Dynapenia and Sarcopenia in Post-COVID-19 Syndrome Hospitalized Patients Are Associated with Severe Reduction in Pulmonary Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Outcome Measures
2.2. Anthropometry
2.3. Handgrip Strength
2.4. Body Composition
2.5. Body Composition Classification
2.6. Pulmonary Function
2.7. Respiratory Muscle Strength
2.8. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, W.; Hillman, T.; Playford, E.D.; Hishmeh, L. Managing the long term effects of COVID-19: Summary of NICE, SIGN, and RCGP rapid guideline. BMJ 2021, 372, n136. [Google Scholar] [CrossRef]
- Huang, Y.; Tan, C.; Wu, J.; Chen, M.; Wang, Z.; Luo, L.; Zhou, X.; Liu, X.; Huang, X.; Yuan, S.; et al. Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respir. Res. 2020, 21, 163. [Google Scholar] [CrossRef]
- Cortés-Telles, A.; López-Romero, S.; Figueroa-Hurtado, E.; Pou-Aguilar, Y.N.; Wong, A.W.; Milne, K.M.; Ryerson, C.J.; Guenette, J.A. Pulmonary function and functional capacity in COVID-19 survivors with persistent dyspnoea. Respir. Physiol. Neurobiol. 2021, 288, 103644. [Google Scholar] [CrossRef]
- Schünemann, H.J.; Dorn, J.; Grant, B.J.; Winkelstein, W., Jr.; Trevisan, M. Pulmonary function is a long-term predictor of mortality in the general population: 29-year follow-up of the Buffalo Health Study. Chest 2000, 118, 656–664. [Google Scholar] [CrossRef]
- Suzuki, M.; Makita, H.; Ito, Y.M.; Nagai, K.; Konno, S.; Nishimura, M. Clinical features and determinants of COPD exacerbation in the Hokkaido COPD cohort study. Eur. Respir. J. 2014, 43, 1289–1297. [Google Scholar] [CrossRef]
- Liu, X.; Li, P.; Wang, Z.; Lu, Y.; Li, N.; Xiao, L.; Duan, H.; Wang, Z.; Li, J.; Shan, C.; et al. Evaluation of isokinetic muscle strength of upper limb and the relationship with pulmonary function and respiratory muscle strength in stable COPD patients. Int. J. Chron. Obstruct. Pulmon. Dis. 2019, 14, 2027–2036. [Google Scholar] [CrossRef]
- Langen, R.C.; Gosker, H.R.; Remels, A.H.; Schols, A.M. Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease. Int. J. Biochem. Cell Biol. 2013, 45, 2245–2256. [Google Scholar] [CrossRef]
- Strasser, B.; Volaklis, K.; Fuchs, D.; Burtscher, M. Role of Dietary Protein and Muscular Fitness on Longevity and Aging. Aging Dis. 2018, 9, 119–132. [Google Scholar] [CrossRef]
- Prado, C.M.; Purcell, S.A.; Alish, C.; Pereira, S.L.; Deutz, N.E.; Heyland, D.K.; Goodpaster, B.H.; Tappenden, K.A.; Heymsfield, S.B. Implications of low muscle mass across the continuum of care: A narrative review. Ann. Med. 2018, 50, 675–693. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, W.; Liu, T.; Zhang, D. Association of Grip Strength With Risk of All-Cause Mortality, Cardiovascular Diseases, and Cancer in Community-Dwelling Populations: A Meta-analysis of Prospective Cohort Studies. J. Am. Med. Dir. Assoc. 2017, 18, 551.e17–551.e35. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Cavero-Redondo, I.; Ramírez-Vélez, R.; Ruiz, J.R.; Ortega, F.B.; Lee, D.C.; Martínez-Vizcaíno, V. Muscular Strength as a Predictor of All-Cause Mortality in an Apparently Healthy Population: A Systematic Review and Meta-Analysis of Data From Approximately 2 Million Men and Women. Arch. Phys. Med. Rehabil. 2018, 99, 2100–2113.e5. [Google Scholar] [CrossRef]
- La Via, L.; Dezio, V.; Santonocito, C.; Astuto, M.; Morelli, A.; Huang, S.; Vieillard-Baron, A.; Sanfilippo, F. Full and simplified assessment of left ventricular diastolic function in covid-19 patients admitted to ICU: Feasibility, incidence, and association with mortality. Echocardiography 2022, 39, 1391–1400. [Google Scholar] [CrossRef]
- Huang, S.; Vieillard-Baron, A.; Evrard, B.; Prat, G.; Chew, M.S.; Balik, M.; Clau-Terré, F.; De Backer, D.; Mekontso Dessap, A.; Orde, S.; et al. Echocardiography phenotypes of right ventricular involvement in COVID-19 ARDS patients and ICU mortality: Post-hoc (exploratory) analysis of repeated data from the ECHO-COVID study. Intensive Care Med. 2023, 49, 946–956. [Google Scholar] [CrossRef]
- Jochem, C.; Leitzmann, M.; Volaklis, K.; Aune, D.; Strasser, B. Association Between Muscular Strength and Mortality in Clinical Populations: A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2019, 20, 1213–1223. [Google Scholar] [CrossRef]
- Short, K.R.; Bigelow, M.L.; Kahl, J.; Singh, R.; Coenen-Schimke, J.; Raghavakaimal, S.; Nair, K.S. Decline in skeletal muscle mitochondrial function with aging in humans. Proc. Natl. Acad. Sci. USA 2005, 102, 5618–5623. [Google Scholar] [CrossRef]
- Burtscher, M. Exercise limitations by the oxygen delivery and utilization systems in aging and disease: Coordinated adaptation and deadaptation of the lung-heart muscle axis—A mini-review. Gerontology 2013, 59, 289–296. [Google Scholar] [CrossRef]
- Distefano, G.; Standley, R.A.; Dubé, J.J.; Carnero, E.A.; Ritov, V.B.; Stefanovic-Racic, M.M.; Toledo, F.G.; Piva, S.R.; Goodpaster, B.H.; Coen, P.M. Chronological Age Does not Influence Ex-vivo Mitochondrial Respiration and Quality Control in Skeletal Muscle. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2017, 72, 535–542. [Google Scholar]
- Wischmeyer, P.E.; Puthucheary, Z.; Millán, I.S.; Butz, D.; Grocott, M.P.W. Muscle mass and physical recovery in ICU: Innovations for targeting of nutrition and exercise. Curr. Opin. Crit. Care 2017, 23, 269–278. [Google Scholar] [CrossRef]
- Bateman, R.M.; Sharpe, M.D.; Jagger, J.E.; Ellis, C.G.; Solé-Violán, J.; López-Rodríguez, M.; Herrera-Ramos, E.; Ruíz-Hernández, J.; Borderías, L.; Horcajada, J.; et al. 36th International Symposium on Intensive Care and Emergency Medicine: Brussels, Belgium. 15–18 March 2016. Crit. Care 2016, 20 (Suppl. 2), 94. [Google Scholar] [CrossRef]
- Park, C.H.; Yi, Y.; Do, J.G.; Lee, Y.T.; Yoon, K.J. Relationship between skeletal muscle mass and lung function in Korean adults without clinically apparent lung disease. Medicine 2018, 97, e12281. [Google Scholar] [CrossRef]
- Bahat, G.; Tufan, A.; Ozkaya, H.; Tufan, F.; Akpinar, T.S.; Akin, S.; Bahat, Z.; Kaya, Z.; Kiyan, E.; Erten, N.; et al. Relation between hand grip strength, respiratory muscle strength and spirometric measures in male nursing home residents. Aging Male Off. J. Int. Soc. Study Aging Male 2014, 17, 136–140. [Google Scholar] [CrossRef]
- Maddocks, M.; Kon, S.S.; Jones, S.E.; Canavan, J.L.; Nolan, C.M.; Higginson, I.J.; Gao, W.; Polkey, M.I.; Man, W.D. Bioelectrical impedance phase angle relates to function, disease severity and prognosis in stable chronic obstructive pulmonary disease. Clin. Nutr. 2015, 34, 1245–1250. [Google Scholar] [CrossRef] [PubMed]
- de Blasio, F.; Scalfi, L.; Di Gregorio, A.; Alicante, P.; Bianco, A.; Tantucci, C.; Bellofiore, B.; de Blasio, F. Raw Bioelectrical Impedance Analysis Variables Are Independent Predictors of Early All-Cause Mortality in Patients with COPD. Chest 2019, 155, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Wehrmeister, F.C.; Menezes, A.M.B.; Muniz, L.C.; Martínez-Mesa, J.; Domingues, M.R.; Horta, B.L. Waist circumference and pulmonary function: A systematic review and meta-analysis. Syst. Rev. 2012, 1, 55. [Google Scholar] [CrossRef]
- Pan, J.; Xu, L.; Lam, T.H.; Jiang, C.Q.; Zhang, W.S.; Jin, Y.L.; Zhu, F.; Zhu, T.; Thomas, G.N.; Cheng, K.K.; et al. Association of adiposity with pulmonary function in older Chinese: Guangzhou Biobank Cohort Study. Respir. Med. 2017, 132, 102–108. [Google Scholar] [CrossRef]
- Martinez-Arnau, F.M.; Buigues, C.; Fonfría-Vivas, R.; Cauli, O. Respiratory Function Correlates with Fat Mass Index and Blood Triglycerides in Institutionalized Older Individuals. Endocr. Metab. Immune. Disord. Drug Targets 2022, 2, 1029–1039. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Chicago, IL, USA, 1988. [Google Scholar]
- Rodríguez-García, W.D.; García-Castañeda, L.; Orea-Tejeda, A.; Mendoza-Núñez, V.; González-Islas, D.G.; Santillán-Díaz, C.; Castillo-Martínez, L. Handgrip strength: Reference values and its relationship with bioimpedance and anthropometric variables. Clin. Nutr. ESPEN 2017, 19, 54–58. [Google Scholar] [CrossRef]
- Lukaski, H.C.; Johnson, P.E.; Bolonchuk, W.W.; Lykken, G.I. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am. J. Clin. Nutr. 1985, 41, 810–817. [Google Scholar] [CrossRef]
- Sergi, G.; De Rui, M.; Veronese, N.; Bolzetta, F.; Berton, L.; Carraro, S.; Bano, G.; Coin, A.; Manzato, E.; Perissinotto, E. Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clin. Nutr. 2015, 34, 667–673. [Google Scholar] [CrossRef]
- Batsis, J.A.; Mackenzie, T.A.; Emeny, R.T.; Lopez-Jimenez, F.; Bartels, S.J. Low Lean Mass With and Without Obesity, and Mortality: Results From the 1999-2004 National Health and Nutrition Examination Survey. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2017, 72, 1445–1451. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef] [PubMed]
- Hankinson, J.L.; Odencrantz, J.R.; Fedan, K.B. Spirometric reference values from a sample of the general U.S. population. Am. J. Respir. Crit. Care Med. 1999, 159, 179–187. [Google Scholar] [CrossRef]
- Kera, T.; Kawai, H.; Hirano, H.; Kojima, M.; Watanabe, Y.; Motokawa, K.; Fujiwara, Y.; Ihara, K.; Kim, H.; Obuchi, S. Definition of Respiratory Sarcopenia With Peak Expiratory Flow Rate. J. Am. Med. Dir. Assoc. 2019, 20, 1021–1025. [Google Scholar] [CrossRef]
- ATS/ERS Statement on respiratory muscle testing. Am. J. Respir. Crit. Care Med. 2002, 166, 518–624. [CrossRef]
- Cornejo-Pareja, I.; Soler-Beunza, A.G.; Vegas-Aguilar, I.M.; Fernández-Jiménez, R.; Tinahones, F.J.; García-Almeida, J.M. Predictors of Sarcopenia in Outpatients with Post-Critical SARS-CoV2 Disease. Nutritional Ultrasound of Rectus Femoris Muscle, a Potential Tool. Nutrients 2022, 14, 4988. [Google Scholar] [CrossRef]
- Steinbeis, F.; Thibeault, C.; Doellinger, F.; Ring, R.M.; Mittermaier, M.; Ruwwe-Glösenkamp, C.; Alius, F.; Knape, P.; Meyer, H.J.; Lippert, L.J.; et al. Severity of respiratory failure and computed chest tomography in acute COVID-19 correlates with pulmonary function and respiratory symptoms after infection with SARS-CoV-2: An observational longitudinal study over 12 months. Respir. Med. 2022, 191, 106709. [Google Scholar] [CrossRef]
- Pinto, F.C.S.; Andrade, M.F.; Gatti da Silva, G.H.; Faiad, J.Z.; Barrére, A.P.N.; Gonçalves, R.C.; de Castro, G.S.; Seelaender, M. Function Over Mass: A Meta-Analysis on the Importance of Skeletal Muscle Quality in COVID-19 Patients. Front. Nutr. 2022, 9, 837719. [Google Scholar] [CrossRef] [PubMed]
- Izawa, K.P.; Watanabe, S.; Oka, K.; Kasahara, Y.; Morio, Y.; Hiraki, K.; Hirano, Y.; Omori, Y.; Suzuki, N.; Kida, K.; et al. Respiratory muscle strength in relation to sarcopenia in elderly cardiac patients. Aging Clin. Exp. Res. 2016, 28, 1143–1148. [Google Scholar] [CrossRef]
- Soares, L.A.; Lima, L.P.; Prates, A.C.N.; Arrieiro, A.N.; Teixeira, L.A.D.C.; Duarte, T.C.; Dos Santos, J.M.; da Silva Lage, V.K.; de Paula, F.A.; Costa, H.S.; et al. Accuracy of handgrip and respiratory muscle strength in identifying sarcopenia in older, community-dwelling, Brazilian women. Sci. Rep. 2023, 13, 1553. [Google Scholar] [CrossRef]
- Puthucheary, Z.A.; Astin, R.; McPhail, M.J.W.; Saeed, S.; Pasha, Y.; Bear, D.E.; Constantin, D.; Velloso, C.; Manning, S.; Calvert, L.; et al. Metabolic phenotype of skeletal muscle in early critical illness. Thorax 2018, 73, 926–935. [Google Scholar] [CrossRef]
- Volaklis, K.A.; Halle, M.; Koenig, W.; Oberhoffer, R.; Grill, E.; Peters, A.; Strasser, B.; Heier, M.; Emeny, R.; Schulz, H.; et al. Association between muscular strength and inflammatory markers among elderly persons with cardiac disease: Results from the KORA-Age study. Clin. Res. Cardiol. Off. J. Ger. Card. Soc. 2015, 104, 982–989. [Google Scholar] [CrossRef]
- Hawkins, R.B.; Raymond, S.L.; Stortz, J.A.; Horiguchi, H.; Brakenridge, S.C.; Gardner, A.; Efron, P.A.; Bihorac, A.; Segal, M.; Moore, F.A.; et al. Chronic Critical Illness and the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome. Front. Immunol. 2018, 9, 1511. [Google Scholar] [CrossRef]
- Jeune, B.; Skytthe, A.; Cournil, A.; Greco, V.; Gampe, J.; Berardelli, M.; Andersen-Ranberg, K.; Passarino, G.; Debenedictis, G.; Robine, J.M. Handgrip strength among nonagenarians and centenarians in three European regions. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 707–712. [Google Scholar] [CrossRef]
- Ji, Z.; de Miguel-Díez, J.; Castro-Riera, C.R.; Bellón-Cano, J.M.; Gallo-González, V.; Girón-Matute, W.I.; Jiménez-García, R.; López-de Andrés, A.; Moya-Álvarez, V.; Puente-Maestu, L.; et al. Differences in the Outcome of Patients with COPD according to Body Mass Index. J. Clin. Med. 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Tieland, M.; Trouwborst, I.; Clark, B.C. Skeletal muscle performance and ageing. J. Cachexia Sarcopenia Muscle 2018, 9, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.I.; Kim, D.-K.; Seo, K.M.; Kang, S.H.; Lee, S.Y.; Son, S. Relation Between Respiratory Muscle Strength and Skeletal Muscle Mass and Hand Grip Strength in the Healthy Elderly. Ann. Rehabil. Med. 2017, 41, 686–692. [Google Scholar] [CrossRef]
- Nagano, A.; Wakabayashi, H.; Maeda, K.; Kokura, Y.; Miyazaki, S.; Mori, T.; Fujiwara, D. Respiratory Sarcopenia and Sarcopenic Respiratory Disability: Concepts, Diagnosis, and Treatment. J. Nutr. Health Aging 2021, 25, 507–515. [Google Scholar] [CrossRef]
- Martínez-Luna, N.; Orea-Tejeda, A.; González-Islas, D.; Flores-Cisneros, L.; Keirns-Davis, C.; Sánchez-Santillán, R.; Pérez-García, I.; Gastelum-Ayala, Y.; Martínez-Vázquez, V.; Martínez-Reyna, Ó. Association between body composition, sarcopenia and pulmonary function in chronic obstructive pulmonary disease. BMC Pulm. Med. 2022, 22, 106. [Google Scholar] [CrossRef]
- Bocchino, M.; Alicante, P.; Capitelli, L.; Stanziola, A.A.; Gallotti, L.; Di Gregorio, A.; Rea, G.; Sanduzzi Zamparelli, A.; Scalfi, L. Dynapenia is highly prevalent in older patients with advanced idiopathic pulmonary fibrosis. Sci. Rep. 2021, 11, 17884. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.K.; Shin, M.J.; Kim, M.H.; Mok, J.H.; Kim, S.S.; Kim, B.H.; Kim, S.J.; Kim, Y.K.; Chang, J.H.; Shin, Y.B.; et al. Low pulmonary function is related with a high risk of sarcopenia in community-dwelling older adults: The Korea National Health and Nutrition Examination Survey (KNHANES) 2008-2011. Osteoporos Int. 2015, 26, 2423–2429. [Google Scholar] [CrossRef]
- Kera, T.; Kawai, H.; Hirano, H.; Kojima, M.; Fujiwara, Y.; Ihara, K.; Obuchi, S. Relationships among peak expiratory flow rate, body composition, physical function, and sarcopenia in community-dwelling older adults. Aging Clin. Exp. Res. 2018, 30, 331–340. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, D.; Ge, Z.; Yan, M.; Wu, N.; Liu, Y. Body mass index of patients with chronic obstructive pulmonary disease is associated with pulmonary function and exacerbations: A retrospective real world research. J. Thorac. Dis. 2018, 10, 5086–5099. [Google Scholar] [CrossRef] [PubMed]
- Gruberg, L.; Weissman, N.J.; Waksman, R.; Fuchs, S.; Deible, R.; Pinnow, E.E.; Ahmed, L.M.; Kent, K.M.; Pichard, A.D.; Suddath, W.O.; et al. The impact of obesity on the short-term and long-term outcomes after percutaneous coronary intervention: The obesity paradox? J. Am. Coll. Cardiol. 2002, 39, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Carnethon, M.R.; De Chavez, P.J.; Biggs, M.L.; Lewis, C.E.; Pankow, J.S.; Bertoni, A.G.; Golden, S.H.; Liu, K.; Mukamal, K.J.; Campbell-Jenkins, B.; et al. Association of weight status with mortality in adults with incident diabetes. JAMA 2012, 308, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Polla, B.; D'Antona, G.; Bottinelli, R.; Reggiani, C. Respiratory muscle fibres: Specialisation and plasticity. Thorax 2004, 59, 808–817. [Google Scholar] [CrossRef]
- Yang, Q.; Chan, P. Skeletal Muscle Metabolic Alternation Develops Sarcopenia. Aging Dis. 2022, 13, 801–814. [Google Scholar] [CrossRef]
- Tosato, M.; Calvani, R.; Ciciarello, F.; Galluzzo, V.; Martone, A.M.; Zazzara, M.B.; Pais, C.; Savera, G.; Robles, M.C.; Ramirez, M.; et al. Malnutrition in COVID-19 survivors: Prevalence and risk factors. Aging Clin. Exp. Res. 2023, 35, 2257–2265. [Google Scholar] [CrossRef]
- Di Filippo, L.; De Lorenzo, R.; D'Amico, M.; Sofia, V.; Roveri, L.; Mele, R.; Saibene, A.; Rovere-Querini, P.; Conte, C. COVID-19 is associated with clinically significant weight loss and risk of malnutrition, independent of hospitalisation: A post-hoc analysis of a prospective cohort study. Clin. Nutr. 2021, 40, 2420–2426. [Google Scholar] [CrossRef]
- Tosato, M.; Calvani, R.; Picca, A.; Ciciarello, F.; Galluzzo, V.; Coelho-Júnior, H.J.; Di Giorgio, A.; Di Mario, C.; Gervasoni, J.; Gremese, E. Effects of l-Arginine Plus Vitamin C Supplementation on Physical Performance, Endothelial Function, and Persistent Fatigue in Adults with Long COVID: A Single-Blind Randomized Controlled Trial. Nutrients 2022, 14, 4984. [Google Scholar] [CrossRef]
- Wu, H.; Xia, Y.; Jiang, J.; Du, H.; Guo, X.; Liu, X.; Li, C.; Huang, G.; Niu, K. Effect of beta-hydroxy-beta-methylbutyrate supplementation on muscle loss in older adults: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2015, 61, 168–175. [Google Scholar] [CrossRef]
- Bear, D.E.; Langan, A.; Dimidi, E.; Wandrag, L.; Harridge, S.D.R.; Hart, N.; Connolly, B.; Whelan, K. β-Hydroxy-β-methylbutyrate and its impact on skeletal muscle mass and physical function in clinical practice: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2019, 109, 1119–1132. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Christoph, M.; Hoffmann, G. Effects of Olive Oil on Markers of Inflammation and Endothelial Function-A Systematic Review and Meta-Analysis. Nutrients 2015, 7, 7651–7675. [Google Scholar] [CrossRef] [PubMed]
- George, E.S.; Marshall, S.; Mayr, H.L.; Trakman, G.L.; Tatucu-Babet, O.A.; Lassemillante, A.M.; Bramley, A.; Reddy, A.J.; Forsyth, A.; Tierney, A.C.; et al. The effect of high-polyphenol extra virgin olive oil on cardiovascular risk factors: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2019, 59, 2772–2795. [Google Scholar] [CrossRef]
- Manifield, J.; Winnard, A.; Hume, E.; Armstrong, M.; Baker, K.; Adams, N.; Vogiatzis, I.; Barry, G. Inspiratory muscle training for improving inspiratory muscle strength and functional capacity in older adults: A systematic review and meta-analysis. Age Ageing. 2021, 50, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, M.; Forget, P.; Couturaud, F.; Reychler, G. Effects of inspiratory muscle training in COPD patients: A systematic review and meta-analysis. Clin. Respir. J. 2018, 12, 2178–2188. [Google Scholar] [CrossRef]
Normal Weight n = 88, 12.4% | Dynapenia without Obesity n = 90, 12.6% | Sarcopenia without Obesity n = 59, 8.3% | Obesity n = 296, 41.6% | Dynapenic Obesity n = 151, 21.2% | Sarcopenic Obesity n = 27, 3.8% | p-Value between Groups | |
---|---|---|---|---|---|---|---|
Age, years | 53.5 ± 12.8 | 61.2 ± 11.2 †‡ | 64.1 ± 13.4 †‡¶ | 48.2 ± 11.30 † | 54.6 ± 12.4 ‡§ | 59.6 ± 14.4 ‡ | <0.001 |
Male, n (%) | 65 (73.8) | 70 (77.7) | 30 (50.8) | 184 (62.1) | 88 (58.2) | 18 (66.6) | 0.003 |
Comorbidities | |||||||
Diabetes, n (%) | 24 (27.2) | 46 (51.1) | 25 (42.3) | 82 (27.7) | 57 (37.7) | 8 (29.6) | <0.001 |
Hypertension, n (%) | 24 (27.2) | 39 (43.3) | 26 (44.1) | 99 (33.4) | 69 (45.7) | 10 (37.0) | 0.026 |
Obesity, n (%) | 0 (0) | 0 (0) | 0 (0) | 216 (72.9) | 110 (72.8) | 1 (3.7) | <0.001 |
Ischemic cardiopathy, n (%) | 5 (5.6) | 9 (10) | 5 (8.4) | 16 (5.4) | 14 (9.2) | 2 (7.4) | 0.562 |
Pulmonary disease, n (%) | 11 (12.5) | 16 (17.7) | 10 (16.9) | 41 (13.8) | 30 (19.8) | 3 (11.1) | 0.516 |
Thyroid disease, n (%) | 6 (6.8) | 4 (4.4) | 4 (6.7) | 14 (4.7) | 12 (7.9) | 2 (7.4) | 0.771 |
Hepatopathy, n (%) | 2 (2.2) | 1 (1.1) | 0 (0) | 6 (2.0) | 8 (5.3) | 1 (3.7) | 0.190 |
HIV, n (%) | 0 (0) | 2 (2.2) | 2 (3.4) | 3 (1.0) | 2 (1.3) | 0 (0) | 0.491 |
Asthma, n (%) | 2 (2.2) | 1 (1.1) | 0 (0) | 13 (4.4) | 6 (3.9) | 2 (7.4) | 0.282 |
COPD, n (%) | 0 (0) | 1 (1.1) | 3 (5.1) | 4 (1.3) | 1 (0.6) | 2 (7.4) | 0.021 |
CCI > 4, n (%) | 4 (4.5) | 21 (23.3) | 17 (28.8) | 14 (4.7) | 19 (12.6) | 8 (29.6) | <0.001 |
Hospital parameters | |||||||
Length of hospital stay, d, median [IQR] | 12.5 (0.5–21) | 19 (10–33) † | 27 (15–48) †‡ | 14 (8–23) | 23 (13–35) †‡ | 26 (12–46) †‡ | <0.001 |
VMI, n (%) | 38 (44.2) | 62 (68.9) | 41 (69.5) | 157 (53.2) | 116 (77.3) | 22 (81.5) | <0.001 |
Normal Weight n = 88 | Dynapenia without Obesity n = 90 | Sarcopenia without Obesity n = 59 | Obesity n = 296 | Dynapenic Obesity n = 151 | Sarcopenic Obesity n = 27 | p-Value between Groups | |
---|---|---|---|---|---|---|---|
Spirometry | |||||||
Pre-bronchodilator ** | |||||||
FEV1, L | 2.9 ± 0.6 | 2.4 ± 0.6 †‡ | 2.2 ± 0.7 †‡ | 2.9 ± 0.7 | 2.4 ± 0.7 †‡ | 2.3 ± 0.7 †‡ | <0.001 |
FEV1, % | 97.1 (86.2–105) | 92.5 (78–103.3) | 89.7 (77.5–103.8) | 93.2 (84.1–102.2) | 88.3 (75.3–102.9) † | 89.5 (75.6–102.2) | 0.018 |
FVC, L | 3.7 ± 0.8 | 3 ± 0.7 †‡ | 2.6 ± 0.8 †‡ | 3.6 ± 0.8 | 3 ± 0.8 †‡ | 2.9 ± 0.9 †‡ | <0.001 |
FVC, % | 91.9 ± 14.8 | 84.8 ± 17.8 | 83.6 ± 21.1 | 90.7 ± 17.9 | 86 ± 18.4 | 81.5 ± 21.5 | 0.001 |
MEF 25–75, % | 3.4 ± 1.2 | 2.9 ± 1.1 | 3 ± 1.3 | 3.3 ± 1.1 | 2.8 ± 1 †‡ | 3.2 ± 1.2 | <0.001 |
PEF, % | 115.4 ± 10.5 | 101.9 ± 24.2† | 97.52 ± 27.6 †‡ | 109.5 ± 21.0 | 102.0 ± 24.1 †‡ | 102.2 ± 23.2 | <0.001 |
FEV1/FVC | 0.8 ± 0.5 | 0.8 ± 0.0 | 0.8 ± 0.0 | 0.8 ± 0.0 | 0.8 ± 0.0 | 0.8 ± 0.0 | 0.220 |
Post-bronchodilator ** | |||||||
FEV1, L | 3 ± 0.6 | 2.5 ± 0.5 †‡ | 2.2 ± 0.7 †‡ | 2.9 ± 0.7 | 2.5 ± 0.7 †‡ | 2.4 ± 0.7 †‡ | <0.001 |
FEV1, % | 99.9 (88.6–108.4) | 92.1 (80.7–103.6) | 94.9 (80.2–105.8) | 94.7 (85–104) | 92.7 (79.7–103) † | 92.5 (77.3–103.2) | 0.040 |
FVC, L | 3.7 ± 0.8 | 3 ± 0.7 †‡ | 2.7 ± 0.9 †‡ | 3.5 ± 0.8 | 3.1 ± 0.8 †‡ | 2.9 ± 0.9 †‡ | <0.001 |
FVC, % | 90.8 (83.4–100.4) | 86.5 (72.8–96.4) † | 84.3 (68.9–95.8) | 80.9 (80.3–97.2) | 85.9 (74.5–96.6) | 86 (69.5–95.2) | 0.007 |
MEF 25–75, % | 3.7 ± 1.2 | 3.1 ± 1.1 ‡ | 3.3 ± 1.5 | 3.7 ± 1.3 | 3.2 ± 1.1 ‡ | 3.4 ± 1.3 | <0.001 |
PEF, % | 117.1 ± 21.9 | 104.5 ± 25.4 † | 93.6 ± 29.1 †‡¶ | 111.5 ± 21.4 | 106.6 ± 25.6 † | 105.5 ± 27.9 | <0.001 |
FEV1/FVC | 0.82 [0.7–0.8] | 0.82 [0.7–0.9] | 0.86 [0.8–0.9] †‡§¶ | 0.83 [0.8–0.7] | 0.83 [0.7–0.8] | 0.84 [0.8–0.9] | 0.007 |
Other pulmonary test | |||||||
DLCO, % ** | 78.9 ± 19.1 | 67.4 ± 20.6 †‡ | 54.5 ± 22.2 †‡§¶ | 77.9 ± 21.3 | 68.9 ± 23.4 †‡ | 64.5 ± 29.8 ‡ | <0.001 |
MIP, cmH2O | 106.1 ± 25.5 | 87.9 ± 22.8 †‡ | 75.3 ± 26.3 †‡ | 102.6 ± 25.8 | 86.6 ± 26.1 †‡ | 79.2 ± 35 †‡ | <0.001 |
MEP, cmH2O | 132.1 ± 35.1 | 107.3 ± 28.8 †‡ | 87.8 ± 36.4 †‡¶ | 127.3 ± 36.6 | 112.7 ± 36.5 †‡ | 97.6 ± 35.2 †‡ | <0.001 |
6MWT, mts | 502.5 ± 85.8 | 429.4 ± 113.9 †‡ | 413.9 ± 93.9 †‡ | 488.6 ± 101.6 | 407.4 ± 114.4 †‡ | 460.4 ± 104 | <0.001 |
Respiratory muscle weakness, n (%) | 0 (0) | 4 (4.8) | 7 (13.2) | 4 (1.5) | 5 (3.5) | 1 (4.2) | <0.001 |
Crude Model | Adjusted Model | |||||
---|---|---|---|---|---|---|
β | CI (95%) | p-Value | β | CI (95%) | p-Value | |
FEV1, % ** | ||||||
Dynapenia | −3.23 | −6.51 to 0.05 | 0.054 | −3.45 | −6.89 to −0.02 | 0.048 |
Sarcopenia | −0.91 | −5.63 to 3.80 | 0.704 | −0.81 | −5.55 to 3.92 | 0.735 |
Obesity | −1.37 | −4.87 to 2.13 | 0.443 | −1.26 | −4.83 to 2.30 | 0.488 |
FVC, % ** | ||||||
Dynapenia | −0.52 | −0.68 to −0.36 | <0.001 | −2.63 | −6.11 to 0.83 | 0.137 |
Sarcopenia | −0.31 | −0.54 to −0.08 | 0.007 | −2.66 | −7.46 to 2.12 | 0.275 |
Obesity | −0.01 | −0.18 to 0.15 | 0.838 | −0.49 | −4.10 to 3.12 | 0.790 |
PEF, % ** | ||||||
Dynapenia | −2.95 | −7.96 to 2.05 | 0.248 | −4.17 | −9.37 to 1.03 | 0.116 |
Sarcopenia | −1.73 | −12.13 to 8.65 | 0.743 | −1.26 | −11.57 to 9.04 | 0.810 |
Dynapenia + obesity | −12.79 | −22.14 to −3.45 | 0.007 | −12.13 | −21.59 to −2.68 | 0.012 |
Sarcopenia + obesity | −11.58 | −25.26 to 2.10 | 0.097 | −9.23 | −22.78 to 4.32 | 0.182 |
MIP, cmH2O | ||||||
Dynapenia | −16.02 | −20.69 to −11.36 | <0.001 | −12.61 | −17.00 to −8.21 | <0.001 |
Sarcopenia | −11.13 | −17.74 to −4.51 | <0.001 | −6.14 | −12.17 to −0.12 | 0.045 |
Obesity | −2.65 | −7.62 to 2.31 | 0.295 | −2.34 | −6.91 to 2.22 | 0.313 |
MEP, cmH2O | ||||||
Dynapenia | −15.66 | −22.06 to −9.26 | <0.001 | −12.85 | −18.83 to −6.88 | <0.001 |
Sarcopenia | −19.42 | −28.49 to −10.36 | <0.001 | −11.64 | −19.84 to −345 | 0.005 |
Obesity | 0.85 | −5.95 to 7.66 | 0.805 | 2.46 | −3.74 to 8.67 | 0.437 |
DLCO, % ** | ||||||
Dynapenia | −45.64 | −130.74 to 39.45 | 0.293 | −22.11 | −114.13 to 69.90 | 0.637 |
Sarcopenia | −6.59 | −128.62 to 115.43 | 0.916 | 8.42 | −118.27 to135.12 | 0.896 |
Obesity | 14.87 | −76.33 to 106.08 | 0.749 | 17.02 | −79.12 to 113.16 | 0.728 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orea-Tejeda, A.; Robles-Hernández, R.; González-Islas, D.; Jimenez-Gallardo, L.; Gochicoa-Rangel, L.; Castorena-Maldonado, A.; Hernández-Zenteno, R.; Montañez-Orozco, A.; Valderrábano-Salas, B. Dynapenia and Sarcopenia in Post-COVID-19 Syndrome Hospitalized Patients Are Associated with Severe Reduction in Pulmonary Function. J. Clin. Med. 2023, 12, 6466. https://doi.org/10.3390/jcm12206466
Orea-Tejeda A, Robles-Hernández R, González-Islas D, Jimenez-Gallardo L, Gochicoa-Rangel L, Castorena-Maldonado A, Hernández-Zenteno R, Montañez-Orozco A, Valderrábano-Salas B. Dynapenia and Sarcopenia in Post-COVID-19 Syndrome Hospitalized Patients Are Associated with Severe Reduction in Pulmonary Function. Journal of Clinical Medicine. 2023; 12(20):6466. https://doi.org/10.3390/jcm12206466
Chicago/Turabian StyleOrea-Tejeda, Arturo, Robinson Robles-Hernández, Dulce González-Islas, Luz Jimenez-Gallardo, Laura Gochicoa-Rangel, Armando Castorena-Maldonado, Rafael Hernández-Zenteno, Alvaro Montañez-Orozco, and Benigno Valderrábano-Salas. 2023. "Dynapenia and Sarcopenia in Post-COVID-19 Syndrome Hospitalized Patients Are Associated with Severe Reduction in Pulmonary Function" Journal of Clinical Medicine 12, no. 20: 6466. https://doi.org/10.3390/jcm12206466