp, A.; Wimmer-Greinecker, G.; Moritz, A. Minimally invasive port access versus conventional mitral valve surgery: Prospective randomized study. Ann. Thorac. Surg. 2005, 79, 492–498. [Google Scholar] [CrossRef]
- Ding, C.; Wang, C.; Dong, A.; Kong, M.; Jiang, D.; Tao, K.; Shen, Z. Anterolateral minithoracotomy versus median sternotomy for the treatment of congenital heart defects: A meta-analysis and systematic review. J. Cardiothorac. Surg. 2012, 7, 43. [Google Scholar] [CrossRef]
- Al-Naamani, A.; Fahr, F.; Khan, A.; Bireta, C.; Nozdrzykowski, M.; Feder, S.; Deshmukh, N.; Jubeh, M.; Eifert, S.; Jawad, K.; et al. Minimally invasive ventricular assist device implantation. J. Thorac. Dis. 2021, 13, 2010–2017. [Google Scholar] [CrossRef]
- Pineda, A.M.; Santana, O.; Cortes-Bergoderi, M.; Lamelas, J. Is a minimally invasive approach for resection of benign cardiac masses superior to standard full sternotomy? Interact. Cardiovasc. Thorac. Surg. 2013, 16, 875–879. [Google Scholar] [CrossRef]
- Stevens, J.H.; Burdon, T.A.; Peters, W.S.; Siegel, L.C.; Pompili, M.F.; Vierra, M.A.; Goar, F.G.S.; Ribakove, G.H.; Mitchell, R.; Reitz, B.A. Port-access coronary artery bypass grafting: A proposed surgical method. J. Thorac. Cardiovasc. Surg. 1996, 111, 567–573. [Google Scholar] [CrossRef]
- Mohr, F.W.; Falk, V.; Diegeler, A.; Walther, T.; van Son, J.A.; Autschbach, R. Minimally invasive port-access mitral valve surgery. J. Thorac. Cardiovasc. Surg. 1998, 115, 567–574; discussion 574. [Google Scholar] [CrossRef]
- Eqbal, A.J.; Gupta, S.; Basha, A.; Qiu, Y.; Wu, N.; Rega, F.; Chu, F.V.; Belley-Cote, E.P.; Whitlock, R.P. Minimally invasive mitral valve surgery versus conventional sternotomy mitral valve surgery: A systematic review and meta-analysis of 119 studies. J. Card. Surg. 2022, 37, 1319–1327. [Google Scholar] [CrossRef]
- Murphy, D.A.; Moss, E.; Binongo, J.; Miller, J.S.; Macheers, S.K.; Sarin, E.L.; Herzog, A.M.; Thourani, V.H.; Guyton, R.A.; Halkos, M.E. The expanding role of endoscopic robotics in mitral valve surgery: 1257 consecutive procedures. Ann. Thorac. Surg. 2015, 100, 1675–1681; discussion 1681. [Google Scholar] [CrossRef]
- Dogan, S.; Aybek, T.; Risteski, P.; Mierdl, S.; Stein, H.; Herzog, C.; Khan, M.F.; Dzemali, O.; Moritz, A.; Wimmer-Greinecker, G. Totally endoscopic coronary artery bypass graft: Initial experience with an additional instrument arm and an advanced camera system. Surg. Endosc. 2004, 18, 1587–1591. [Google Scholar] [CrossRef]
- Gibbon, J.H., Jr.; Hill, J.D. Part I. The development of the first successful heart-lung machine. Ann. Thorac. Surg. 1982, 34, 337–341. [Google Scholar] [CrossRef]
- Kolessov, V.I. Mammary artery-coronary artery anastomosis as method of treatment for angina pectoris. J. Thorac. Cardiovasc. Surg. 1967, 54, 535–544. [Google Scholar] [CrossRef]
- Benetti, F.J.; Mariani, M.A.; Ballester, C. Direct coronary surgery without cardiopulmonary bypass in acute myocardial infarction. J. Cardiovasc. Surg. 1996, 37, 391–395. [Google Scholar]
- Calafiore, A.M.; Di Giammarco, G.; Teodori, G.; Bosco, G.; D’Annunzio, E.; Barsotti, A.; Maddestra, N.; Paloscia, L.; Vitolla, G.; Sciarra, A.; et al. Left anterior descending coronary artery grafting via left anterior small thoracotomy without cardiopulmonary bypass. Ann. Thorac. Surg. 1996, 61, 1658–1663; discussion 1664. [Google Scholar] [CrossRef]
- Subramanian, V.A.; McCabe, J.C.; Geller, C.M. Minimally invasive direct coronary artery bypass grafting: Two-year clinical experience. Ann. Thorac. Surg. 1997, 64, 1648–1653; discussion 1654. [Google Scholar] [CrossRef]
- Boonstra, P.W.; Grandjean, J.G.; Mariani, M.A. Improved method for direct coronary grafting without CPB via anterolateral small thoracotomy. Ann. Thorac. Surg. 1997, 63, 567–569. [Google Scholar] [CrossRef]
- Balkhy, H.H.; Kitahara, H.; Mitzman, B.; Nisivaco, S. Robotic totally endoscopic beating-heart bypass to the right coronary artery: First worldwide experience. Eur. J. Cardiothorac. Surg. 2020, 57, 529–534. [Google Scholar] [CrossRef]
- Brownlee, A.R.; Amabile, A.; Torregrossa, G.; Balkhy, H.H. Robotic totally endoscopic triple bypass with bilateral internal mammary arteries and two different anastomotic techniques. J. Card. Surg. 2022, 37, 249–251. [Google Scholar] [CrossRef]
- McGinn, J.T.; Usman, S.; Lapierre, H.; Pothula, V.R.; Mesana, T.G.; Ruel, M. Minimally invasive coronary artery bypass grafting: Dual-center experience in 450 consecutive patients. Circulation 2009, 120 (Suppl. S11), S78–S84. [Google Scholar] [CrossRef]
- Lapierre, H.; Chan, V.; Sohmer, B.; Mesana, T.G.; Ruel, M. Minimally invasive coronary artery bypass grafting via a small thoracotomy versus off-pump: A case-matched study. Eur. J. Cardiothorac. Surg. 2011, 40, 804–810. [Google Scholar] [CrossRef]
- Ziankou, A.; Ostrovsky, Y. Early and Midterm Results of No-Touch Aorta Multivessel Small Thoracotomy Coronary Artery Bypass Grafting: A Propensity Score-Matched Study. Innovations 2015, 10, 258–267; discussion 267. [Google Scholar]
- Benetti, F.; Mariani, M.A.; Sani, G.; Boonstra, P.W.; Grandjean, J.G.; Giomarelli, P.; Toscano, M. Video-assisted minimally invasive coronary operations without cardiopulmonary bypass: A multicenter study. J. Thorac. Cardiovasc. Surg. 1996, 112, 1478–1484. [Google Scholar] [CrossRef]
- Antona, C.; Pompilio, G.; Lotto, A.A.; Di Matteo, S.; Agrifoglio, M.; Biglioli, P. Video-assisted minimally invasive coronary bypass surgery without cardiopulmonary bypass. Eur. J. Cardiothorac. Surg. 1998, 14 (Suppl. S1), S62–S67. [Google Scholar] [CrossRef]
- Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.; Don, C.W. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: A report of the american college of cardiology/american heart association joint committee on clinical practice guidelines. Circulation 2022, 145, e18–e114. [Google Scholar] [CrossRef]
- Neumann, F.-J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; A Byrne, R.; Collet, J.-P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef]
- Puskas, J.D.; Halkos, M.E.; DeRose, J.J.; Bagiella, E.; Miller, M.A.; Overbey, J.; Bonatti, J.; Srinivas, V.S.; Vesely, M.; Sutter, F.; et al. Hybrid Coronary Revascularization for the Treatment of Multivessel Coronary Artery Disease: A Multicenter Observational Study. J. Am. Coll. Cardiol. 2016, 68, 356–365. [Google Scholar] [CrossRef]
- Thuijs, D.J.; Kappetein, A.P.; Serruys, P.W.; Mohr, F.W.; Morice, M.C.; Mack, M.J.; Holmes, D.R.; Curzen, N.; Davierwala, P.; Noack, T.; et al. Percutaneous coronary intervention versus coronary artery bypass grafting in patients with three-vessel or left main coronary artery disease: 10-year follow-up of the multicentre randomised controlled SYNTAX trial. Lancet 2019, 394, 1325–1334. [Google Scholar] [CrossRef]
- Park, S.-J.; Ahn, J.-M.; Kim, Y.-H.; Park, D.-W.; Yun, S.-C.; Lee, J.-Y.; Kang, S.-J.; Lee, S.-W.; Lee, C.W.; Park, S.-W.; et al. Trial of everolimus-eluting stents or bypass surgery for coronary disease. N. Engl. J. Med. 2015, 372, 1204–1212. [Google Scholar] [CrossRef]
- Mäkikallio, T.; Holm, N.R.; Lindsay, M.; Spence, M.S.; Erglis, A.; A Menown, I.B.; Trovik, T.; Eskola, M.; Romppanen, H.; Kellerth, T.; et al. Percutaneous coronary angioplasty versus coronary artery bypass grafting in treatment of unprotected left main stenosis (NOBLE): A prospective, randomised, open-label, non-inferiority trial. Lancet 2016, 388, 2743–2752. [Google Scholar] [CrossRef]
- Hunter, G.W.; Sharma, V.; Varma, C.; Connolly, D. The EXCEL trial: The interventionalists’ perspective. Eur. Cardiol. 2021, 16, e01. [Google Scholar] [CrossRef]
- Lang, J.; Buettner, S.; Weiler, H.; Papadopoulos, N.; Geiger, H.; Hauser, I.; Vasa-Nicotera, M.; Zeiher, A.; Fichtlscherer, S.; Honold, J. Comparison of interventional and surgical myocardial revascularization in kidney transplant recipients—A single-centre retrospective analysis. Int. J. Cardiol. Heart Vasc. 2018, 21, 96–102. [Google Scholar] [CrossRef]
- Alexander, J.H.; Hafley, G.; Harrington, R.A.; Peterson, E.D.; Ferguson, T.B.; Lorenz, T.J. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: A randomized controlled trial. JAMA 2005, 294, 2446–2454. [Google Scholar]
- Farkouh, M.E.; Domanski, M.; Sleeper, L.A.; Siami, F.S.; Dangas, G.; Mack, M.; Yang, M.; Cohen, D.J.; Rosenberg, Y.; Solomon, S.D.; et al. Strategies for multivessel revascularization in patients with diabetes. N. Engl. J. Med. 2012, 367, 2375–2384. [Google Scholar] [CrossRef]
- Serruys, P.W.; Morice, M.C.; Kappetein, A.P.; Colombo, A.; Holmes, D.R.; Mack, M.J.; Ståhle, E.; Feldman, T.E.; Van Den Brand, M.; Bass, E.J.; et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N. Engl. J. Med. 2009, 360, 961–972. [Google Scholar] [CrossRef]
- Angelini, G.D.; Wilde, P.; Salerno, T.A.; Bosco, G.; Calafiore, A.M. Integrated left small thoracotomy and angioplasty for multivessel coronary artery revascularisation. Lancet 1996, 347, 757–758. [Google Scholar] [CrossRef]
- Moreno, P.R.; Stone, G.W.; Gonzalez-Lengua, C.A.; Puskas, J.D. The hybrid coronary approach for optimal revascularization: JACC review topic of the week. J. Am. Coll. Cardiol. 2020, 76, 321–333. [Google Scholar] [CrossRef]
- DeRose, J.J. Current state of integrated “hybrid” coronary revascularization. Semin. Thorac. Cardiovasc. Surg. 2009, 21, 229–236. [Google Scholar] [CrossRef]
- Halkos, M.E.; Vassiliades, T.A.; Douglas, J.S.; Morris, D.C.; Rab, S.T.; Liberman, H.A.; Samady, H.; Kilgo, P.D.; Guyton, R.A.; Puskas, J.D. Hybrid coronary revascularization versus off-pump coronary artery bypass grafting for the treatment of multivessel coronary artery disease. Ann. Thorac. Surg. 2011, 92, 1695–1701; discussion 1701. [Google Scholar] [CrossRef]
- Shen, L.; Hu, S.; Wang, H.; Xiong, H.; Zheng, Z.; Li, L.; Xu, B.; Yan, H.; Gao, R. One-stop hybrid coronary revascularization versus coronary artery bypass grafting and percutaneous coronary intervention for the treatment of multivessel coronary artery disease: 3-year follow-up results from a single institution. J. Am. Coll. Cardiol. 2013, 61, 2525–2533. [Google Scholar] [CrossRef]
- Cohn, L.H. Fifty years of open-heart surgery. Circulation 2003, 107, 2168–2170. [Google Scholar] [CrossRef]
- Navia, J.L.; Cosgrove, D.M. Minimally invasive mitral valve operations. Ann. Thorac. Surg. 1996, 62, 1542–1544. [Google Scholar] [CrossRef]
- Carpentier, A.; Loulmet, D.; Le Bret, E.; Haugades, B.; Dassier, P.; Guibourt, P. Open heart operation under videosurgery and minithoracotomy. First case (mitral valvuloplasty) operated with success. Comptes Rendus De L’academie Des Sci. Ser. III Sci. De La Vie 1996, 319, 219–223. [Google Scholar]
- Carpentier, A.; Loulmet, D.; Aupecle, B.; Kieffer, J.P.; Tournay, D.; Guibourt, P.; Fiemeyer, A.; Méléard, D.; Richomme, P. Computer assisted open heart surgery. First case operated on with success. Comptes Rendus De L’academie Des Sci. Ser. III Sci. De La Vie 1998, 321, 437–442. [Google Scholar]
- Loulmet, D.F.; Carpentier, A.; Cho, P.W.; Berrebi, A.; D’Attellis, N.; Austin, C.B.; Couëtil, J.-P.; Lajos, P. Less invasive techniques for mitral valve surgery. J. Thorac. Cardiovasc. Surg. 1998, 115, 772–779. [Google Scholar] [CrossRef]
- Chitwood, W.R.; Elbeery, J.R.; Chapman, W.H.; Moran, J.M.; Lust, R.L.; Wooden, W.A.; Deaton, D.H. Video-assisted minimally invasive mitral valve surgery: The “micro-mitral” operation. J. Thorac. Cardiovasc. Surg. 1997, 113, 413–414. [Google Scholar] [CrossRef]
- Soltesz, E.G.; Cohn, L.H. Minimally invasive valve surgery. Cardiol. Rev. 2007, 15, 109–115. [Google Scholar] [CrossRef]
- Sef, D.; Krajnc, M.; Klokocovnik, T. Minimally invasive aortic valve replacement with sutureless bioprosthesis through right minithoracotomy with completely central cannulation-Early results in 203 patients. J. Card. Surg. 2021, 36, 558–564. [Google Scholar] [CrossRef]
- Ailawadi, G.; Agnihotri, A.K.; Mehall, J.R.; Wolfe, J.A.; Hummel, B.W.; Fayers, T.M.; Farivar, R.S.; Grossi, E.A.; Guy, T.S.; Hargrove, W.C.; et al. Minimally invasive mitral valve surgery I: Patient selection, evaluation, and planning. Innovations 2016, 11, 243–250. [Google Scholar]
- de Jong, A.; Popa, B.A.; Stelian, E.; Karazanishvili, L.; Lanzillo, G.; Simonini, S.; Renzi, L.; Diena, M.; Tesler, U.F. Perfusion techniques for minimally invasive valve procedures. Perfusion 2015, 30, 270–276. [Google Scholar] [CrossRef]
- Klokocovnik, T.; Kersnik Levart, T.; Bunc, M. Double venous drainage through the superior vena cava in minimally invasive aortic valve replacement: A retrospective study. Croat. Med. J. 2012, 53, 11–16. [Google Scholar] [CrossRef]
- Kruse, J.; Silaschi, M.; Velten, M.; Wittmann, M.; Alaj, E.; Ahmad, A.E.S.; Zimmer, S.; Borger, M.A.; Bakhtiary, F. Femoral or Axillary Cannulation for Extracorporeal Circulation during Minimally Invasive Heart Valve Surgery (FAMI): Protocol for a Multi-Center Prospective Randomized Trial. J. Clin. Med. 2023, 12, 5344. [Google Scholar] [CrossRef]
- Murzi, M.; Cerillo, A.G.; Miceli, A.; Bevilacqua, S.; Kallushi, E.; Farneti, P.; Solinas, M.; Glauber, M. Antegrade and retrograde arterial perfusion strategy in minimally invasive mitral-valve surgery: A propensity score analysis on 1280 patients. Eur. J. Cardiothorac. Surg. 2013, 43, e167–e172. [Google Scholar] [CrossRef]
- Murzi, M.; Cerillo, A.G.; Gasbarri, T.; Margaryan, R.; Kallushi, E.; Farneti, P.; Solinas, M. Antegrade and retrograde perfusion in minimally invasive mitral valve surgery with transthoracic aortic clamping: A single-institution experience with 1632 patients over 12 years. Interact. Cardiovasc. Thorac. Surg. 2017, 24, 363–368. [Google Scholar] [CrossRef]
- Modi, P.; Chitwood, W.R. Retrograde femoral arterial perfusion and stroke risk during minimally invasive mitral valve surgery: Is there cause for concern? Ann. Cardiothorac. Surg. 2013, 2, E1. [Google Scholar]
- Saadat, S.; Habib, R.; Engoren, M.; Mentz, G.; Gaudino, M.; Engelman, D.T.; Schwann, T.A. Multiarterial coronary artery bypass grafting practice patterns in the united states: Analysis of the society of thoracic surgeons adult cardiac surgery database. Ann. Thorac. Surg. 2023, 115, 1411–1419. [Google Scholar] [CrossRef]
- Moschovas, A.; Amorim, P.A.; Nold, M.; Faerber, G.; Diab, M.; Buenger, T.; Doenst, T. Percutaneous cannulation for cardiopulmonary bypass in minimally invasive surgery is associated with reduced groin complications. Interact. Cardiovasc. Thorac. Surg. 2017, 25, 377–383. [Google Scholar] [CrossRef]
- Saadat, S.; Schultheis, M.; Azzolini, A.; Romero, J.; Dombrovskiy, V.; Odroniec, K.; Scholz, P.; Lemaire, A.; Batsides, G.; Lee, L. Femoral cannulation: A safe vascular access option for cardiopulmonary bypass in minimally invasive cardiac surgery. Perfusion 2016, 31, 131–134. [Google Scholar] [CrossRef]
- Chitwood, W.R.; Elbeery, J.R.; Moran, J.F. Minimally invasive mitral valve repair using transthoracic aortic occlusion. Ann. Thorac. Surg. 1997, 63, 1477–1479. [Google Scholar] [CrossRef]
- Van Praet, K.M.; Kofler, M.; Sündermann, S.H.; Kempfert, J. Endoaortic balloon occlusion during minimally invasive mitral valve surgery. Innovations 2022, 17, 83–87. [Google Scholar] [CrossRef]
- Balkhy, H.H.; Grossi, E.A.; Kiaii, B.; Murphy, D.; Geirsson, A.; Guy, S.; Lewis, C. A Retrospective Evaluation of Endo-Aortic Balloon Occlusion Compared to External Clamping in Minimally Invasive Mitral Valve Surgery. Semin. Thorac. Cardiovasc. Surg. 2023; in press. [Google Scholar]
- Svensson, L.G. Minimal-access “J” or “j” sternotomy for valvular, aortic, and coronary operations or reoperations. Ann. Thorac. Surg. 1997, 64, 1501–1503. [Google Scholar] [CrossRef]
- Marullo, A.G.; Irace, F.G.; Vitulli, P.; Peruzzi, M.; Rose, D.; D’Ascoli, R.; Iaccarino, A.; Pisani, A.; De Carlo, C.; Mazzesi, G.; et al. Recent developments in minimally invasive cardiac surgery: Evolution or revolution? BioMed Res. Int. 2015, 2015, 483025. [Google Scholar] [CrossRef]
- Cosgrove, D.M.; Sabik, J.F. Minimally invasive approach for aortic valve operations. Ann. Thorac. Surg. 1996, 62, 596–597. [Google Scholar] [CrossRef]
- Bridgewater, B.; Steyn, R.S.; Ray, S.; Hooper, T. Minimally invasive aortic valve replacement through a transverse sternotomy: A word of caution. Heart 1998, 79, 605–607. [Google Scholar] [CrossRef]
- Gundry, S.R. Aortic Valve Replacement By Mini-Sternotomy. Oper. Tech. Card. Thorac. Surg. 1998, 3, 47–53. [Google Scholar] [CrossRef]
- Gundry, S.R.; Shattuck, O.H.; Razzouk, A.J.; del Rio, M.J.; Sardari, F.F.; Bailey, L.L. Facile minimally invasive cardiac surgery via ministernotomy. Ann. Thorac. Surg. 1998, 65, 1100–1104. [Google Scholar] [CrossRef]
- Doty, D.B.; DiRusso, G.B.; Doty, J.R. Full-spectrum cardiac surgery through a minimal incision: Mini-sternotomy (lower half) technique. Ann. Thorac. Surg. 1998, 65, 573–577. [Google Scholar] [CrossRef]
- El-Sayed Ahmad, A.; Salamate, S.; Amer, M.; Sirat, S.; Akhavuz, Ö.; Bakhtiary, F. The First 100 Cases of Two Innovations Combined: Video-Assisted Minimally Invasive Aortic Valve Replacement through Right Anterior Mini-Thoracotomy Using a Novel Aortic Prosthesis. Adv. Ther. 2021, 38, 2435–2446. [Google Scholar] [CrossRef]
- Aris, A.; Cámara, M.L.; Montiel, J.; Delgado, L.J.; Galán, J.; Litvan, H. Ministernotomy versus median sternotomy for aortic valve replacement: A prospective, randomized study. Ann. Thorac. Surg. 1999, 67, 1583–1587; discussion 1587. [Google Scholar] [CrossRef]
- von Segesser, L.K.; Westaby, S.; Pomar, J.; Loisance, D.; Groscurth, P.; Turina, M. Less invasive aortic valve surgery: Rationale and technique. Eur. J. Cardiothorac. Surg. 1999, 15, 781–785. [Google Scholar] [CrossRef]
- Monsefi, N.; Risteski, P.; Miskovic, A.; Zierer, A.; Moritz, A. Propensity-matched comparison between minimally invasive and conventional sternotomy in aortic valve resuspension. Eur. J. Cardiothorac. Surg. 2018, 53, 1258–1263. [Google Scholar] [CrossRef]
- Byrne, J.G.; Karavas, A.N.; Adams, D.H.; Aklog, L.; Aranki, S.F.; Couper, G.S.; Rizzo, R.J.; Cohn, L.H. Partial upper re-sternotomy for aortic valve replacement or re-replacement after previous cardiac surgery. Eur. J. Cardiothorac. Surg. 2000, 18, 282–286. [Google Scholar] [CrossRef]
- El-Andari, R.; Fialka, N.M.; Shan, S.; White, A.; Manikala, V.K.; Wang, S. Aortic Valve Replacement: Is Minimally Invasive Really Better? A Contemporary Systematic Review and Meta-Analysis. Cardiol. Rev. 2022. [Google Scholar] [CrossRef]
- El-Sayed Ahmad, A.; Risteski, P.; Papadopoulos, N.; Radwan, M.; Moritz, A.; Zierer, A. Minimally invasive approach for aortic arch surgery employing the frozen elephant trunk technique. Eur. J. Cardiothorac. Surg. 2016, 50, 140–144. [Google Scholar] [CrossRef]
- Bakhtiary, F.; El-Sayed Ahmad, A.; Amer, M.; Salamate, S.; Sirat, S.; Borger, M.A. Video-Assisted Minimally Invasive Aortic Valve Replacement Through Right Anterior Minithoracotomy for All Comers With Aortic Valve Disease. Innovations 2021, 16, 169–174. [Google Scholar] [CrossRef]
- Hussain, S.; Swystun, A.G.; Caputo, M.; Angelini, G.D.; Vohra, H.A. A review and meta-analysis of conventional sternotomy versus minimally invasive mitral valve surgery for degenerative mitral valve disease focused on the last decade of evidence. Perfusion 2023, 2676591231174579. [Google Scholar] [CrossRef]
- Mikus, E.; Micari, A.; Calvi, S.; Salomone, M.; Panzavolta, M.; Paris, M.; Del Giglio, M. Mini-Bentall: An Interesting Approach for Selected Patients. Innovations 2017, 12, 41–45. [Google Scholar]
- Sef, D.; Bahrami, T.; Raja, S.G.; Klokocovnik, T. Current trends in minimally invasive valve-sparing aortic root replacement-Best available evidence. J. Card. Surg. 2022, 37, 1684–1690. [Google Scholar] [CrossRef]
- Tabata, M.; Khalpey, Z.; Aranki, S.F.; Couper, G.S.; Cohn, L.H.; Shekar, P.S. Minimal access surgery of ascending and proximal arch of the aorta: A 9-year experience. Ann. Thorac. Surg. 2007, 84, 67–72. [Google Scholar] [CrossRef]
- Svensson, L.G.; Nadolny, E.M.; Kimmel, W.A. Minimal access aortic surgery including re-operations. Eur. J. Cardiothorac. Surg. 2001, 19, 30–33. [Google Scholar] [CrossRef]
- Svensson, L.G. Progress in ascending and aortic arch surgery: Minimally invasive surgery, blood conservation, and neurological deficit prevention. Ann. Thorac. Surg. 2002, 74, S1786–S1788; discussion S1792. [Google Scholar] [CrossRef]
- Rayner, T.; Harrison, S.; Rival, P.; E Mahoney, D.; Caputo, M.; Angelini, G.D.; Savović, J.; A Vohra, H. Minimally invasive versus conventional surgery of the ascending aorta and root: A systematic review and meta-analysis. Eur. J. Cardiothorac. Surg. 2020, 57, 8–17. [Google Scholar] [CrossRef]
- Risteski, P.; Radwan, M.; Boshkoski, G.; Salem, R.; Iavazzo, A.; Walther, T.; Esposito, G. Minimally Invasive Aortic Arch Repair: Technical Considerations and Mid-Term Outcomes. Heart Surg. Forum 2020, 23, E803–E808. [Google Scholar] [CrossRef]
- Iba, Y.; Yamada, A.; Kurimoto, Y.; Hatta, E.; Maruyama, R.; Miura, S. Perioperative Outcomes of Minimally Invasive Aortic Arch Reconstruction with Branched Grafts Through a Partial Upper Sternotomy. Ann. Vasc. Surg. 2020, 65, 217–223. [Google Scholar] [CrossRef]
- Goebel, N.; Bonte, D.; Salehi-Gilani, S.; Nagib, R.; Ursulescu, A.; Franke, U.F.W. Minimally invasive access aortic arch surgery. Innovations 2017, 12, 351–355. [Google Scholar]
- McClure, R.S.; Athanasopoulos, L.V.; McGurk, S.; Davidson, M.J.; Couper, G.S.; Cohn, L.H. One thousand minimally invasive mitral valve operations: Early outcomes, late outcomes, and echocardiographic follow-up. J. Thorac. Cardiovasc. Surg. 2013, 145, 1199–1206. [Google Scholar] [CrossRef]
- Feirer, N.; Kornyeva, A.; Lang, M.; Sideris, K.; Voss, B.; Krane, M.; Lange, R.; Vitanova, K. Non-robotic minimally invasive mitral valve repair: A 20-year single-centre experience. Eur. J. Cardiothorac. Surg. 2022, 62, ezac223. [Google Scholar] [CrossRef]
- Cuartas, M.M.; Javadikasgari, H.; Pfannmueller, B.; Seeburger, J.; Gillinov, A.M.; Suri, R.M.; Borger, M.A. Mitral valve repair: Robotic and other minimally invasive approaches. Prog. Cardiovasc. Dis. 2017, 60, 394–404. [Google Scholar] [CrossRef]
- Ramzy, D.; Trento, A.; Cheng, W.; De Robertis, M.A.; Mirocha, J.; Ruzza, A.; Kass, R.M. Three hundred robotic-assisted mitral valve repairs: The Cedars-Sinai experience. J. Thorac. Cardiovasc. Surg. 2014, 147, 228–235. [Google Scholar] [CrossRef]
- Suri, R.M.; Dearani, J.A.; Mihaljevic, T.; Chitwood, W.R.; Murphy, D.A.; Trento, A.; Javadikasgari, H.; Burkhart, H.M.; Nifong, W.L.; Daly, R.C.; et al. Mitral valve repair using robotic technology: Safe, effective, and durable. J. Thorac. Cardiovasc. Surg. 2016, 151, 1450–1454. [Google Scholar] [CrossRef]
- Nifong, L.W.; Rodriguez, E.; Chitwood, W.R. 540 consecutive robotic mitral valve repairs including concomitant atrial fibrillation cryoablation. Ann. Thorac. Surg. 2012, 94, 38–42; discussion 43. [Google Scholar] [CrossRef]
- Suri, R.M.; Taggarse, A.; Burkhart, H.M.; Daly, R.C.; Mauermann, W.; Nishimura, R.A.; Li, Z.; Dearani, J.A.; Michelena, H.I.; Enriquez-Sarano, M. Robotic mitral valve repair for simple and complex degenerative disease: Midterm clinical and echocardiographic quality outcomes. Circulation 2015, 132, 1961–1968. [Google Scholar] [CrossRef]
- Williams, M.L.; Eranki, A.; Mamo, A.; Wilson-Smith, A.; Hwang, B.; Sugunesegran, R.; Yan, T.; Navarra, E.; Guy, T.S.; Bonatti, J. Systematic review and meta-analysis of mid-term survival, reoperation, and recurrent mitral regurgitation for robotic-assisted mitral valve repair. Ann. Cardiothorac. Surg. 2022, 11, 553–563. [Google Scholar] [CrossRef]
- El-Eshmawi, A.; Boateng, P. Revisiting the forgotten valve in minimally invasive surgery. Eur. J. Cardiothorac. Surg. 2022, 62, ezac272. [Google Scholar] [CrossRef]
- Strobel, R.J.; Hawkins, R.B.; Mehaffey, J.H.; Rotar, E.P.; Yount, K.W.; Teman, N.R.; Ailawadi, G. Minimally invasive approaches are safe for concomitant mitral and tricuspid valve surgery. Innovations 2022, 17, 416–423. [Google Scholar] [CrossRef]
- Abdelbar, A.; Kenawy, A.; Zacharias, J. Minimally invasive tricuspid valve surgery. J. Thorac. Dis. 2021, 13, 1982–1992. [Google Scholar] [CrossRef]
- Risteski, P.; Monsefi, N.; Miskovic, A.; Josic, T.; Bala, S.; Salem, R.; Zierer, A.; Moritz, A. Triple valve surgery through a less invasive approach: Early and mid-term results. Interact. Cardiovasc. Thorac. Surg. 2017, 24, 677–682. [Google Scholar] [CrossRef]
- Karimov, J.H.; Solinas, M.; Latsuzbaia, K.; Murzi, M.; Cerillo, A.G.; Glauber, M. Surgical treatment of double and triple heart valve disease through a limited single-access right minithoracotomy. Multimed. Man. Cardiothorac. Surg. 2010, 2010, mmcts.2009.004036. [Google Scholar] [CrossRef]
- Cox, J.L. The surgical treatment of atrial fibrillation. J. Thorac. Cardiovasc. Surg. 1991, 101, 584–592. [Google Scholar] [CrossRef]
- Cox, J.L.; Schuessler, R.B.; D’Agostino Jr, H.J.; Stone, C.M.; Chang, B.C.; Cain, M.E.; Corr, P.B.; Boineau, J.P. The surgical treatment of atrial fibrillation. III. Development of a definitive surgical procedure. J. Thorac. Cardiovasc. Surg. 1991, 101, 569–583. [Google Scholar] [CrossRef]
- Lancaster, T.S.; Melby, S.J.; Damiano, R.J. Minimally invasive surgery for atrial fibrillation. Trends Cardiovasc. Med. 2016, 26, 268–277. [Google Scholar] [CrossRef]
- Lawrance, C.P.; Henn, M.C.; Miller, J.R.; Sinn, L.A.; Schuessler, R.B.; Damiano, R.J. Comparison of the stand-alone Cox-Maze IV procedure to the concomitant Cox-Maze IV and mitral valve procedure for atrial fibrillation. Ann. Cardiothorac. Surg. 2014, 3, 55–61. [Google Scholar]
- Ad, N.; Henry, L.; Friehling, T.; Wish, M.; Holmes, S.D. Minimally invasive stand-alone Cox-maze procedure for patients with nonparoxysmal atrial fibrillation. Ann. Thorac. Surg. 2013, 96, 792–798; discussion 798. [Google Scholar] [CrossRef]
- Almousa, A.; Mehaffey, J.H.; Wei, L.M.; Simsa, A.; Hayanga, J.W.A.; Cook, C.; Rankin, J.S.; Badhwar, V. Robotic-assisted cryothermic Cox maze for persistent atrial fibrillation: Longitudinal follow-up. J. Thorac. Cardiovasc. Surg. 2023, 165, 1828–1836.e1. [Google Scholar] [CrossRef]
- Je, H.G.; Shuman, D.J.; Ad, N. A systematic review of minimally invasive surgical treatment for atrial fibrillation: A comparison of the Cox-Maze procedure, beating-heart epicardial ablation, and the hybrid procedure on safety and efficacy. Eur. J. Cardiothorac. Surg. 2015, 48, 531–540; discussion 540. [Google Scholar] [CrossRef]
- Pasic, M.; Bergs, P.; Hennig, E.; Loebe, M.; Weng, Y.; Hetzer, R. Simplified technique for implantation of a left ventricular assist system after previous cardiac operations. Ann. Thorac. Surg. 1999, 67, 562–564. [Google Scholar] [CrossRef]
- Gregoric, I.D.; La Francesca, S.; Myers, T.; Cohn, W.; Loyalka, P.; Kar, B.; Gemmato, C.; Frazier, O. A less invasive approach to axial flow pump insertion. J. Heart Lung Transplant. 2008, 27, 423–426. [Google Scholar] [CrossRef]
- Sileshi, B.; Haglund, N.A.; Davis, M.E.; Tricarico, N.M.; Stulak, J.M.; Khalpey, Z.; Danter, M.R.; Deegan, R.; Kennedy, J.; Keebler, M.E.; et al. In-hospital outcomes of a minimally invasive off-pump left thoracotomy approach using a centrifugal continuous-flow left ventricular assist device. J. Heart Lung Transplant. 2015, 34, 107–112. [Google Scholar] [CrossRef]
- Saeed, D.; Sixt, S.; Albert, A.; Lichtenberg, A. Minimally invasive off-pump implantation of HeartMate 3 left ventricular assist device. J. Thorac. Cardiovasc. Surg. 2016, 152, 1446–1447. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, S.; Fu, Z.; Liu, Z. Minimally invasive versus conventional continuous-flow left ventricular assist device implantation for heart failure: A meta-analysis. Heart Fail. Rev. 2022, 27, 1053–1061. [Google Scholar] [CrossRef]
- Frazier, O.H. Implantation of the Jarvik 2000 left ventricular assist device without the use of cardiopulmonary bypass. Ann. Thorac. Surg. 2003, 75, 1028–1030. [Google Scholar] [CrossRef]
- Strueber, M.; Meyer, A.L.; Feussner, M.; Ender, J.; Correia, J.-C.; Mohr, F.-W. A minimally invasive off-pump implantation technique for continuous-flow left ventricular assist devices: Early experience. J. Heart Lung Transplant. 2014, 33, 851–856. [Google Scholar] [CrossRef]
- Attisani, M.; Centofanti, P.; Baronetto, A.; Lodo, V.; Boffini, M.; Rinaldi, M.; Barbero, C. HeartMate 3 left ventricular assist device minimally invasive off-pump implantation. Multimed. Man. Cardiothorac. Surg. 2018, 2018. [Google Scholar] [CrossRef]
- Meccariello, G.; Faedi, F.; AlGhamdi, S.; Montevecchi, F.; Firinu, E.; Zanotti, C.; Cavaliere, D.; Gunelli, R.; Taurchini, M.; Amadori, A.; et al. An experimental study about haptic feedback in robotic surgery: May visual feedback substitute tactile feedback? J. Robot. Surg. 2016, 10, 57–61. [Google Scholar] [CrossRef]
- Prasad, S.M.; Prasad, S.M.; Maniar, H.S.; Chu, C.; Schuessler, R.B.; Damiano, R.J. Surgical robotics: Impact of motion scaling on task performance. J. Am. Coll. Surg. 2004, 199, 863–868. [Google Scholar] [CrossRef]
- Leddy, L.; Lendvay, T.; Satava, R. Robotic surgery: Applications and cost effectiveness. Open Access Surg. 2010, 3, 99–107. [Google Scholar] [CrossRef]
- Dasgupta, P.; Jones, A.; Gill, I.S. Robotic urological surgery: A perspective. BJU Int. 2005, 95, 20–23. [Google Scholar] [CrossRef]
- Chitwood, W.R.; Nifong, L.W.; Elbeery, J.E.; Chapman, W.H.; Albrecht, R.; Kim, V.; Young, J.A. Robotic mitral valve repair: Trapezoidal resection and prosthetic annuloplasty with the da vinci surgical system. J. Thorac. Cardiovasc. Surg. 2000, 120, 1171–1172. [Google Scholar] [CrossRef]
- Vicarious Surgical [Internet]. Available online: https://www.vicarioussurgical.com (accessed on 28 September 2023).
- Runciman, M.; Darzi, A.; Mylonas, G.P. Soft robotics in minimally invasive surgery. Soft Robot. 2019, 6, 423–443. [Google Scholar] [CrossRef]
- Kitahara, H.; Wehman, B.; Balkhy, H.H. Can Robotic-Assisted Surgery Overcome the Risk of Mortality in Cardiac Reoperation? Innovations 2018, 13, 438–444. [Google Scholar] [CrossRef]
- Hemli, J.M.; Patel, N.C. Robotic Cardiac Surgery. Surg. Clin. N. Am. 2020, 100, 219–236. [Google Scholar] [CrossRef]
- Sadeghi, A.H.; Bakhuis, W.; Van Schaagen, F.; Oei, F.B.S.; A Bekkers, J.; Maat, A.P.W.M.; Mahtab, E.A.F.; Bogers, A.J.J.C.; Taverne, Y.J.H.J. Immersive 3D virtual reality imaging in planning minimally invasive and complex adult cardiac surgery. Eur. Heart J. Digit. Health 2020, 1, 62–70. [Google Scholar] [CrossRef]
- Incekara, F.; Smits, M.; Dirven, C.; Vincent, A. Clinical Feasibility of a Wearable Mixed-Reality Device in Neurosurgery. World Neurosurg. 2018, 118, e422–e427. [Google Scholar] [CrossRef]
- Shirk, J.D.; Thiel, D.D.; Wallen, E.M.; Linehan, J.M.; White, W.M.; Badani, K.K.; Porter, J.R. Effect of 3-Dimensional Virtual Reality Models for Surgical Planning of Robotic-Assisted Partial Nephrectomy on Surgical Outcomes: A Randomized Clinical Trial. JAMA Netw. Open 2019, 2, e1911598. [Google Scholar] [CrossRef]
- Wellens, L.M.; Meulstee, J.; van de Ven, C.P.; van Scheltinga, C.E.J.T.; Littooij, A.S.; van den Heuvel-Eibrink, M.M.; Fiocco, M.; Rios, A.C.; Maal, T.; Wijnen, M.H.W.A. Comparison of 3-Dimensional and Augmented Reality Kidney Models with Conventional Imaging Data in the Preoperative Assessment of Children with Wilms Tumors. JAMA Netw. Open 2019, 2, e192633. [Google Scholar] [CrossRef]
- Feodorovici, P.; Arensmeyer, J.; Schnorr, P.; Schmidt, J. Extended Reality (XR)-Applications in Thoracic Surgery. Zentralblatt Chir. 2023, 148, 367–375. [Google Scholar] [CrossRef]
- Heuts, S.; Maessen, J.G.; Sardari Nia, P. Preoperative planning of left-sided valve surgery with 3D computed tomography reconstruction models: Sternotomy or a minimally invasive approach? Interact. Cardiovasc. Thorac. Surg. 2016, 22, 587–593. [Google Scholar] [CrossRef]
- Al-Maisary, S.; Graser, B.; Engelhardt, S.; Wolf, I.; Karck, M.; DESimone, R. The geometrical effect of different annuloplasty rings on mitral valve annulus. J. Cardiovasc. Surg. 2017, 58, 481–488. [Google Scholar] [CrossRef]
- Rausch, M.K.; Zöllner, A.M.; Genet, M.; Baillargeon, B.; Bothe, W.; Kuhl, E. A virtual sizing tool for mitral valve annuloplasty. Int. J. Numer. Method. Biomed. Eng. 2017, 33, e02788. [Google Scholar] [CrossRef]
- Choi, A.; McPherson, D.D.; Kim, H. Computational virtual evaluation of the effect of annuloplasty ring shape. Int. J. Numer. Methods Biomed. Eng. 2017, 33, e2831. [Google Scholar] [CrossRef]
- Doenst, T.; Berretta, P.; Bonaros, N.; Savini, C.; Pitsis, A.; Wilbring, M.; Gerdisch, M.; Kempfert, J.; Rinaldi, M.; Folliguet, T.; et al. Aortic cross-clamp time correlates with mortality in the mini-mitral international registry. Eur. J. Cardiothorac. Surg. 2023, 63, ezad147. [Google Scholar] [CrossRef]
- Lamelas, J.; Williams, R.F.; Mawad, M.; LaPietra, A. Complications associated with femoral cannulation during minimally invasive cardiac surgery. Ann. Thorac. Surg. 2017, 103, 1927–1932. [Google Scholar] [CrossRef]
- Kesävuori, R.I.; Vento, A.E.; Lundbom, N.M.I.; Iivonen, M.R.M.; Huuskonen, A.S.; Raivio, P.M. Unilateral pulmonary oedema after minimally invasive and robotically assisted mitral valve surgery. Eur. J. Cardiothorac. Surg. 2020, 57, 504–511. [Google Scholar] [CrossRef]
- Magoon, R.; Choudhary, N.; Jose, J. Unilateral pulmonary edema following minimally invasive cardiac surgery: Keeping both eyes maximally open. Kardiochir. Torakochirurgia Pol. 2023, 20, 45–46. [Google Scholar] [CrossRef]
- Vo, A.T.; Nguyen, D.H.; Van Hoang, S.; Le, K.M.; Nguyen, T.T.; Nguyen, V.L.; Nguyen, B.H.; Truong, B.Q. Learning curve in minimally invasive mitral valve surgery: A single-center experience. J. Cardiothorac. Surg. 2019, 14, 213. [Google Scholar] [CrossRef]
- Yadava, O.P.; Casselman, F. Conversion in minimally invasive cardiac surgery. Indian. J. Thorac. Cardiovasc. Surg. 2019, 35, 135. [Google Scholar] [CrossRef]
- van der Merwe, J.; Van Praet, F.; Stockman, B.; Degrieck, I.; Vermeulen, Y.; Casselman, F. Reasons for conversion and adverse intraoperative events in Endoscopic Port AccessTM atrioventricular valve surgery and minimally invasive aortic valve surgery. Eur. J. Cardiothorac. Surg. 2018, 54, 288–293. [Google Scholar] [CrossRef]
- Vollroth, M.; Seeburger, J.; Garbade, J.; Borger, M.A.; Misfeld, M.; Mohr, F.W. Conversion rate and contraindications for minimally invasive mitral valve surgery. Ann. Cardiothorac. Surg. 2013, 2, 853–854. [Google Scholar]
- Feizi, N.; Tavakoli, M.; Patel, R.V.; Atashzar, S.F. Robotics and AI for Teleoperation, Tele-Assessment, and Tele-Training for Surgery in the Era of COVID-19: Existing Challenges, and Future Vision. Front. Robot. AI 2021, 8, 610677. [Google Scholar] [CrossRef]
- Hassan, N.; Slight, R.; Morgan, G.; Bates, D.W.; Gallier, S.; Sapey, E.; Slight, S. Road map for clinicians to develop and evaluate AI predictive models to inform clinical decision-making. BMJ Health Care Inform. 2023, 30, e100784. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilcheva, L.; Risteski, P.; Tudorache, I.; Häussler, A.; Papadopoulos, N.; Odavic, D.; Rodriguez Cetina Biefer, H.; Dzemali, O. Beyond Conventional Operations: Embracing the Era of Contemporary Minimally Invasive Cardiac Surgery. J. Clin. Med. 2023, 12, 7210. https://doi.org/10.3390/jcm12237210
Ilcheva L, Risteski P, Tudorache I, Häussler A, Papadopoulos N, Odavic D, Rodriguez Cetina Biefer H, Dzemali O. Beyond Conventional Operations: Embracing the Era of Contemporary Minimally Invasive Cardiac Surgery. Journal of Clinical Medicine. 2023; 12(23):7210. https://doi.org/10.3390/jcm12237210
Chicago/Turabian StyleIlcheva, Lilly, Petar Risteski, Igor Tudorache, Achim Häussler, Nestoras Papadopoulos, Dragan Odavic, Hector Rodriguez Cetina Biefer, and Omer Dzemali. 2023. "Beyond Conventional Operations: Embracing the Era of Contemporary Minimally Invasive Cardiac Surgery" Journal of Clinical Medicine 12, no. 23: 7210. https://doi.org/10.3390/jcm12237210
APA StyleIlcheva, L., Risteski, P., Tudorache, I., Häussler, A., Papadopoulos, N., Odavic, D., Rodriguez Cetina Biefer, H., & Dzemali, O. (2023). Beyond Conventional Operations: Embracing the Era of Contemporary Minimally Invasive Cardiac Surgery. Journal of Clinical Medicine, 12(23), 7210. https://doi.org/10.3390/jcm12237210