Alterations to Kidney Physiology during Cardiopulmonary Bypass—A Narrative Review of the Literature and Practical Remarks
Abstract
:1. Introduction
2. Relevant Sections
2.1. Systemic and Renal Circulation
2.2. Vasoactive Drugs
2.2.1. Norepinephrine
2.2.2. Epinephrine
2.2.3. Dopamine
2.2.4. Fenoldopam
2.2.5. Nitroglycerine
2.2.6. Nesiritide
2.2.7. Methylene Blue
2.3. Fluid Balance and Osmotic Regulation
2.4. Inflammatory Response
3. Conclusions
- Provide an iDO2 no lower than 260–300 mL/min/m2 during the CPB
- Maintain MAP no lower than 70–90 mmHg during the whole procedure
- Use small doses of norepinephrine (preferably < 0.1 µg/kg/min) to correct the vasoplegia associated with general anesthesia and CPB
- Start hydrating the patient on the day preceding the surgery and continue hydration during the perioperative period
- During the CPB, keep the fluid balance that allows for a diuresis of ≥4 mL/kg/h (do not abuse furosemide!)
4. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Veluz, J.S.; Leary, M.C. Cerebrovascular Complications of Cardiac Surgery. In Primer on Cerebrovascular Diseases, 2nd ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2017; pp. 650–655. [Google Scholar] [CrossRef]
- Schurle, A.; Koyner, J.L. CSA-AKI: Incidence, Epidemiology, Clinical Outcomes, and Economic Impact. J. Clin. Med. 2021, 10, 5746. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Gong, H.; Hu, J.; Wu, D.; Zheng, Z.; Wang, L.; Lei, C. Perioperative Parameters-Based Prediction Model for Acute Kidney Injury in Chinese Population Following Valvular Surgery. Front. Cardiovasc. Med. 2023, 10, 348. [Google Scholar] [CrossRef] [PubMed]
- Harky, A.; Joshi, M.; Gupta, S.; Yi Teoh, W.; Gatta, F.; Snosi, M. Acute Kidney Injury Associated with Cardiac Surgery: A Comprehensive Literature Review. Braz. J. Cardiovasc. Surg. 2020, 35, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, A.A.; Aqeeli, M.O.; Alshammari, F.K.; Altalhi, S.M.; Bajebair, A.M.; Al-Ebrahim, K.E. Cardiac Surgery-Associated Acute Kidney Injury (CSA-AKI) in Adults and Pediatrics; Prevention Is the Optimal Management. Heart Surg. Forum. 2022, 25, E504–E509. [Google Scholar] [CrossRef]
- Sun, C.; Chen, D.; Jin, X.; Xu, G.; Tang, C.; Guo, X.; Tang, Z.; Bao, Y.; Wang, F.; Shen, R. Association between Acute Kidney Injury and Prognoses of Cardiac Surgery Patients: Analysis of the MIMIC-III Database. Front. Surg. 2023, 9, 2242. [Google Scholar] [CrossRef]
- Cho, J.S.; Shim, J.K.; Lee, S.; Song, J.W.; Choi, N.; Lee, S.; Kwak, Y.L. Chronic Progression of Cardiac Surgery Associated Acute Kidney Injury: Intermediary Role of Acute Kidney Disease. J. Thorac. Cardiovasc. Surg. 2021, 161, 681–688.e3. [Google Scholar] [CrossRef]
- Sarkar, M.; Prabhu, V. Basics of Cardiopulmonary Bypass. Indian J. Anaesth. 2017, 61, 760. [Google Scholar] [CrossRef]
- Melly, L.; Torregrossa, G.; Lee, T.; Jansens, J.L.; Puskas, J.D. Fifty Years of Coronary Artery Bypass Grafting. J. Thorac. Dis. 2018, 10, 1960. [Google Scholar] [CrossRef]
- Shaefi, S.; Mittel, A.; Loberman, D.; Ramakrishna, H. Off-Pump Versus On-Pump Coronary Artery Bypass Grafting—A Systematic Review and Analysis of Clinical Outcomes. J. Cardiothorac. Vasc. Anesth. 2019, 33, 232–244. [Google Scholar] [CrossRef]
- Day, J.R.S.; Taylor, K.M. The Systemic Inflammatory Response Syndrome and Cardiopulmonary Bypass. Int. J. Surg. 2005, 3, 129–140. [Google Scholar] [CrossRef]
- De La Hoz, M.A.; Rangasamy, V.; Bastos, A.B.; Xu, X.; Novack, V.; Saugel, B.; Subramaniam, B. Intraoperative Hypotension and Acute Kidney Injury, Stroke, and Mortality during and Outside Cardiopulmonary Bypass: A Retrospective Observational Cohort Study. Anesthesiology 2022, 136, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Machin, D.; Allsager, C. Principles of Cardiopulmonary Bypass. Contin. Educ. Anaesth. Crit. Care Pain. 2006, 6, 176–181. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S.H.; Hwang, H.Y.; Sohn, S.H.; Choi, J.W.; Kim, K.H. Perfusion Parameters during Cardiopulmonary Bypass as a Predictor of Acute Kidney Injury after Aortic Valve Replacement. Acute. Crit. Care 2021, 36, 242. [Google Scholar] [CrossRef] [PubMed]
- Mukaida, H.; Matsushita, S.; Kuwaki, K.; Inotani, T.; Minami, Y.; Saigusa, A.; Amano, A. Time–Dose Response of Oxygen Delivery during Cardiopulmonary Bypass Predicts Acute Kidney Injury. J. Thorac. Cardiovasc. Surg. 2019, 158, 492–499. [Google Scholar] [CrossRef] [PubMed]
- de Somer, F.; Mulholland, J.W.; Bryan, M.R.; Aloisio, T.; Van Nooten, G.J.; Ranucci, M. O2 Delivery and CO2 Production during Cardiopulmonary Bypass as Determinants of Acute Kidney Injury: Time for a Goal-Directed Perfusion Management? Crit Care 2011, 15, R192. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, M.; Johnson, I.; Willcox, T.; Baker, R.A.; Boer, C.; Baumann, A.; Justison, G.A.; de Somer, F.; Exton, P.; Agarwal, S.; et al. Goal-Directed Perfusion to Reduce Acute Kidney Injury: A Randomized Trial. J. Thorac. Cardiovasc. Surg. 2018, 156, 1918–1927.e2. [Google Scholar] [CrossRef]
- Srey, R.; Rance, G.; Shapeton, A.D.; Leissner, K.B.; Zenati, M.A. A Quick Reference Tool for Goal-Directed Perfusion in Cardiac Surgery. J. Extra. Corpor. Technol. 2019, 51, 172. [Google Scholar]
- Daniels, S.R.; Kimball, T.R.; Khoury, P.; Witt, S.; Morrison, J.A. Correlates of the Hemodynamic Determinants of Blood Pressure. Hypertension 1996, 28, 37–41. [Google Scholar] [CrossRef]
- Kristof, A.S.; Magder, S. Low Systemic Vascular Resistance State in Patients Undergoing Cardiopulmonary Bypass. Crit. Care Med. 1999, 27, 1121–1127. [Google Scholar] [CrossRef]
- Trammel, J.E.; Sapra, A. Physiology, Systemic Vascular Resistance; StatPearls: Petersburg, FL, USA, 2022. [Google Scholar]
- Ltaief, Z.; Ben-Hamouda, N.; Rancati, V.; Gunga, Z.; Marcucci, C.; Kirsch, M.; Liaudet, L. Vasoplegic Syndrome after Cardiopulmonary Bypass in Cardiovascular Surgery: Pathophysiology and Management in Critical Care. J. Clin. Med. 2022, 11, 6407. [Google Scholar] [CrossRef]
- Management of Cardiopulmonary Bypass—UpToDate. Available online: https://www.uptodate.com/contents/management-of-cardiopulmonary-bypass/print (accessed on 25 April 2023).
- Barral, J.-P.; Croibier, A. Circulatory Physiology. Visc. Vasc. Manip. 2011, 27–45. [Google Scholar] [CrossRef]
- Kouz, K.; Hoppe, P.; Briesenick, L.; Saugel, B. Intraoperative Hypotension: Pathophysiology, Clinical Relevance, and Therapeutic Approaches. Indian J. Anaesth. 2020, 64, 90. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D.; Jordan, J.; Engeli, S. Blood Pressure-Lowering Effects of Propofol or Sevoflurane Anaesthesia Are Not Due to Enhanced Nitric Oxide Formation or Bioavailability. Br. J. Clin. Pharmacol. 2015, 79, 1030. [Google Scholar] [CrossRef] [PubMed]
- Watso, J.C.; Huang, M.; Belval, L.N.; Cimino, F.A.; Jarrard, C.P.; Hendrix, J.M.; Hinojosa-Laborde, C.; Crandall, C.G. Low-Dose Fentanyl Reduces Pain Perception, Muscle Sympathetic Nerve Activity Responses, and Blood Pressure Responses during the Cold Pressor Test. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2022, 322, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Moore, P.G.; Quail, A.W.; Cottee, D.B.F.; McIlveen, S.A.; White, S.W. Effect of Fentanyl On Baroreflex Control Of Circumflex Coronary Conductance. Clin. Exp. Pharmacol. Physiol. 2000, 27, 1028–1033. [Google Scholar] [CrossRef]
- Şahin, A.S.; Duman, A.; Atalik, E.K.; Ögün, C.Ö.; Şahin, T.K.; Erol, A.; Özergin, U. The Mechanisms of the Direct Vascular Effects of Fentanyl on Isolated Human Saphenous Veins in Vitro. J. Cardiothorac. Vasc. Anesth. 2005, 19, 197–200. [Google Scholar] [CrossRef]
- Cipolla, M.J. Control of Cerebral Blood Flow. In The Cerebral Circulation; Morgan & Claypool Life Sciences: San Rafael, CA, USA, 2009. [Google Scholar]
- Burke, M.; Pabbidi, M.R.; Farley, J.; Rom, R.J. Molecular Mechanisms of Renal Blood Flow Autoregulation. Curr. Vasc. Pharmacol. 2014, 12, 845. [Google Scholar] [CrossRef]
- Kida, Y. Peritubular Capillary Rarefaction: An Underappreciated Regulator of CKD Progression. Int. J. Mol. Sci. 2020, 21, 8255. [Google Scholar] [CrossRef]
- Navar, L.G.; Arendshorst, W.J.; Pallone, T.L.; Inscho, E.W.; Imig, J.D.; Bell, P.D. The Renal Microcirculation. Compr. Physiol. 2008, 550–683. [Google Scholar] [CrossRef]
- Martini, A.G.; Danser, A.H.J. Juxtaglomerular Cell Phenotypic Plasticity. High. Blood Press. Cardiovasc. Prev. 2017, 24, 231. [Google Scholar] [CrossRef]
- Jefferson, J.A.; Thurman, J.M.; Schrier, R.W. Pathophysiology and Etiology of Acute Kidney Injury. In Comprehensive Clinical Nephrology, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 797–812. [Google Scholar] [CrossRef]
- Brzozowski, T. Konturek. Fizjol. Czlowieka; Edra Urban & Partner: Wrocław, Poland, 2019; Volume 852, pp. 668–676. [Google Scholar]
- Fountain, J.H.; Kaur, J.; Lappin, S.L. Physiology, Renin Angiotensin System; StatPearls: Petersburg, FL, USA, 2023. [Google Scholar]
- Dalal, R.; Bruss, Z.S.; Sehdev, J.S. Physiology, Renal Blood Flow and Filtration; StatPearls: Petersburg, FL, USA, 2022. [Google Scholar]
- Denton, K.M.; Anderson, W.P.; Sinniah, R. Effects of Angiotensin II on Regional Afferent and Efferent Arteriole Dimensions and the Glomerular Pole. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R629–R638. [Google Scholar] [CrossRef] [PubMed]
- Lovshin, J.A.; Boulet, G.; Lytvyn, Y.; Lovblom, L.E.; Bjornstad, P.; Farooqi, M.A.; Lai, V.; Cham, L.; Tse, J.; Orszag, A.; et al. Renin-Angiotensin-Aldosterone System Activation in Long-Standing Type 1 Diabetes. JCI Insight 2018, 3, e96968. [Google Scholar] [CrossRef] [PubMed]
- Harrison-Bernard, L.M. The Renal Renin-Angiotensin System. Am. J. Physiol. Adv. Physiol. Educ. 2009, 33, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Küllmar, M.; Saadat-Gilani, K.; Weiss, R.; Massoth, C.; Lagan, A.; Cortés, M.N.; Gerss, J.; Chawla, L.S.; Fliser, D.; Meersch, M.; et al. Kinetic Changes of Plasma Renin Concentrations Predict Acute Kidney Injury in Cardiac Surgery Patients. Am. J. Respir. Crit. Care Med. 2021, 203, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Lannemyr, L.; Bragadottir, G.; Krumbholz, V.; Redfors, B.; Sellgren, J.; Ricksten, S.E. Effects of Cardiopulmonary Bypass on Renal Perfusion, Filtration, and Oxygenation in Patients Undergoing Cardiac Surgery. Anesthesiology 2017, 126, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Gewin, L.S. Sugar or Fat? Renal Tubular Metabolism Reviewed in Health and Disease. Nutrients 2021, 13, 1580. [Google Scholar] [CrossRef]
- Duke, J. Renal Function and Anesthesia. Anesthesia Secrets. In Anesthesia Secrets, 4th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2011; pp. 308–316. [Google Scholar] [CrossRef]
- Feher, J. Functional Anatomy of the Kidneys and Overview of Kidney Function. In Quantitative Human Physiology; Academic Press: Cambridge, MA, USA, 2017; pp. 698–704. [Google Scholar] [CrossRef]
- Kennedy-Lydon, T.M.; Crawford, C.; Wildman, S.S.P.; Peppiatt-Wildman, C.M. Renal Pericytes: Regulators of Medullary Blood Flow. Acta Physiol. 2013, 207, 212–225. [Google Scholar] [CrossRef]
- Zoccali, C.; Mallamaci, F.; Finocchiaro, P. Atherosclerotic Renal Artery Stenosis: Epidemiology, Cardiovascular Outcomes, and Clinical Prediction Rules. J. Am. Soc. Nephrol. 2002, 13 (Suppl. S3), S179–S183. [Google Scholar] [CrossRef]
- Dobrek, L. An Outline of Renal Artery Stenosis Pathophysiology—A Narrative Review. Life 2021, 11, 208. [Google Scholar] [CrossRef]
- Norepinephrine-StatPearls-NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537259/ (accessed on 5 May 2023).
- Foulon, P.; De Backer, D. The Hemodynamic Effects of Norepinephrine: Far More than an Increase in Blood Pressure! Ann. Transl. Med. 2018, 6 (Suppl. S1). [Google Scholar] [CrossRef]
- Livesey, M.; Jauregui, J.J.; Hamaker, M.C.; Pensy, R.A.; Langhammer, C.G.; Eglseder, W.A. Management of Vasopressor Induced Ischemia. J. Orthop. 2020, 22, 497. [Google Scholar] [CrossRef] [PubMed]
- Qvisth, V.; Hagström-Toft, E.; Enoksson, S.; Bolinder, J. Catecholamine Regulation of Local Lactate Production in Vivo in Skeletal Muscle and Adipose Tissue: Role of β-Adrenoreceptor Subtypes. J. Clin. Endocrinol. Metab. 2008, 93, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.A.; El Tahan, M.R.; Khidr, A.M.; Fallatah, S.; Abohamar, A.D.; Amer, M.M.; Makhdom, F.; El Ghoneimy, Y.; Al Bassam, B.; Alghamdi, T.; et al. Effects of Norepinephrine Infusion during Cardiopulmonary Bypass on Perioperative Changes in Lactic Acid Level (Norcal). Perfusion 2022, 38, 02676591221122350. [Google Scholar] [CrossRef] [PubMed]
- Huette, P.; Moussa, M.D.; Beyls, C.; Guinot, P.G.; Guilbart, M.; Besserve, P.; Bouhlal, M.; Mounjid, S.; Dupont, H.; Mahjoub, Y.; et al. Association between Acute Kidney Injury and Norepinephrine Use Following Cardiac Surgery: A Retrospective Propensity Score-Weighted Analysis. Ann. Intensive Care 2022, 12, 61. [Google Scholar] [CrossRef]
- Azau, A.; Markowicz, P.; Corbeau, J.J.; Cottineau, C.; Moreau, X.; Baufreton, C.; Beydon, L. Increasing Mean Arterial Pressure during Cardiac Surgery Does Not Reduce the Rate of Postoperative Acute Kidney Injury. Perfusion 2014, 29, 496–504. [Google Scholar] [CrossRef]
- Vedel, A.G.; Holmgaard, F.; Rasmussen, L.S.; Langkilde, A.; Paulson, O.B.; Lange, T.; Thomsen, C.; Olsen, P.S.; Ravn, H.B.; Nilsson, J.C. High-Target versus Low-Target Blood Pressure Management during Cardiopulmonary Bypass to Prevent Cerebral Injury in Cardiac Surgery Patients: A Randomized Controlled Trial. Circulation 2018, 137, 1770–1780. [Google Scholar] [CrossRef]
- Al-Husinat, L.; Alsabbah, A.; Hmaid, A.A.; Athamneh, R.; Adwan, M.; Hourani, M.N.; Almakhadmeh, S.; Al Modanat, Z.J.; Ismail, M.I.A.; Varrassi, G. Norepinephrine May Exacerbate Septic Acute Kidney Injury: A Narrative Review. J. Clin. Med. 2023, 12, 1373. [Google Scholar] [CrossRef]
- Bellomo, R.; Di Giantomasso, D. Noradrenaline and the Kidney: Friends or Foes? Crit. Care 2001, 5, 294. [Google Scholar] [CrossRef]
- Dalal, R.; Grujic, D. Epinephrine. In xPharm: The Comprehensive Pharmacology Reference; University of Nebraska Medical Center: Omaha, NE, USA, 2007; pp. 1–5. [Google Scholar] [CrossRef]
- Linton, N.W.F.; Linton, R.A.F. Haemodynamic Response to a Small Intravenous Bolus Injection of Epinephrine in Cardiac Surgical Patients. Eur. J. Anaesthesiol. 2003, 20, 298–304. [Google Scholar] [CrossRef]
- Gillies, M.; Bellomo, R.; Doolan, L.; Buxton, B. Bench-to-Bedside Review: Inotropic Drug Therapy after Adult Cardiac Surgery—A Systematic Literature Review. Crit. Care 2005, 9, 266–279. [Google Scholar] [CrossRef]
- Filho, M.F.S.; Barral, M.; Barrucand, L.; Cavalcanti, I.L.; Vercosa, N. A Randomized Blinded Study of the Left Ventricular Myocardial Performance Index Comparing Epinephrine to Levosimendan Following Cardiopulmonary Bypass. PLoS ONE 2015, 10, e0143315. [Google Scholar] [CrossRef]
- Sonne, J.; Goyal, A.; Lopez-Ojeda, W. Dopamine. Methods in Molecular Biology. 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK535451/ (accessed on 7 October 2023).
- Elkayam, U.; Ng, T.M.H.; Hatamizadeh, P.; Janmohamed, M.; Mehra, A. Renal Vasodilatory Action of Dopamine in Patients With Heart Failure. Circulation 2008, 117, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.N.; Machado, F.R.; Guimarães, H.P.; Resque Senna, A.P.; Gomes do Amaral, J.L. Hemodynamics and Renal Function during Administration of Low-Dose Dopamine in Severely Ill Patients. Sao Paulo Med. J. 2004, 122, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Zeyneloglu, P.; Ozdemir, H.; Komurcu, O.; Bayraktar, N.; Sezgin, A.; Pirat, A.; Arslan, G. Effects of Renal-Dose Dopamine on Renal Tubular Functions Following Coronary Artery Bypass Grafting Surgery. Crit. Care 2012, 16, 1–189. [Google Scholar] [CrossRef]
- Fenoldopam-StatPearls-NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK526058/ (accessed on 9 May 2023).
- Lee, C.J.; Gardiner, B.S.; Smith, D.W. A Cardiovascular Model for Renal Perfusion during Cardiopulmonary Bypass Surgery. Comput. Biol. Med. 2020, 119, 103676. [Google Scholar] [CrossRef]
- Kim, K.H.; Kerndt, C.C.; Adnan, G.; Schaller, D.J. Nitroglycerin. In Encyclopedia of Toxicology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 569–572. [Google Scholar] [CrossRef]
- Lee, J.U. Nitric Oxide in the Kidney: Its Physiological Role and Pathophysiological Implications. Electrolytes Blood Press. E BP 2008, 6, 27. [Google Scholar] [CrossRef]
- Mathur, A.G.; Kairi, J.K.; Nayak, B.B. Nesiritide—A New Agent for Acute Decompensated Heart Failure. Med. J. Armed. Forces India 2005, 61, 375. [Google Scholar] [CrossRef]
- Mitaka, C.; Kudo, T.; Haraguchi, G.; Tomita, M. Cardiovascular and Renal Effects of Carperitide and Nesiritide in Cardiovascular Surgery Patients: A Systematic Review and Meta-Analysis. Crit. Care 2011, 15, 1–10. [Google Scholar] [CrossRef]
- Chen, H.H.; Sundt, T.M.; Cook, D.J.; Heublein, D.M.; Burnett, J.C. Low Dose Nesiritide and the Preservation of Renal Function in Patients with Renal Dysfunction Undergoing Cardiopulmonary-Bypass Surgery A Double-Blind Placebo-Controlled Pilot Study. Circulation 2007, 116, I-134. [Google Scholar] [CrossRef]
- Mentzer, R.M.; Oz, M.C.; Sladen, R.N.; Graeve, A.H.; Hebeler, R.F.; Luber, J.M.; Smedira, N.G. Effects of Perioperative Nesiritide in Patients with Left Ventricular Dysfunction Undergoing Cardiac Surgery The NAPA Trial. J. Am. Coll. Cardiol. 2007, 49, 716–726. [Google Scholar] [CrossRef]
- Naoum, E.E.; Dalia, A.A.; Roberts, R.J.; Devine, L.T.; Ortoleva, J. Methylene Blue for Vasodilatory Shock in the Intensive Care Unit: A Retrospective, Observational Study. BMC Anesth. 2022, 22, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kofler, O.; Simbeck, M.; Tomasi, R.; Hinske, L.C.; Klotz, L.V.; Uhle, F.; Born, F.; Pichlmaier, M.; Hagl, C.; Weigand, M.A.; et al. Early Use of Methylene Blue in Vasoplegic Syndrome: A 10-Year Propensity Score-Matched Cohort Study. J. Clin. Med. 2022, 11, 1121. [Google Scholar] [CrossRef] [PubMed]
- Petermichl, W.; Gruber, M.; Schoeller, I.; Allouch, K.; Graf, B.M.; Zausig, Y.A. The Additional Use of Methylene Blue Has a Decatecholaminisation Effect on Cardiac Vasoplegic Syndrome after Cardiac Surgery. J. Cardiothorac. Surg. 2021, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mehaffey, J.H.; Johnston, L.E.; Hawkins, R.B.; Charles, E.J.; Yarboro, L.; Kern, J.A.; Ailawadi, G.; Kron, I.L.; Ghanta, R.K. Methylene Blue for Vasoplegic Syndrome after Cardiac Surgery: Early Administration Improves Survival. Ann. Thorac. Surg. 2017, 104, 36. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.E.; Johnson, E.C. Water Intake, Water Balance, and the Elusive Daily Water Requirement. Nutrients 2018, 10, 1928. [Google Scholar] [CrossRef]
- Rassam, S.S.; Counsell, D.J. Perioperative Electrolyte and Fluid Balance. Contin. Educ. Anaesth. Crit. Care Pain 2005, 5, 157–160. [Google Scholar] [CrossRef]
- Löffel, L.M.; Engel, D.A.; Beilstein, C.M.; Hahn, R.G.; Furrer, M.A.; Wuethrich, P.Y. Dehydration before Major Urological Surgery and the Perioperative Pattern of Plasma Creatinine: A Prospective Cohort Series. J. Clin. Med. 2021, 10, 5817. [Google Scholar] [CrossRef]
- Lacey, J.; Corbett, J.; Forni, L.; Hooper, L.; Hughes, F.; Minto, G.; Moss, C.; Price, S.; Whyte, G.; Woodcock, T.; et al. A Multidisciplinary Consensus on Dehydration: Definitions, Diagnostic Methods and Clinical Implications. Ann. Med. 2019, 51, 232. [Google Scholar] [CrossRef]
- Popkin, B.M.; D’Anci, K.E.; Rosenberg, I.H. Water, Hydration and Health. Nutr. Rev. 2010, 68, 439. [Google Scholar] [CrossRef]
- Nose, H.; Mack, G.W.; Shi, X.R.; Nadel, E.R. Role of Osmolality and Plasma Volume During Rehydration in Humans. J. Appl. Physiol. 1988, 65, 325–331. [Google Scholar] [CrossRef]
- Crerar-Gilbert, A.; Dewhurst, A.; Barnes, S.C.; Collinson, P.O.; Mcanulty, G.R. Insensible Fluid Loss during Cardiac Surgery. Crit. Care 2001, 5, 1. [Google Scholar] [CrossRef]
- Darling, E.; Harris-Holloway, S.; Kern, F.H.; Ungerleider, R.; Jaggers, J.; Lawson, S.; Shearer, I. Impact of Modifying Priming Components and Fluid Administration Using Miniaturized Circuitry in Neonatal Cardiopulmonary Bypass. Perfusion 2000, 15, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Hrratsuka, H. Clinical studies of hypothermic perfusion with hemodilution technique, especially its influence on water and electro-lytes changes, and renal function. Nagoya J. Med. Sci 1968, 31, 51–78. [Google Scholar]
- Tenny, S.; Patel, R.; Thorell, W. Mannitol; StatPearls: Petersburg, FL, USA, 2022. [Google Scholar]
- Bradić, J.; Andjić, M.; Novaković, J.; Jeremić, N.; Jakovljević, V. Cardioplegia in Open Heart Surgery: Age Matters. J. Clin. Med. 2023, 12, 1698. [Google Scholar] [CrossRef] [PubMed]
- Hallward, G.; Hall, R. Priming Solutions for Cardiopulmonary Bypass Circuits. In Cardiopulmonary Bypass; Cambridge University: Cambridge, UK, 2009; pp. 36–40. [Google Scholar] [CrossRef]
- Kim, K.; Ball, C.; Grady, P.; Mick, S. Use of Del Nido Cardioplegia for Adult Cardiac Surgery at the Cleveland Clinic: Perfusion Implications. J. Extra. Corpor. Technol. 2014, 46, 317. [Google Scholar] [CrossRef]
- Malmqvist, G.; Claesson Lingehall, H.; Appelblad, M.; Svenmarker, S. Cardiopulmonary Bypass Prime Composition: Beyond Crystalloids versus Colloids. Perfusion 2018, 34, 130–135. [Google Scholar] [CrossRef]
- Dabrowski, W.; Siwicka-Gieroba, D.; Robba, C.; Bielacz, M.; Sołek-Pastuszka, J.; Kotfis, K.; Bohatyrewicz, R.; Jaroszyński, A.; Malbrain, M.L.N.G.; Badenes, R. Potentially Detrimental Effects of Hyperosmolality in Patients Treated for Traumatic Brain Injury. J. Clin. Med. 2021, 10, 4141. [Google Scholar] [CrossRef]
- Alsatli, R.A. Mini Cardiopulmonary Bypass: Anesthetic Considerations. Anesth. Essays. Res. 2012, 6, 10. [Google Scholar] [CrossRef]
- Momin, A.; Sharabiani, M.; Mulholland, J.; Yarham, G.; Reeves, B.; Anderson, J.; Angelini, G. Miniaturized Cardiopulmonary Bypass: The Hammersmith Technique. J. Cardiothorac. Surg. 2013, 8, 143. [Google Scholar] [CrossRef]
- Cheng, T.; Barve, R.; Cheng, Y.W.M.; Ravendren, A.; Ahmed, A.; Toh, S.; Goulden, C.J.; Harky, A. Conventional versus Miniaturized Cardiopulmonary Bypass: A Systematic Review and Meta-Analysis. JTCVS Open 2021, 8, 418. [Google Scholar] [CrossRef]
- Rauf, A.; Joshi, R.K.; Aggarwal, N.; Agarwal, M.; Kumar, M.; Dinand, V.; Joshi, R. Effect of Albumin Addition to Cardiopulmonary Bypass Prime on Outcomes in Children Undergoing Open-Heart Surgery (EACPO Study)—A Randomized Controlled Trial. World J. Pediatr. Congenit. Heart Surg. 2021, 12, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.A.; Navickis, R.J.; Wilkes, M.M. Albumin Versus Crystalloid for Pump Priming in Cardiac Surgery: Meta-Analysis of Controlled Trials. J. Cardiothorac. Vasc. Anesth. 2004, 18, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Munoz, A.C.; Jain, N.K.; Gupta, M. Albumin Colloid; StatPearls: Petersburg, FL, USA, 2023. [Google Scholar]
- Xiang, F.; Huang, F.; Huang, J.; Li, X.; Dong, N.; Xiao, Y.; Zhao, Q.; Xiao, L.; Zhang, H.; Zhang, C.; et al. Consensus Statement Quick Response Code: Expert Consensus on the Use of Human Serum Albumin in Adult Cardiac Surgery. Chin. Med. J. 2023, 136, 1135–1143. [Google Scholar] [CrossRef]
- Milford, E.M.; Reade, M.C. Resuscitation Fluid Choices to Preserve the Endothelial Glycocalyx. Crit. Care 2019, 23, 77. [Google Scholar] [CrossRef]
- Atherly-John, Y.C.; Cunningham, S.J.; Crain, E.F. A Randomized Trial of Oral vs Intravenous Rehydration in a Pediatric Emergency Department. Arch. Pediatr. Adolesc. Med. 2002, 156, 1240–1243. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, H.; Sasaki, T.; Fujita, H. Oral Rehydration Therapy for Preoperative Fluid and Electrolyte Management. Int. J. Med. Sci. 2011, 8, 501. [Google Scholar] [CrossRef]
- Dalal, K.S.; Rajwade, D.; Suchak, R. “Nil per Oral after Midnight”: Is It Necessary for Clear Fluids? Indian J. Anaesth. 2010, 54, 445. [Google Scholar] [CrossRef]
- CG174; Intravenous Fluid Therapy in Adults in Hospital, National Institute for Health and Care Excellence (NICE): London, UK, 2017.
- Scallan, J.; Huxley, V.H.; Korthuis, R.J. Fluid Movement Across the Endothelial Barrier; Morgan & Claypool Life Sciences: San Rafael, CA, USA, 2010. [Google Scholar]
- Hamada, Y.; Kawachi, K.; Tsunooka, N.; Nakamura, Y.; Takano, S.; Imagawa, H. Capillary Leakage in Cardiac Surgery with Cardiopulmonary Bypass. Asian Cardiovasc. Thorac. Ann. 2004, 12, 193–197. [Google Scholar] [CrossRef]
- Tassani, P.; Schad, H.; Winkler, C.; Bernhard, A.; Ettner, U.; Braun, S.L.; Eising, G.P.; Kochs, E.; Lange, R.; Richter, J.A. Capillary Leak Syndrome after Cardiopulmonary Bypass in Elective, Uncomplicated Coronary Artery Bypass Grafting Operations: Does It Exist? J. Thorac. Cardiovasc. Surg. 2002, 123, 735–741. [Google Scholar] [CrossRef]
- Hori, D.; Katz, N.M.; Fine, D.M.; Ono, M.; Barodka, V.M.; Lester, L.C.; Yenokyan, G.; Hogue, C.W. Defining Oliguria during Cardiopulmonary Bypass and Its Relationship with Cardiac Surgery–Associated Acute Kidney Injury. BJA Br. J. Anaesth. 2016, 117, 733. [Google Scholar] [CrossRef]
- Song, Y.; Kim, D.W.; Kwak, Y.L.; Kim, B.S.; Joo, H.M.; Ju, J.W.; Yoo, Y.C. Urine Output During Cardiopulmonary Bypass Predicts Acute Kidney Injury After Cardiac Surgery: A Single-Center Retrospective Analysis. Medicine 2016, 95, e3757. [Google Scholar] [CrossRef] [PubMed]
- Luckraz, H.; Giri, R.; Wrigley, B.; Nagarajan, K.; Senanayake, E.; Sharman, E.; Beare, L.; Nevill, A. Balanced Forced-diuresis as a Renal Protective Approach in Cardiac Surgery: Secondary Outcomes of Electrolyte Changes. J. Card Surg. 2021, 36, 4125. [Google Scholar] [CrossRef] [PubMed]
- Atan, R.; Crosbie, D.C.A.; Bellomo, R. Renal Failure Techniques of Extracorporeal Cytokine Removal: A Systematic Review of Human Studies Techniques of Extracorporeal Cytokine Removal: A Systematic Review of Human Studies. Ren. Fail 2013, 35, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Selewski, D.T.; Goldstein, S.L. The Role of Fluid Overload in the Prediction of Outcome in Acute Kidney Injury. Pediatr. Nephrol. 2018, 33, 13–24. [Google Scholar] [CrossRef]
- Yu, Y.; Li, C.; Zhu, S.; Jin, L.; Hu, Y.; Ling, X.; Miao, C.; Guo, K. Diagnosis, Pathophysiology and Preventive Strategies for Cardiac Surgery-Associated Acute Kidney Injury: A Narrative Review. Eur. J. Med. Res. 2023, 28, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Udzik, J.; Waszczyk, A.; Safranow, K.; Biskupski, A.; Majer, K.; Kwiatkowski, S.; Kwiatkowska, E. Assessment and Prognosis in CSA-AKI Using Novel Kidney Injury Biomarkers: A Prospective Observational Study. Biology 2021, 10, 823. [Google Scholar] [CrossRef]
- Kandil, O.A.; Motawea, K.R.; Darling, E.; Riley, J.B.; Shah, J.; Elashhat, M.A.M.; Searles, B.; Aiash, H. Ultrafiltration and Cardiopulmonary Bypass Associated Acute Kidney Injury: A Systematic Review and Meta-Analysis. Clin. Cardiol. 2021, 44, 1700–1708. [Google Scholar] [CrossRef]
- BM, M. The Risk-Adjusted Impact of Intraoperative Hemofiltration on Real-World Outcomes of Patients Undergoing Cardiac Surgery. J. Clin. Nephrol. 2017, 1, 1–10. [Google Scholar] [CrossRef]
- Khan, T.M.; Patel, R.; Siddiqui, A.H. Furosemide; StatPearls: Petersburg, FL, USA, 2023. [Google Scholar]
- Joannidis, M.; Klein, S.J.; Ostermann, M. 10 Myths about Frusemide. Intensiv. Care Med. 2019, 45, 545–548. [Google Scholar] [CrossRef]
- Ho, K.M.; Power, B.M. Benefits and Risks of Furosemide in Acute Kidney Injury. Anaesthesia 2010, 65, 283–293. [Google Scholar] [CrossRef]
- Fakhari, S.; Bavil, F.M.; Bilehjani, E.; Abolhasani, S.; Mirinazhad, M.; Naghipour, B. Prophylactic Furosemide Infusion Decreasing Early Major Postoperative Renal Dysfunction in On-Pump Adult Cardiac Surgery: A Randomized Clinical Trial. Res. Rep. Urol. 2017, 9, 5–13. [Google Scholar] [CrossRef]
- Heringlake, M.; Klaus, S.; Bahlmann, L.; Gosch, U.; Schumacher, J.; Schmucker, P. The Effects of a Single Dose of Furosemide on Urine Flow, Fluid Balance, and the Course of Plasma Creatinine during Cardiac Surgery. Crit. Care 2002, 6 (Suppl. S1). [Google Scholar] [CrossRef]
- Mahesh, B.; Yim, B.; Robson, D.; Pillai, R.; Ratnatunga, C.; Pigott, D. Does Furosemide Prevent Renal Dysfunction in High-Risk Cardiac Surgical Patients? Results of a Double-Blinded Prospective Randomised Trial. Eur. J. Cardio-Thorac. Surg. 2008, 33, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, A.; Husain, M.; Salhiyyah, K.; Raja, S.G. Does Perioperative Furosemide Usage Reduce the Need for Renal Replacement Therapy in Cardiac Surgery Patients? Interact Cardiovasc. Thorac. Surg. 2012, 15, 750–755. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, L.; Fan, G.; Liu, Z.; Wang, Z.; Chang, B. Preoperative Use of Furosemide May Increase the Incidence of Acute Kidney Injury after Coronary Artery Bypass Grafting: A Propensity Score-Matched Study. Gen. Thorac. Cardiovasc. Surg. 2021, 69, 1392–1399. [Google Scholar] [CrossRef] [PubMed]
- Diegeler, A.; Doll, N.; Rauch, T.; Haberer, D.; Walther, T.; Falk, V.; Gummert, J.; Autschbach, R.; Mohr, F.-W. Humoral Immune Response During Coronary Artery Bypass Grafting. Circulation 2000, 102 (Suppl. S3), iii-95. [Google Scholar] [CrossRef]
- Rossaint, J.; Berger, C.; van Aken, H.; Scheld, H.H.; Zahn, P.K.; Rukosujew, A.; Zarbock, A. Cardiopulmonary Bypass during Cardiac Surgery Modulates Systemic Inflammation by Affecting Different Steps of the Leukocyte Recruitment Cascade. PLoS ONE 2012, 7, e45738. [Google Scholar] [CrossRef] [PubMed]
- Warltier, D.C.; Laffey, J.G.; Boylan, J.F.; Cheng, D.C. The Systemic Inflammatory Response to Cardiac SurgeryImplications for the Anesthesiologist. Anesthesiology 2002, 97, 215–252. [Google Scholar] [CrossRef]
- Squiccimarro, E.; Stasi, A.; Lorusso, R.; Paparella, D. Narrative Review of the Systemic Inflammatory Reaction to Cardiac Surgery and Cardiopulmonary Bypass. Artif. Organs. 2022, 46, 568–577. [Google Scholar] [CrossRef]
- Milne, B.; Gilbey, T.; De Somer, F.; Kunst, G. Adverse Renal Effects Associated with Cardiopulmonary Bypass. Perfusion 2023, 02676591231157055. [Google Scholar] [CrossRef]
- Presta, P.; Bolignano, D.; Coppolino, G.; Serraino, F.; Mastroroberto, P.; Andreucci, M.; Fuiano, G. Antecedent ACE-Inhibition, Inflammatory Response, and Cardiac Surgery Associated Acute Kidney Injury. Rev. Cardiovasc. Med. 2021, 22, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Cowled, P.; Fitridge, R. Pathophysiology of Reperfusion Injury. In Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists; Cambridge University Press: Cambridge, UK, 2011; pp. 331–350. [Google Scholar] [CrossRef]
- Linfert, D.; Chowdhry, T.; Rabb, H. Lymphocytes and Ischemia-Reperfusion Injury. Transpl. Rev. 2009, 23, 1. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.O.S.; Losada, D.M.; Jordani, M.C.; Évora, P.; Castro-E-Silva, O. Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies. Int. J. Mol. Sci. 2019, 20, 5034. [Google Scholar] [CrossRef] [PubMed]
- Malek, M.; Nematbakhsh, M. Renal Ischemia/Reperfusion Injury; from Pathophysiology to Treatment. J. Ren. Inj. Prev. 2015, 4, 20. [Google Scholar] [CrossRef]
- Hein, E.; Munthe-Fog, L.; Thiara, A.S.; Fiane, A.E.; Mollnes, T.E.; Garred, P. Heparin-Coated Cardiopulmonary Bypass Circuits Selectively Deplete the Pattern Recognition Molecule Ficolin-2 of the Lectin Complement Pathway in Vivo. Clin. Exp. Immunol. 2015, 179, 294–299. [Google Scholar] [CrossRef]
- Borges, J.P.; da Silva Verdoorn, K. Cardiac Ischemia/Reperfusion Injury: The Beneficial Effects of Exercise. Adv. Exp. Med. Biol. 2017, 999, 155–179. [Google Scholar] [CrossRef]
- Bronicki, R.A.; Hall, M. Cardiopulmonary Bypass-Induced Inflammatory Response: Pathophysiology and Treatment. Pediatr. Crit. Care Med. 2016, 17, S272–S278. [Google Scholar] [CrossRef]
- Kant, S.; Banerjee, D.; Sabe, S.A.; Sellke, F.; Feng, J. Microvascular Dysfunction Following Cardiopulmonary Bypass Plays a Central Role in Postoperative Organ Dysfunction. Front. Med. 2023, 10, 1110532. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udzik, J.; Pacholewicz, J.; Biskupski, A.; Walerowicz, P.; Januszkiewicz, K.; Kwiatkowska, E. Alterations to Kidney Physiology during Cardiopulmonary Bypass—A Narrative Review of the Literature and Practical Remarks. J. Clin. Med. 2023, 12, 6894. https://doi.org/10.3390/jcm12216894
Udzik J, Pacholewicz J, Biskupski A, Walerowicz P, Januszkiewicz K, Kwiatkowska E. Alterations to Kidney Physiology during Cardiopulmonary Bypass—A Narrative Review of the Literature and Practical Remarks. Journal of Clinical Medicine. 2023; 12(21):6894. https://doi.org/10.3390/jcm12216894
Chicago/Turabian StyleUdzik, Jakub, Jerzy Pacholewicz, Andrzej Biskupski, Paweł Walerowicz, Kornelia Januszkiewicz, and Ewa Kwiatkowska. 2023. "Alterations to Kidney Physiology during Cardiopulmonary Bypass—A Narrative Review of the Literature and Practical Remarks" Journal of Clinical Medicine 12, no. 21: 6894. https://doi.org/10.3390/jcm12216894
APA StyleUdzik, J., Pacholewicz, J., Biskupski, A., Walerowicz, P., Januszkiewicz, K., & Kwiatkowska, E. (2023). Alterations to Kidney Physiology during Cardiopulmonary Bypass—A Narrative Review of the Literature and Practical Remarks. Journal of Clinical Medicine, 12(21), 6894. https://doi.org/10.3390/jcm12216894