Assessing Procedural Accuracy in Lateral Spine Surgery: A Retrospective Analysis of Percutaneous Pedicle Screw Placement with Intraoperative CT Navigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Included Patients
2.2. Surgical Technique
2.3. Evaluation of the Accuracy of the PPS Placement
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dhamija, B.; Batheja, D.; Balain, B.S. A systematic review of MIS and open decompression surgery for spinal metastases in the last two decades. J. Clin. Orthop. Trauma 2021, 22, 101596. [Google Scholar] [CrossRef] [PubMed]
- Neeley, O.J.; Kafka, B.; Tecle, N.E.; Shi, C.; El Ahmadieh, T.Y.; Sagoo, N.S.; Davies, M.; Johnson, Z.; Caruso, J.P.; Hoeft, J.; et al. Percutaneous screw fixation versus open fusion for the treatment of traumatic thoracolumbar fractures: A retrospective case series of 185 Patients with a single-level spinal column injury. J. Clin. Neurosci. 2022, 101, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Son, S.; Lee, S.G.; Park, C.W.; Kim, W.K. Minimally invasive multilevel percutaneous pedicle screw fixation for lumbar spinal diseases. Korean J. Spine 2012, 9, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, T.; Hirai, T.; Yamada, T.; Sumiya, S.; Mastumoto, R.; Kato, T.; Enomoto, M.; Inose, H.; Kawabata, S.; Shinomiya, K.; et al. Lumbosacral pedicle screw placement using a fluoroscopic pedicle axis view and a cannulated tapping device. J. Orthop. Surg. Res. 2015, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- La Rocca, G.; Mazzucchi, E.; Pignotti, F.; Nasto, L.A.; Galieri, G.; Olivi, A.; De Santis, V.; Rinaldi, P.; Pola, E.; Sabatino, G. Intraoperative CT-guided navigation versus fluoroscopy for percutaneous pedicle screw placement in 192 patients: A comparative analysis. J. Orthop. Traumatol. 2022, 23, 44. [Google Scholar] [CrossRef]
- Otomo, N.; Funao, H.; Yamanouchi, K.; Isogai, N.; Ishii, K. Computed Tomography-Based Navigation System in Current Spine Surgery: A Narrative Review. Medicina 2022, 58, 241. [Google Scholar] [CrossRef]
- Waschke, A.; Walter, J.; Duenisch, P.; Reichart, R.; Kalff, R.; Ewald, C. CT-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: Single center experience of 4500 screws. Eur. Spine J. 2013, 22, 654–660. [Google Scholar] [CrossRef]
- Hiyama, A.; Katoh, H.; Sakai, D.; Sato, M.; Tanaka, M.; Watanabe, M. Comparison of radiological changes after single- position versus dual- position for lateral interbody fusion and pedicle screw fixation. BMC Musculoskelet. Disord. 2019, 20, 601. [Google Scholar] [CrossRef]
- Ouchida, J.; Kanemura, T.; Satake, K.; Nakashima, H.; Ishikawa, Y.; Imagama, S. Simultaneous single-position lateral interbody fusion and percutaneous pedicle screw fixation using O-arm-based navigation reduces the occupancy time of the operating room. Eur. Spine J. 2020, 29, 1277–1286. [Google Scholar] [CrossRef]
- Thomas, J.A.; Menezes, C.; Buckland, A.J.; Khajavi, K.; Ashayeri, K.; Braly, B.A.; Kwon, B.; Cheng, I.; Berjano, P. Single-position circumferential lumbar spinal fusion: An overview of terminology, concepts, rationale and the current evidence base. Eur. Spine J. 2022, 31, 2167–2174. [Google Scholar] [CrossRef]
- Hiyama, A.; Katoh, H.; Sakai, D.; Sato, M.; Watanabe, M. Minimally Invasive Approach for Degenerative Spondylolisthesis: Lateral Single-Position Surgery with Intraoperative Computed Tomography Navigation and Fluoroscopy: A Technical Note. World Neurosurg. 2023, 179, e500–e509. [Google Scholar] [CrossRef] [PubMed]
- Hiyama, A.; Katoh, H.; Nomura, S.; Sakai, D.; Watanabe, M. Intraoperative computed tomography-guided navigation versus fluoroscopy for single-position surgery after lateral lumbar interbody fusion. J. Clin. Neurosci. 2021, 93, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Hiyama, A.; Katoh, H.; Sakai, D.; Watanabe, M. A New Technique that Combines Navigation-Assisted Lateral Interbody Fusion and Percutaneous Placement of Pedicle Screws in the Lateral Decubitus Position with the Surgeon Using Wearable Smart Glasses: A Small Case Series and Technical Note. World Neurosurg. 2021, 146, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.R.; Smith, B.W.; Patel, R.D.; Park, P. Use of 3D CT-based navigation in minimally invasive lateral lumbar interbody fusion. J. Neurosurg. Spine 2016, 25, 339–344. [Google Scholar] [CrossRef]
- Mendelsohn, D.; Strelzow, J.; Dea, N.; Ford, N.L.; Batke, J.; Pennington, A.; Yang, K.; Ailon, T.; Boyd, M.; Dvorak, M.; et al. Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation. Spine J. 2016, 16, 343–354. [Google Scholar] [CrossRef]
- Ikuma, H.; Hirose, T.; Takao, S.; Ueda, M.; Yamashita, K.; Otsuka, K.; Kwasaki, K. The impact of the lateral decubitus position in the perioperative period on posterior fixation for thoracolumbar fracture with ankylosing spinal disorder. J. Neurosurg. Spine 2022, 36, 784–791. [Google Scholar] [CrossRef]
- Guiroy, A.; Carazzo, C.; Camino-Willhuber, G.; Gagliardi, M.; Fernandes-Joaquim, A.; Cabrera, J.P.; Menezes, C.; Asghar, J. Single-Position Surgery versus Lateral-Then-Prone-Position Circumferential Lumbar Interbody Fusion: A Systematic Literature Review. World Neurosurg. 2021, 151, e379–e386. [Google Scholar] [CrossRef]
- Ravi, B.; Zahrai, A.; Rampersaud, R. Clinical accuracy of computer-assisted two-dimensional fluoroscopy for the percutaneous placement of lumbosacral pedicle screws. Spine 2011, 36, 84–91. [Google Scholar] [CrossRef]
- Heintel, T.M.; Berglehner, A.; Meffert, R. Accuracy of percutaneous pedicle screws for thoracic and lumbar spine fractures: A prospective trial. Eur. Spine J. 2013, 22, 495–502. [Google Scholar] [CrossRef]
- Zdichavsky, M.; Blauth, M.; Knop, C.; Lotz, J.; Krettek, C.; Bastian, L. Accuracy of Pedicle Screw Placement in Thoracic Spine Fractures: Part II: A Retrospective Analysis of 278 Pedicle Screws Using Computed Tomographic Scans. Eur. J. Trauma 2004, 30, 241–247. [Google Scholar] [CrossRef]
- Lieberman, I.H.; Kisinde, S.; Hesselbacher, S. Robotic-Assisted Pedicle Screw Placement During Spine Surgery. JBJS Essent. Surg. Tech. 2020, 10, e0020. [Google Scholar] [CrossRef]
- Baldwin, K.D.; Kadiyala, M.; Talwar, D.; Sankar, W.N.; Flynn, J.J.M.; Anari, J.B. Does intraoperative CT navigation increase the accuracy of pedicle screw placement in pediatric spinal deformity surgery? A systematic review and meta-analysis. Spine Deform. 2022, 10, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Wang, W.; Chen, S.; Wu, K.; Wang, H. O-arm navigation versus C-arm guidance for pedicle screw placement in spine surgery: A systematic review and meta-analysis. Int. Orthop. 2020, 44, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Wang, Z.; Sun, Z.; Zhang, H.; Wang, J.; Wang, G. Accuracy of pedicle screw placement in the thoracic and lumbosacral spines using O-arm-based navigation versus conventional freehand technique. Chin. Neurosurg. J. 2019, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Hiyama, A.; Katoh, H.; Sakai, D.; Sato, M.; Tanaka, M.; Watanabe, M. Accuracy of Percutaneous Pedicle Screw Placement after Single-Position versus Dual-Position Insertion for Lateral Interbody Fusion and Pedicle Screw Fixation Using Fluoroscopy. Asian Spine J. 2022, 16, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Blizzard, D.J.; Thomas, J.A. MIS Single-position Lateral and Oblique Lateral Lumbar Interbody Fusion and Bilateral Pedicle Screw Fixation: Feasibility and Perioperative Results. Spine 2018, 43, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Fayed, I.; Tai, A.; Triano, M.J.; Weitz, D.; Sayah, A.; Voyadzis, J.M.; Sandhu, F.A. Lateral versus prone robot-assisted percutaneous pedicle screw placement: A CT-based comparative assessment of accuracy. J. Neurosurg. Spine 2022, 37, 112–120. [Google Scholar] [CrossRef]
- Huntsman, K.T.; Riggleman, J.R.; Ahrendtsen, L.A.; Ledonio, C.G. Navigated robot-guided pedicle screws placed successfully in single-position lateral lumbar interbody fusion. J. Robot. Surg. 2020, 14, 643–647. [Google Scholar] [CrossRef]
- Patel, N.A.; Kuo, C.C.; Pennington, Z.; Brown, N.J.; Gendreau, J.; Singh, R.; Shahrestani, S.; Boyett, C.; Diaz-Aguilar, L.D.; Pham, M.H. Robot-assisted percutaneous pedicle screw placement accuracy compared with alternative guidance in lateral single-position surgery: A systematic review and meta-analysis. J. Neurosurg. Spine 2023, 39, 443–451. [Google Scholar] [CrossRef]
- Elowitz, E.H.; Yanni, D.S.; Chwajol, M.; Starke, R.M.; Perin, N.I. Evaluation of indirect decompression of the lumbar spinal canal following minimally invasive lateral transpsoas interbody fusion: Radiographic and outcome analysis. Minim. Invasive Neurosurg. 2011, 54, 201–206. [Google Scholar] [CrossRef]
- Hiyama, A.; Katoh, H.; Sakai, D.; Sato, M.; Tanaka, M.; Nukaga, T.; Watanabe, M. Changes in Spinal Alignment following eXtreme Lateral Interbody Fusion Alone in Patients with Adult Spinal Deformity using Computed Tomography. Sci. Rep. 2019, 9, 12039. [Google Scholar] [CrossRef] [PubMed]
- Hiyama, A.; Katoh, H.; Sakai, D.; Sato, M.; Tanaka, M.; Watanabe, M. Cluster analysis to predict factors associated with sufficient indirect decompression immediately after single-level lateral lumbar interbody fusion. J. Clin. Neurosci. 2021, 83, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.; Marchi, L.; Coutinho, E.; Pimenta, L. A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine 2010, 35 (Suppl S26), S331–S337. [Google Scholar] [CrossRef] [PubMed]
- Ozgur, B.M.; Aryan, H.E.; Pimenta, L.; Taylor, W.R. Extreme Lateral Interbody Fusion (XLIF): A novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006, 6, 435–443. [Google Scholar] [CrossRef]
- Charles, Y.P.; Ntilikina, Y.; Collinet, A.; Schuller, S.; Garnon, J.; Godet, J.; Clavert, P. Accuracy and technical limits of percutaneous pedicle screw placement in the thoracolumbar spine. Surg. Radiol. Anat. 2021, 43, 843–853. [Google Scholar] [CrossRef]
- Hardin, C.A.; Nimjee, S.M.; Karikari, I.O.; Agrawal, A.; Fessler, R.G.; Isaacs, R.E. Percutaneous pedicle screw placement in the thoracic spine: A cadaveric study. Asian J. Neurosurg. 2013, 8, 153–156. [Google Scholar] [CrossRef]
- Orief, T.; Alfawareh, M.; Halawani, M.; Attia, W.; Almusrea, K. Accuracy of percutaneous pedicle screw insertion in spinal fixation of traumatic thoracic and lumbar spine fractures. Surg. Neurol. Int. 2018, 9, 78. [Google Scholar] [CrossRef]
- Sasagawa, T. Rate and Factors Associated with Misplacement of Percutaneous Pedicle Screws in the Thoracic Spine. Spine Surg. Relat. Res. 2023, 7, 155–160. [Google Scholar] [CrossRef]
- Morita, K.; Ohashi, H.; Kawamura, D.; Tani, S.; Karagiozov, K.; Murayama, Y. Thoracic and lumbar spine pedicle morphology in Japanese patients. Surg. Radiol. Anat. 2021, 43, 833–842. [Google Scholar] [CrossRef]
- Hiyama, A.; Sakai, D.; Sato, M.; Watanabe, M. The analysis of percutaneous pedicle screw technique with guide wire-less in lateral decubitus position following extreme lateral interbody fusion. J. Orthop. Surg. Res. 2019, 14, 304. [Google Scholar] [CrossRef]
- Okuda, R.; Ikuma, H.; Inoue, T.; Ueda, M.; Hirose, T.; Otsuka, K.; Kawasaki, K. Accuracy of percutaneous pedicle screw placement with 3-dimensional fluoroscopy-based navigation: Lateral decubitus position versus prone position. Medicine 2023, 102, e33451. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, N.W.; Parrish, J.M.; Sheha, E.D.; Singh, K. Intraoperative risks of radiation exposure for the surgeon and patient. Ann. Transl. Med. 2021, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Tabaraee, E.; Gibson, A.G.; Karahalios, D.G.; Potts, E.A.; Mobasser, J.P.; Burch, S. Intraoperative cone beam-computed tomography with navigation (O-ARM) versus conventional fluoroscopy (C-ARM): A cadaveric study comparing accuracy, efficiency, and safety for spinal instrumentation. Spine 2013, 38, 1953–1958. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Value | |
---|---|---|
No. of patients, n (LLIF/Trauma etc.) | 170 (151/19) | |
No. of screws, n (LLIF/Trauma etc.) | 836 (690/146) | |
Age (years), mean (SD) | 71.0 (11.6) | |
Sex (male/female), n | 94/76 | |
Height (cm), mean (SD) | 158.9 (9.8) | |
Body weight (kg), mean (SD) | 61.1 (11.5) | |
BMI (kg/m2), mean (SD) | 24.1 (3.5) | |
Indications n (%) | LCS + (LDS) | 124 (73) |
DLS | 11 (7) | |
FS | 8 (5) | |
DISH Fx | 9 (5) | |
Thoracolumbar Fx | 8 (5) | |
LDH | 6 (4) | |
Synovial cyst | 2 (1) | |
Spondylitis | 2 (1) | |
Number of levels operated n (%) | 1 level | 93 (55) |
2 level | 60 (35) | |
3 level | 7 (4) | |
4 level | 7 (4) | |
5 level | 1 (1) | |
6 level | 2 (1) | |
Mean | 1.6 (0.9) |
Characteristic | Value | |||
---|---|---|---|---|
Screw Accuracy, Number (%) | p (II–IV) | |||
Thoracic spine n (%) | Grade I | 87 (92.6) | Thoracic spine vs. Lumbar spine 0.006 * | |
Grade II | 5 (5.3) | |||
Grade III | 2 (2.1) | |||
Grade IV | 0 (0) | |||
Grade II–IV | 7 (7.4) | |||
Total | 94 | |||
Lumbar spine n (%) | Grade I | 728 (98.1) | ||
Grade II | 5 (0.7) | |||
Grade III | 7 (0.9) | |||
Grade IV | 2 (0.3) | |||
Grade II–IV | 14 (1.9) | |||
Total | 742 | |||
Thoracic ± lumbar spine n (%) | Grade I | 815 (97.4) | ||
Grade II | 10 (1.2) | |||
Grade III | 9 (1.1) | |||
Grade IV | 2 (0.2) | |||
Grade II–IV | 21 (2.5) | |||
Total | 836 | |||
Perioperative data, mean (SD) | ||||
OR time (min) | 116.6 (36.1) | |||
EBL (mL) | 101.2 (117.0) | |||
Complications, number (%) | ||||
iCT-related problems | 3 (1.8) | |||
Surgical site infections | 1 (0.6) | |||
Postoperative neurological deficit (PPS-related) | 2 (1.2) | |||
Mortality | 1 (0.6) | |||
Reoperation | 6 (3.5) |
Characteristic | Value | |||
---|---|---|---|---|
Screw Accuracy, Number (%) | Upside PPS | Downside PPS | p (II–IV) | |
Thoracic spine n (%) | Grade I | 44 (93.6) | 43 (91.5) | |
Grade II | 2(4.3) | 3(6.4) | ||
Grade III | 1 (2.1) | 1 (2.1) | ||
Grade IV | 0 (0) | 0 (0) | ||
Grade II–IV | 3 (6.4) | 4 (8.5) | 1.000 | |
Total | 47 | 47 | ||
Lumbar spine n (%) | Grade I | 382 (98.2) | 346 (98.0) | |
Grade II | 3 (0.8) | 2 (0.6) | ||
Grade III | 4 (1.0) | 3 (0.8) | ||
Grade IV | 0 (0) | 2 (0.6) | ||
Grade II–IV | 7 (1.8) | 7 (2.0) | 1.000 | |
Total | 389 | 353 | ||
Thoracic ± lumbar spine n (%) | Grade I | 426 (97.7) | 389 (97.3) | |
Grade II | 5 (1.1) | 5 (1.3) | ||
Grade III | 5 (1.1) | 4 (1.0) | ||
Grade IV | 0 (0) | 2 (0.5) | ||
Grade II–IV | 10 (2.2) | 11 (2.8) | 0.826 | |
Total | 436 | 400 |
Characteristic | Value | p | ||
---|---|---|---|---|
Screw Size, n (%) | Thoracic | Lumbar | Total | |
5.5 (mm) | 2 (2.1) | 5 (0.7) | 7 (0.8) | |
6.0 (mm) | 8 (8.5) | 28 (3.8) | 36 (4.4) | |
6.5 (mm) | 74 (78.7) | 560 (75.1) | 634 (75.5) | |
7.0 (mm) | 0 (0) | 124 (16.9) | 124 (15.0) | |
7.5 (mm) | 10 (10.6) | 25 (3.4) | 35 (4.2) | |
Screw diameter, mean (SD) | 6.5 (0.4) | 6.6 (0.3) | 6.6 (0.3) | 0.137 |
35 (mm) | 6 (6.4) | 4 (0.5) | 10 (1.2) | |
40 (mm) | 30 (31.9) | 145 (19.5) | 175 (20.9) | |
45 (mm) | 30 (31.9) | 347 (46.8) | 377 (45.1) | |
50 (mm) | 28 (29.8) | 240 (32.3) | 268 (32.1) | |
55 (mm) | 0 (0) | 6 (0.8) | 6 (0.7) | |
Screw length, mean (SD) (mm) | 44.3 (4.6) | 45.7 (3.7) | 45.5 (3.9) | 0.005 |
Total | 94 | 742 | 836 | |
Pedicle diameter (mm) mean (SD) | 6.7 (1.9) | 10.8 (3.0) | 10.3 (3.2) | <0.001 |
1a | 1b | 2a | 2b | 3a | 3b | Inferior | ALL | |
---|---|---|---|---|---|---|---|---|
Thoracic spine, n | 87 | 2 | 0 | 2 | 0 | 3 | 0 | 94 |
(%) | 92.6 | 2.1 | 0 | 2.1 | 0 | 3.2 | 0 | 100 |
Lumbar spine, n | 728 | 7 | 0 | 3 | 3 | 0 | 1 | 742 |
(%) | 98.1 | 0.9 | 0 | 0.4 | 0.4 | 0 | 0.1 | 100 |
ALL, n | 815 | 9 | 0 | 5 | 3 | 3 | 1 | 836 |
(%) | 97.5 | 1.1 | 0 | 0.6 | 0.4 | 0.4 | 0.1 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiyama, A.; Sakai, D.; Katoh, H.; Nomura, S.; Watanabe, M. Assessing Procedural Accuracy in Lateral Spine Surgery: A Retrospective Analysis of Percutaneous Pedicle Screw Placement with Intraoperative CT Navigation. J. Clin. Med. 2023, 12, 6914. https://doi.org/10.3390/jcm12216914
Hiyama A, Sakai D, Katoh H, Nomura S, Watanabe M. Assessing Procedural Accuracy in Lateral Spine Surgery: A Retrospective Analysis of Percutaneous Pedicle Screw Placement with Intraoperative CT Navigation. Journal of Clinical Medicine. 2023; 12(21):6914. https://doi.org/10.3390/jcm12216914
Chicago/Turabian StyleHiyama, Akihiko, Daisuke Sakai, Hiroyuki Katoh, Satoshi Nomura, and Masahiko Watanabe. 2023. "Assessing Procedural Accuracy in Lateral Spine Surgery: A Retrospective Analysis of Percutaneous Pedicle Screw Placement with Intraoperative CT Navigation" Journal of Clinical Medicine 12, no. 21: 6914. https://doi.org/10.3390/jcm12216914