Coronary Guidewires in Temporary Cardiac Pacing and Assessment of Myocardial Viability: Current Perspectives and Future Directions
Abstract
:1. Introduction
2. Literature Search
3. Coronary Guidewires
4. Trans Coronary Pacing
5. Clinical Applications of Trans Coronary Pacing
5.1. Pacing during Coronary Interventions
5.2. Transcoronary Pacing to Assess Myocardial Viability Assessment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TCP | Trans coronary pacing |
Ic | Intracoronary |
CMR | Cardiovascular magnetic resonance imaging |
DSE | Dobutamine stress echocardiography |
CT | computed tomography |
PCI | Percutaneous coronary intervention |
LGE | late gadolinium enhancement |
MI | Myocardial infarction |
VT | Ventricular tachycardia |
CTO | Chronic total occlusion |
References
- Meier, B. Coronary pacing for bradycardia during balloon angioplasty. N. Engl. J. Med. 1984, 311, 800. [Google Scholar] [PubMed]
- O’Neill, J.; Hogarth, A.J.; Pearson, I.; Law, H.; Bowes, R.; Kidambi, A.; Wheatcroft, S.; Sivananthan, U.M.; Tayebjee, M.H. Transcoronary pacing to assess myocardial viability prior to percutaneous coronary intervention: Pilot study to assess feasibility. Catheter. Cardiovasc. Interv. 2018, 92, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Wang, J.; Vorvolakos, K.; White, K.; Duraiswamy, N. Pre-clinical evaluation of surface coating performance in guidewire surrogates: Potential implications for coated interventional surgical devices. J. Biomater. Appl. 2020, 34, 928–941. [Google Scholar] [CrossRef]
- Ahmed, B. Coronary Wiring Fundamentals: Wire Design, Engiineering and Selection. Available online: https://www.acc.org/-/media/non-clinical/files-pdfs-excel-ms-word-etc/membership/coronary-interventions-handbook/chapter-1_coronary-wires.pdf (accessed on 22 July 2023).
- Erglis, A. Coronary Guidewires. Eurointervention 2010, 6, 168–169. [Google Scholar] [CrossRef] [PubMed]
- Helmenstine, A.M. Table of Electrical Resistivity and Conductivity. Available online: https://www.thoughtco.com/table-of-electrical-resistivity-conductivity-608499 (accessed on 20 July 2023).
- O’Sullivan, C.J.; Meier, B. Transcoronary and Left Ventricular Temporary Pacing. Urgent Interv. Ther. 2014, 541–548. [Google Scholar] [CrossRef]
- Dorros, G.; Cowley, M.J.; Simpson, J.; Bentivoglio, L.G.; Block, P.C.; Bourassa, M.; Detre, K.; Gosselin, A.J.; Grüntzig, A.R.; Kelsey, S.F.; et al. Percutaneous transluminal coronary angioplasty: Report of complications from the National Heart, Lung, and Blood Institute PTCA Registry. Circulation 1983, 67, 723–730. [Google Scholar] [CrossRef]
- Chatelain, P.; Meier, B.; Bélenger, J.; Killisch, J.P.; Cox, J.N.; Rutishauser, W. Emergency cardiac pacing via a coronary vessel during percutaneous coronary angioplasty. Arch. Mal. Coeur Vaiss. 1985, 78, 1583–1587. [Google Scholar]
- Heinroth, K.M.; Carter, J.M.; Buerke, M.; Mahnkopf, D.; Werdan, K.; Prondzinsky, R. Optimizing of transcoronary pacing in a porcine model. J. Invasive Cardiol. 2009, 21, 634–638. [Google Scholar]
- Meier, B.; Rutishauser, W. Coronary pacing during percutaneous transluminal coronary angioplasty. Circulation 1985, 71, 557–561. [Google Scholar] [CrossRef]
- De la Serna, F.; Meier, B.; Pande, A.K.; Urban, P.; Adatte, J.J.; Moles, V.P.; Killisch, J.P.; Bodenmann, J.J.; Barcellona, G.; Dorsaz, P.A.; et al. Coronary and left ventricular pacing as standby in invasive cardiology. Catheter. Cardiovasc. Diagn. 1992, 25, 285–289. [Google Scholar] [CrossRef]
- Laird, M.J.R.; Hull, M.R.; Stajduhar, M.K.C.; Weston, M.L.T.; Kufs, M.W.; Wortham, D.C. Transcoronary cardiac pacing during myocardial ischemia. Catheter. Cardiovasc. Diagn. 1993, 30, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Mixon, T.A.; Cross, D.S.; Lawrence, M.E.; Gantt, D.S.; Dehmer, G.J. Temporary coronary guidewire pacing during percutaneous coronary intervention. Catheter. Cardiovasc. Interv. 2004, 61, 494–500; discussion 502–503. [Google Scholar] [CrossRef] [PubMed]
- Heinroth, K.M.; Stabenow, I.; Moldenhauer, I.; Unverzagt, S.; Buerke, M.; Werdan, K.; Prondzinsky, R. Temporary transcoronary pacing by coated guidewires: A safe and reliable method during percutaneous coronary intervention. Clin. Res. Cardiol. 2006, 95, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Mixon, T.A.; Dehmer, G.J.; Santos, R.A.; Gantt, D.S.; Lawrence, M.E.; Watson, L.E. Guidewire pacing safely and effectively treats bradyarrhythmias induced by rheolytic thrombectomy and precludes the need for transvenous pacing: The Scott & White experience. J. Invasive Cardiol. 2008, 20 (Suppl. S8), 5A–8A. [Google Scholar] [PubMed]
- Lasa, G.; Larman, M.; Gaviria, K.; Carlos Sanmartín, J.; Sádaba, M.; Ramón Rumoroso, J. Coronary Stent Immobilization During Angioplasty by Transcoronary Ventricular Pacing Via a Guidewire. Rev. Española Cardiol. (Engl. Ed.) 2009, 62, 288–292. [Google Scholar] [CrossRef]
- Heinroth, K.M.; Unverzagt, S.; Buerke, M.; Carter, J.; Mahnkopf, D.; Werdan, K.; Prondzinsky, R. Transcoronary pacing in a porcine model--impact of guidewire insulation. J. Invasive Cardiol. 2011, 23, 108–114. [Google Scholar]
- Prondzinsky, R.; Unverzagt, S.; Carter, J.M.; Mahnkopf, D.; Buerke, M.; Werdan, K.; Heinroth, K.M. A novel approach for transcoronary pacing in a porcine model. J. Invasive Cardiol. 2012, 24, 451–455. [Google Scholar]
- Heinroth, K.; Unverzagt, S.; Mahnkopf, D.; Frantz, S.; Prondzinsky, R. The double guidewire approach for transcoronary pacing in a porcine model. Med. Klin. Intensivmed. Notfallmedizin 2016, 112, 622–628. [Google Scholar] [CrossRef]
- Heinroth, K.M.; Unverzagt, S.; Mahnkopf, D.; Prondzinsky, R. Transcoronary pacing: Reliability during myocardial ischemia and after implantation of a coronary stent. Med. Klin. Intensivmed. Notfallmedizin 2020, 115, 120–124. [Google Scholar] [CrossRef]
- Javid, R.; Slater, T.A.; Bowes, R.; Veerasamy, M.; Wassef, N.; Rossington, J.A.; Mozid, A.M.; Kidambi, A.; Wheatcroft, S.B.; Tayebjee, M.H. Transcoronary electrophysiological parameters in patients undergoing elective and acute coronary intervention. PLoS ONE 2023, 18, e0281374. [Google Scholar] [CrossRef]
- Iqbal, M.B.; Robinson, S.D.; Nadra, I.J.; Das, D.; Van Zyl, M.; Sikkel, M.B.; Della Siega, A. The Efficacy and Safety of an Adjunctive Transcoronary Pacing Strategy During Rotational Atherectomy: ROTA-PACE Study. Cardiovasc. Interv. 2023, 16, 2189–2190. [Google Scholar]
- Mitar, M.D.; Ratner, S.; Lavi, S. Heart block and temporary pacing during rotational atherectomy. Can. J. Cardiol. 2015, 31, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Kusumoto, H.; Ishibuchi, K.; Hasegawa, K.; Otsuji, S. Trans-coronary pacing via Rota wire prevents bradycardia during rotational atherectomy: A case report. Eur. Heart J.-Case Rep. 2022, 6, ytac013. [Google Scholar] [CrossRef] [PubMed]
- Mallek, K.; Dalton, R.T.; Pareek, N.; Dworakowski, R. Rapid transcoronary pacing to facilitate ostial stent placement. Cardiovasc. Interv. 2021, 14, e111–e112. [Google Scholar] [CrossRef] [PubMed]
- Rougé, A.; Abdellaoui, M.; Monségu, J.; Faurie, B. Transcoronary Rapid Pacing Solving a Complex Retrograde Chronic Total Occlusion Procedure. JACC Case Rep. 2019, 1, 832–837. [Google Scholar] [CrossRef]
- Emrich, T.; Halfmann, M.; Schoepf, U.J.; Kreitner, K.-F. CMR for myocardial characterization in ischemic heart disease: State-of-the-art and future developments. Eur. Radiol. Exp. 2021, 5, 14. [Google Scholar] [CrossRef]
- Khalaf, S.; Al-Mallah, M.H. Fluorodeoxyglucose applications in cardiac PET: Viability, inflammation, infection, and beyond. Methodist DeBakey Cardiovasc. J. 2020, 16, 122. [Google Scholar] [CrossRef]
- Christopher, J. PET vs MRI for Myocardial Viability. Indian J. Clin. Cardiol. 2020, 1, 40–45. [Google Scholar] [CrossRef]
- Garcia, M.; Kwong, R.; Scherrer-Crosbie, M.; Taub, C.; Blankstein, R.; Lima, J.; Bonow, R.; Eshtehardi, P.; Bois, J. American Heart Association Council on Cardiovascular Radiology and Intervention and Council on Clinical Cardiology. State of the art: Imaging for myocardial viability: A scientific statement from the American Heart Association. Circ. Cardiovasc. Imaging 2020, 13, e000053. [Google Scholar] [CrossRef]
- Cascio, W.E.; Johnson, T.A.; Gettes, L.S. Electrophysiologic changes in ischemic ventricular myocardium: I. Influence of ionic, metabolic, and energetic changes. J. Cardiovasc. Electrophysiol. 1995, 6, 1039–1062. [Google Scholar] [CrossRef]
- Steendijk, P.; Van Dijk, A.; Baan, J. Local myocardial perfusion monitored by electrical resistivity-an exploratory technique. In Coronary Circulation; Springer: Berlin/Heidelberg, Germany, 1987; pp. 105–116. [Google Scholar]
- Zheng, Y.; Fernandes, M.R.; Silva, G.V.; Cardoso, C.O.; Canales, J.; Gahramenpour, A.; Baimbridge, F.; Da Graça Cabreira-Hansen, M.; Perin, E.C. Histopathological validation of electromechanical mapping in assessing myocardial viability in a porcine model of chronic ischemia. Exp. Clin. Cardiol. 2008, 13, 198. [Google Scholar] [PubMed]
- Wrobleski, D.; Houghtaling, C.; Josephson, M.E.; Ruskin, J.N.; Reddy, V.Y. Use of electrogram characteristics during sinus rhythm to delineate the endocardial scar in a porcine model of healed myocardial infarction. J. Cardiovasc. Electrophysiol. 2003, 14, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Vahlhaus, C.; Bruns, H.J.; Stypmann, J.; Tjan, T.D.; Janssen, F.; Schäfers, M.; Scheld, H.H.; Schober, O.; Breithardt, G.; Wichter, T. Direct epicardial mapping predicts the recovery of left ventricular dysfunction in chronic ischaemic myocardium. Eur. Heart J. 2004, 25, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Koch, K.C.; Vom Dahl, J.; Wenderdel, M.; Nowak, B.; Schaefer, W.M.; Sasse, A.; Stellbrink, C.; Buell, U.; Hanrath, P. Myocardial viability assessment by endocardial electroanatomic mapping: Comparison with metabolic imaging and functional recovery after coronary revascularization. J. Am. Coll. Cardiol. 2001, 38, 91–98. [Google Scholar] [CrossRef]
- Bøtker, H.E.; Lassen, J.F.; Hermansen, F.; Wiggers, H.; Søgaard, P.; Kim, W.Y.; Bøttcher, M.; Thuesen, L.; Pedersen, A.K. Electromechanical mapping for detection of myocardial viability in patients with ischemic cardiomyopathy. Circulation 2001, 103, 1631–1637. [Google Scholar] [CrossRef]
- Codreanu, A.; Odille, F.; Aliot, E.; Marie, P.Y.; Magnin-Poull, I.; Andronache, M.; Mandry, D.; Djaballah, W.; Régent, D.; Felblinger, J.; et al. Electroanatomic characterization of post-infarct scars comparison with 3-dimensional myocardial scar reconstruction based on magnetic resonance imaging. J. Am. Coll. Cardiol. 2008, 52, 839–842. [Google Scholar] [CrossRef]
- Callans, D.J.; Ren, J.F.; Michele, J.; Marchlinski, F.E.; Dillon, S.M. Electroanatomic left ventricular mapping in the porcine model of healed anterior myocardial infarction. Correlation with intracardiac echocardiography and pathological analysis. Circulation 1999, 100, 1744–1750. [Google Scholar] [CrossRef]
- Masjedi, M.; Jungen, C.; Kuklik, P.; Alken, F.-A.; Kahle, A.-K.; Klatt, N.; Scherschel, K.; Lorenz, J.; Meyer, C. A novel algorithm for 3-D visualization of electrogram duration for substrate-mapping in patients with ischemic heart disease and ventricular tachycardia. PLoS ONE 2021, 16, e0254683. [Google Scholar] [CrossRef]
- Wiecha, J.; Hombach, V. Cellular electrophysiological properties in myocardial infarction. Eur. Heart J. 1993, 14, 9–19. [Google Scholar] [CrossRef]
- Fuchs, S.; Hendel, R.C.; Baim, D.S.; Moses, J.W.; Pierre, A.; Laham, R.J.; Hong, M.K.; Kuntz, R.E.; Pietrusewicz, M.; Bonow, R.O. Comparison of endocardial electromechanical mapping with radionuclide perfusion imaging to assess myocardial viability and severity of myocardial ischemia in angina pectoris. Am. J. Cardiol. 2001, 87, 874–880. [Google Scholar] [CrossRef]
- Gepstein, L.; Goldin, A.; Lessick, J.; Hayam, G.; Shpun, S.; Schwartz, Y.; Hakim, G.; Shofty, R.; Turgeman, A.; Kirshenbaum, D. Electromechanical characterization of chronic myocardial infarction in the canine coronary occlusion model. Circulation 1998, 98, 2055–2064. [Google Scholar] [CrossRef]
- Piessens, J.; Vrolix, M.; Sionis, D.; Glazier, J.J.; De Geest, H.; Willems, J. The value of the intracoronary electrogram for the early detection of myocardial ischaemia during coronary angioplasty. Eur. Heart J. 1991, 12, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Pande, A.K.; Meier, B.; Urban, P.; Moles, V.; Dorsaz, P.-A.; Favre, J. Intracoronary electrocardiogram during coronary angioplasty. Am. Heart J. 1992, 124, 337–341. [Google Scholar] [CrossRef]
- Friedman, P.L.; Shook, T.L.; Kirshenbaum, J.M.; Selwyn, A.P.; Ganz, P. Value of the intracoronary electrocardiogram to monitor myocardial ischemia during percutaneous transluminal coronary angioplasty. Circulation 1986, 74, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Yajima, J.; Saito, S.; Honye, J.; Takayama, T.; Ozawa, Y.; Kanmatsuse, K. Intracoronary electrocardiogram for early detection of myocardial viability during coronary angioplasty in acute myocardial infarction. Int. J. Cardiol. 2001, 79, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Abaci, A.; Oguzhan, A.; Topsakal, R.; Seyfeli, E.; Yilmaz, Y.; Eryol, N.K.; Basar, E.; Ergin, A. Intracoronary electrocardiogram and angina pectoris during percutaneous coronary interventions as an assessment of myocardial viability: Comparison with low-dose dobutamine echocardiography. Catheter. Cardiovasc. Interv. 2003, 60, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Petrucci, E.; Balian, V.; Bocchieri, A. Real-time assessment of myocardial viability in the catheterization laboratory using the intracoronary electrograms recorded by the PTCA guidewire in patients with left ventricular dysfunction: Comparison with delayed-enhancement magnetic resonance imaging. JACC Cardiovasc. Interv. 2014, 7, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Dean, L.S. Transcoronary Pacing Threshold Predicts Myocardial Scar: Novel First-Step towards Intraprocedural Myocardial Functional Assessment; Wiley Online Library: Hoboken, NJ, USA, 2018. [Google Scholar]
Study | Indication | No. | Paced Site (n) | Type and Position of Indifferent Electrode *** | Wire Used | Insulated with Catheter/Balloon | Max Output (In Volts) | Pacing Success | Comments |
---|---|---|---|---|---|---|---|---|---|
Chatelain, 1984 [9] | Bradycardia in PCI | Pigs 6 | Subcutaneous needle | Metallic, Tinton Falls, NJ, USA | No | NS | -Paced at various levels without insulation. -Prolonged pacing led to thrombus formation. | ||
Meier, 1985 [11] | Bradycardia in PCI | Human 22 | 25 | Skin electrode, area 20 cm2 | Guidewire, Schneider—Medintag, Zurich, Switzerland | No | NS | 96% | LV pacing also performed with J-tip Cordis wires. One unsuccessful pacing site was completely infarcted. |
De Le Serna, 1992 [12] | Bradycardia | Human 300 | 349 | Skin electrode on L leg, area 20 cm2 | Guidewire, Schneider—Medintag, Zurich, Switzerland | Yes | 12 | 97% | In total, 2% needed therapeutic pacing. |
Laird, 1993 [13] | Reliability during ischemia | Pigs 7 | 7 | Skin needle, grounded at incision site | AC, Mountain view, CA, USA | Yes | 10 | 100% | Intracoronary pacing capture was reliable during acute ischemia. |
Mixon, 2004 (PCI) [14] | Bradycardia in PCI | Human 26 | 26 | Steel monofilament suture 3–0 (B&S30) | Mod support Luge wire, Boston Scientific, Marlborough, MA, USA | Yes | 12 | 100% | Aim was to demonstrate safety of TCP in treatment of bradycardia during PCI 53% (14) needed therapeutic pacing. |
Heinroth, 2006 [15] | Bradycardia in PCI | Human 70 | 70 | Skin electrode, area 100 cm2 | Guidant, Guidant Corp, St. Paul, MN, USA | Yes | 10 | 85.7% | In total, 4.3% needed therapeutic pacing. |
Mixon, 2008 [16] | Bradycardia in PCI | Human 105 | 105 | Steel monofilament suture needle | Luge Boston Scientific, USA | Yes | NS | 96.2% | In total, 52% needed therapeutic pacing. |
Lasa, 2009 [17] | Stent immobilisation | Human 27 | 27 | Abbocath needle inserted into skin | NS | Yes | 10 | 96% | Stent position better with rapid TCP. |
Heinroth, 2009 [10] | Optimisation of TCP | Pigs | 8 | Skin electrode, area 100 cm2 | Floppy tip, Boston Scientific, USA | Yes | 10 | 100% | Correlation with TVP **. |
Heinroth, 2011 [18] | Impact of guidewire insulation | Pigs 15 | Skin electrode, area 100 cm2 | Visionwire, Biotrinik, Germany Galeo floppy, Biotrinik, Berlin, Germany | No Yes | 10 | Insulation improved pacing efficacy from 77 to 100%. | ||
Prondzinsky, 2012 [19] | Optimisation of TCP | Pigs | 8 | Intravascular electrodes | Floppy tip Boston Scientific, USA | Yes | 10 | 100% | ICD * lead in aorta served as indifferent electrode. Electrical parameters comparable to skin electrode. |
Heinroth, 2016 [20] | Use of guidewire as cathodal electrode | Pigs 16 | Galeo floppy, Biotrinik, Germany Skin electrode. area 100 cm2 | Visionwire, Biotrinik, Germany | No | Second uncoated guidewire (Galeo floppy) was utilised as indifferent electrode. Electrical parameters comparable to skin electrode in TCP setup. | |||
O’Neill, 2017 [2] | Assess viability | Human 6 | 42 | Skin electrode | BMW, Abbott Vascular, Plymouth, MN, USA | Yes | 10 | 100% | Viable muscle differs in electrical parameters from scarred myocardium, |
Heinroth, 2018 [21] | Reliability during ischemia and after PCI | Pigs 7 | Skin electrode, area 100 cm2 | Galeo Floppy, Biotrinik, Germany | Yes | 10 | 100% | TCP can be performed reliably during ischaemia, | |
Javid, 2023 [22] | Assess myocardial viability | Human 65 | 369 | Skin electrode | Sion Blue, Asahi Intecc, Sagamihara, Japan | Yes | 10 | Small number of infarcted segments, No correlation between EP parameters and viability on MRI. Can also pace in full-thickness scars, | |
Iqbal B., 2023 [23] | Bradycardia in rotational atherectomy | Human 137 | Skin needle | Rotawire, Boston Scientific, USA | Yes | NS | 91.5% | Inability to pace in areas with large infarcts which may have been contributed by lipid-based flush solution with electrical insulation. |
Adverse Features of Transcoronary Pacing | Treatment |
---|---|
Coronary spasm | Administration of coronary vasodilators, e.g., intracoronary nitrates Keep pacing for short periods only Reduce pacing output voltage |
Skin irritation | Use skin electrodes with larger surface area Anaesthetise the skin with local anaesthetic spray to reduce irritation and discomfort |
Diaphragmatic Stimulation | Change position of the wire |
Atrial pacing | Insulate by advancing balloon or micro catheter to avoid electrical capture of atria |
Thrombosis at guidewire tip | Heparin given initially and further according to ACT * |
Dissection/perforation of coronary artery | Careful wire manipulation under fluoroscopy; avoiding deep advancement of balloon or micro catheter to small branches |
Method | Patients, n | Sensitivity, % | Specificity, % | PPV, % | NPV, % |
---|---|---|---|---|---|
Db-echo | 1421 | 80 | 78 | 85 | 83 |
201Tl | 858 | 87 | 54 | 67 | 79 |
99mTc | 488 | 83 | 65 | 74 | 76 |
PET-18F-FDG | 598 | 92 | 63 | 74 | 87 |
LGE-CMR | 331 | 95 | 51 | 69 | 90 |
Db-CMR | 247 | 81 | 91 | 93 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javid, R.; Wassef, N.; Wheatcroft, S.B.; Tayebjee, M.H. Coronary Guidewires in Temporary Cardiac Pacing and Assessment of Myocardial Viability: Current Perspectives and Future Directions. J. Clin. Med. 2023, 12, 6976. https://doi.org/10.3390/jcm12226976
Javid R, Wassef N, Wheatcroft SB, Tayebjee MH. Coronary Guidewires in Temporary Cardiac Pacing and Assessment of Myocardial Viability: Current Perspectives and Future Directions. Journal of Clinical Medicine. 2023; 12(22):6976. https://doi.org/10.3390/jcm12226976
Chicago/Turabian StyleJavid, Rabeia, Nancy Wassef, Stephen B. Wheatcroft, and Muzahir H. Tayebjee. 2023. "Coronary Guidewires in Temporary Cardiac Pacing and Assessment of Myocardial Viability: Current Perspectives and Future Directions" Journal of Clinical Medicine 12, no. 22: 6976. https://doi.org/10.3390/jcm12226976
APA StyleJavid, R., Wassef, N., Wheatcroft, S. B., & Tayebjee, M. H. (2023). Coronary Guidewires in Temporary Cardiac Pacing and Assessment of Myocardial Viability: Current Perspectives and Future Directions. Journal of Clinical Medicine, 12(22), 6976. https://doi.org/10.3390/jcm12226976