Serum Inflammatory Markers and Integrity of the Superior Longitudinal Fasciculus and the Inferior Longitudinal Fasciculus in Schizophrenia, from Prodromal Stages to Chronic Psychosis—A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Inflammatory Markers
2.3. Acquisition of DTI Data and Image Processing
2.4. Statistical Analysis
3. Results
3.1. Descriptive Analysis of the Study Groups
3.2. Analysis of Correlations between Inflammatory Markers and DTI
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yung, A.R.; McGorry, P.D.; McFarlane, C.A.; Jackson, H.J.; Patton, G.C.; Rakkar, A. Monitoring and Care of Young People at Incipient Risk of Psychosis. Schizophr. Bull. 1996, 22, 283–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheitman, B.B.; Lieberman, J.A. The Natural History and Pathophysiology of Treatment Resistant Schizophrenia. J. Psychiatr. Res. 1998, 32, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Dawidowski, B.; Górniak, A.; Podwalski, P.; Lebiecka, Z.; Misiak, B.; Samochowiec, J. The Role of Cytokines in the Pathogenesis of Schizophrenia. J. Clin. Med. 2021, 10, 3849. [Google Scholar] [CrossRef]
- Levin, S.G.; Godukhin, O.V. Modulating Effect of Cytokines on Mechanisms of Synaptic Plasticity in the Brain. Biochemistry 2017, 82, 264–274. [Google Scholar] [CrossRef]
- Na, K.-S.; Jung, H.-Y.; Kim, Y.-K. The Role of Pro-Inflammatory Cytokines in the Neuroinflammation and Neurogenesis of Schizophrenia. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2014, 48, 277–286. [Google Scholar] [CrossRef]
- Miller, B.J.; Culpepper, N.; Rapaport, M.H. C-Reactive Protein Levels in Schizophrenia: A Review and Meta-Analysis. Clin. Schizophr. Relat. Psychoses 2014, 7, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Momtazmanesh, S.; Zare-Shahabadi, A.; Rezaei, N. Cytokine Alterations in Schizophrenia: An Updated Review. Front. Psychiatry 2019, 10, 892. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues-Amorim, D.; Rivera-Baltanás, T.; Spuch, C.; Caruncho, H.J.; González-Fernandez, Á.; Olivares, J.M.; Agís-Balboa, R.C. Cytokines Dysregulation in Schizophrenia: A Systematic Review of Psychoneuroimmune Relationship. Schizophr. Res. 2018, 197, 19–33. [Google Scholar] [CrossRef]
- Bocchio-Chiavetto, L.; Zanardini, R.; Tosato, S.; Ventriglia, M.; Ferrari, C.; Bonetto, C.; Lasalvia, A.; Giubilini, F.; Fioritti, A.; Pileggi, F.; et al. Immune and Metabolic Alterations in First Episode Psychosis (FEP) Patients. Brain Behav. Immun. 2018, 70, 315–324. [Google Scholar] [CrossRef]
- Miller, B.J.; Buckley, P.; Seabolt, W.; Mellor, A.; Kirkpatrick, B. Meta-Analysis of Cytokine Alterations in Schizophrenia: Clinical Status and Antipsychotic Effects. Biol. Psychiatry 2011, 70, 663–671. [Google Scholar] [CrossRef]
- Trovão, N.; Prata, J.; VonDoellinger, O.; Santos, S.; Barbosa, M.; Coelho, R. Peripheral Biomarkers for First-Episode Psychosis-Opportunities from the Neuroinflammatory Hypothesis of Schizophrenia. Psychiatry Investig. 2019, 16, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misiak, B.; Bartoli, F.; Carrà, G.; Stańczykiewicz, B.; Gładka, A.; Frydecka, D.; Samochowiec, J.; Jarosz, K.; Hadryś, T.; Miller, B.J. Immune-Inflammatory Markers and Psychosis Risk: A Systematic Review and Meta-Analysis. Psychoneuroendocrinology 2021, 127, 105200. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Miller, B.J. Meta-Analysis of Cytokine and C-Reactive Protein Levels in High-Risk Psychosis. Schizophr. Res. 2020, 226, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Michalczyk, A.; Tyburski, E.; Podwalski, P.; Waszczuk, K.; Rudkowski, K.; Kucharska-Mazur, J.; Mak, M.; Rek-Owodziń, K.; Plichta, P.; Bielecki, M.; et al. Serum Inflammatory Markers and Their Associations with White Matter Integrity of the Corpus Callosum in Schizophrenia Patients and Healthy Controls. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2022, 116, 110510. [Google Scholar] [CrossRef] [PubMed]
- Michalczyk, A.; Tyburski, E.; Podwalski, P.; Waszczuk, K.; Rudkowski, K.; Kucharska-Mazur, J.; Mak, M.; Rek-Owodziń, K.; Plichta, P.; Bielecki, M.; et al. Serum Inflammatory Markers and Their Associations with the Integrity of the Cingulum Bundle in Schizophrenia, from Prodromal Stages to Chronic Psychosis. J. Clin. Med. 2022, 11, 6352. [Google Scholar] [CrossRef]
- Bora, E. Peripheral Inflammatory and Neurotrophic Biomarkers of Cognitive Impairment in Schizophrenia: A Meta-Analysis. Psychol. Med. 2019, 49, 1971–1979. [Google Scholar] [CrossRef] [PubMed]
- Marcinowicz, P.; Więdłocha, M.; Zborowska, N.; Dębowska, W.; Podwalski, P.; Misiak, B.; Tyburski, E.; Szulc, A. A Meta-Analysis of the Influence of Antipsychotics on Cytokines Levels in First Episode Psychosis. J. Clin. Med. 2021, 10, 2488. [Google Scholar] [CrossRef]
- Misiak, B.; Stańczykiewicz, B.; Kotowicz, K.; Rybakowski, J.K.; Samochowiec, J.; Frydecka, D. Cytokines and C-Reactive Protein Alterations with Respect to Cognitive Impairment in Schizophrenia and Bipolar Disorder: A Systematic Review. Schizophr. Res. 2018, 192, 16–29. [Google Scholar] [CrossRef]
- Prasad, K.M.; Upton, C.H.; Nimgaonkar, V.L.; Keshavan, M.S. Differential Susceptibility of White Matter Tracts to Inflammatory Mediators in Schizophrenia: An Integrated DTI Study. Schizophr. Res. 2015, 161, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Reale, M.; Costantini, E.; Greig, N.H. Cytokine Imbalance in Schizophrenia. From Research to Clinic: Potential Implications for Treatment. Front. Psychiatry 2021, 12, 536257. [Google Scholar] [CrossRef] [PubMed]
- Khandaker, G.M.; Dantzer, R. Is There a Role for Immune-to-Brain Communication in Schizophrenia? Psychopharmacology 2016, 233, 1559–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhang, R.; Hou, X.; Zhang, Y.; Ding, F.; Li, F.; Yao, Y.; Wang, Y. Microglia Activation Triggers Oligodendrocyte Precursor Cells Apoptosis via HSP60. Mol. Med. Rep. 2017, 16, 603–608. [Google Scholar] [CrossRef] [Green Version]
- McDonough, A.; Lee, R.V.; Weinstein, J.R. Microglial Interferon Signaling and White Matter. Neurochem. Res. 2017, 42, 2625–2638. [Google Scholar] [CrossRef] [PubMed]
- Stolp, H.B.; Ek, C.J.; Johansson, P.A.; Dziegielewska, K.M.; Bethge, N.; Wheaton, B.J.; Potter, A.M.; Saunders, N.R. Factors Involved in Inflammation-Induced Developmental White Matter Damage. Neurosci. Lett. 2009, 451, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Varatharaj, A.; Galea, I. The Blood-Brain Barrier in Systemic Inflammation. Brain Behav. Immun. 2017, 60, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitolo, E.; Tatu, M.K.; Pignolo, C.; Cauda, F.; Costa, T.; Ando’, A.; Zennaro, A. White Matter and Schizophrenia: A Meta-Analysis of Voxel-Based Morphometry and Diffusion Tensor Imaging Studies. Psychiatry Res. Neuroimaging 2017, 270, 8–21. [Google Scholar] [CrossRef]
- Samartzis, L.; Dima, D.; Fusar-Poli, P.; Kyriakopoulos, M. White Matter Alterations in Early Stages of Schizophrenia: A Systematic Review of Diffusion Tensor Imaging Studies. J. Neuroimaging 2014, 24, 101–110. [Google Scholar] [CrossRef]
- Yao, L.; Lui, S.; Liao, Y.; Du, M.-Y.; Hu, N.; Thomas, J.A.; Gong, Q.-Y. White Matter Deficits in First Episode Schizophrenia: An Activation Likelihood Estimation Meta-Analysis. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2013, 45, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Waszczuk, K.; Rek-Owodziń, K.; Tyburski, E.; Mak, M.; Misiak, B.; Samochowiec, J. Disturbances in White Matter Integrity in the Ultra-High-Risk Psychosis State-A Systematic Review. J. Clin. Med. 2021, 10, 2515. [Google Scholar] [CrossRef]
- Podwalski, P.; Tyburski, E.; Szczygieł, K.; Waszczuk, K.; Rek-Owodziń, K.; Mak, M.; Plichta, P.; Bielecki, M.; Rudkowski, K.; Kucharska-Mazur, J.; et al. White Matter Integrity of the Corpus Callosum and Psychopathological Dimensions in Deficit and Non-Deficit Schizophrenia Patients. J. Clin. Med. 2021, 10, 2225. [Google Scholar] [CrossRef]
- Tyburski, E.; Mak, M.; Samochowiec, A.; Plichta, P.; Bielecki, M.; Rek-Owodziń, K.; Podwalski, P.; Rudkowski, K.; Waszczuk, K.; Pełka-Wysiecka, J.; et al. The Relationship between Cingulum Bundle Integrity and Different Aspects of Executive Functions in Chronic Schizophrenia. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2020, 102, 109955. [Google Scholar] [CrossRef] [PubMed]
- Tyburski, E.; Podwalski, P.; Waszczuk, K.; Rek-Owodziń, K.; Mak, M.; Plichta, P.; Bielecki, M.; Rudkowski, K.; Szelepajło, M.; Kucharska-Mazur, J.; et al. Relationship of Corpus Callosum Integrity with Working Memory, Planning, and Speed of Processing in Patients with First-Episode and Chronic Schizophrenia. J. Clin. Med. 2021, 10, 3158. [Google Scholar] [CrossRef]
- Waszczuk, K.; Tyburski, E.; Rek-Owodziń, K.; Plichta, P.; Rudkowski, K.; Podwalski, P.; Bielecki, M.; Mak, M.; Bober, A.; Misiak, B.; et al. Relationship between White Matter Alterations and Pathophysiological Symptoms in Patients with Ultra-High Risk of Psychosis, First-Episode, and Chronic Schizophrenia. Brain Sci. 2022, 12, 354. [Google Scholar] [CrossRef]
- Nakajima, R.; Kinoshita, M.; Shinohara, H.; Nakada, M. The Superior Longitudinal Fascicle: Reconsidering the Fronto-Parietal Neural Network Based on Anatomy and Function. Brain Imaging Behav. 2020, 14, 2817–2830. [Google Scholar] [CrossRef]
- Vergani, F.; Ghimire, P.; Rajashekhar, D.; Dell’acqua, F.; Lavrador, J.P. Superior Longitudinal Fasciculus (SLF) I and II: An Anatomical and Functional Review. J. Neurosurg. Sci. 2021, 65, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.; Jahanshad, N.; Zalesky, A.; Kochunov, P.; Agartz, I.; Alloza, C.; Andreassen, O.A.; Arango, C.; Banaj, N.; Bouix, S.; et al. Widespread White Matter Microstructural Differences in Schizophrenia across 4322 Individuals: Results from the ENIGMA Schizophrenia DTI Working Group. Mol. Psychiatry 2018, 23, 1261–1269. [Google Scholar] [CrossRef] [Green Version]
- Parnanzone, S.; Serrone, D.; Rossetti, M.C.; D’Onofrio, S.; Splendiani, A.; Micelli, V.; Rossi, A.; Pacitti, F. Alterations of Cerebral White Matter Structure in Psychosis and Their Clinical Correlations: A Systematic Review of Diffusion Tensor Imaging Studies. Riv. Psichiatr. 2017, 52, 49–66. [Google Scholar] [CrossRef] [PubMed]
- Podwalski, P.; Szczygieł, K.; Tyburski, E.; Sagan, L.; Misiak, B.; Samochowiec, J. Magnetic Resonance Diffusion Tensor Imaging in Psychiatry: A Narrative Review of Its Potential Role in Diagnosis. Pharmacol. Rep. 2021, 73, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, F.; Poletti, S.; Hoogenboezem, T.A.; Mazza, E.; Ambrée, O.; de Wit, H.; Wijkhuijs, A.J.M.; Locatelli, C.; Bollettini, I.; Colombo, C.; et al. Inflammatory Cytokines Influence Measures of White Matter Integrity in Bipolar Disorder. J. Affect Disord. 2016, 202, 1–9. [Google Scholar] [CrossRef]
- Bettcher, B.M.; Watson, C.L.; Walsh, C.M.; Lobach, I.V.; Neuhaus, J.; Miller, J.W.; Green, R.; Patel, N.; Dutt, S.; Busovaca, E.; et al. Interleukin-6, Age, and Corpus Callosum Integrity. PLoS ONE 2014, 9, e106521. [Google Scholar] [CrossRef]
- Fu, G.; Zhang, W.; Dai, J.; Liu, J.; Li, F.; Wu, D.; Xiao, Y.; Shah, C.; Sweeney, J.A.; Wu, M.; et al. Increased Peripheral Interleukin 10 Relate to White Matter Integrity in Schizophrenia. Front. Neurosci. 2019, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Rodrigue, A.L.; Knowles, E.E.; Mollon, J.; Mathias, S.R.; Koenis, M.M.; Peralta, J.M.; Leandro, A.C.; Fox, P.T.; Sprooten, E.; Kochunov, P.; et al. Evidence for Genetic Correlation between Human Cerebral White Matter Microstructure and Inflammation. Hum. Brain Mapp. 2019, 40, 4180–4191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wei, Y.; Edmiston, E.K.; Womer, F.Y.; Zhang, X.; Duan, J.; Zhu, Y.; Zhang, R.; Yin, Z.; Zhang, Y.; et al. Altered Structural Connectivity and Cytokine Levels in Schizophrenia and Genetic High-Risk Individuals: Associations with Disease States and Vulnerability. Schizophr. Res. 2020, 223, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Wersching, H.; Duning, T.; Lohmann, H.; Mohammadi, S.; Stehling, C.; Fobker, M.; Conty, M.; Minnerup, J.; Ringelstein, E.B.; Berger, K.; et al. Serum C-Reactive Protein Is Linked to Cerebral Microstructural Integrity and Cognitive Function. Neurology 2010, 74, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Cheung, C.; Wei, R.; Cheung, V.; Hui, E.S.; You, Y.; Wong, P.; Chua, S.E.; McAlonan, G.M.; Wu, E.X. Voxel-Based Analysis of Postnatal White Matter Microstructure in Mice Exposed to Immune Challenge in Early or Late Pregnancy. Neuroimage 2010, 52, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mak, M.; Starkowska, A.; Tyburski, E.; Samochowiec, J. Polish Version of the Structured Interview for Psychosis-Risk Syndromes (SIPS)—Description of the Tool. Psychiatr. Pol. 2019, 53, 561–575. [Google Scholar] [CrossRef]
- Miller, T.J.; McGlashan, T.H.; Rosen, J.L.; Cadenhead, K.; Cannon, T.; Ventura, J.; McFarlane, W.; Perkins, D.O.; Pearlson, G.D.; Woods, S.W. Prodromal Assessment with the Structured Interview for Prodromal Syndromes and the Scale of Prodromal Symptoms: Predictive Validity, Interrater Reliability, and Training to Reliability. Schizophr. Bull. 2003, 29, 703–715. [Google Scholar] [CrossRef] [Green Version]
- Pużyński, S.; Wciórka, J. Klasyfikacja Zaburzeń Psychicznych i Zaburzeń Zachowania w ICD-10. In Badawcze Kryteria Diagnostyczne; Vesalius: Kraków, Poland, 2000. [Google Scholar]
- World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders. In Diagnostic Criteria for Research; World Health Organization: Geneva, Switzerland, 1993. [Google Scholar]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The Development and Validation of a Structured Diagnostic Psychiatric Interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59 (Suppl. 20), 22–33, quiz 34–57. [Google Scholar]
- Hall, R.C. Global Assessment of Functioning. A Modified Scale. Psychosomatics 1995, 36, 267–275. [Google Scholar] [CrossRef]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef]
- Shafer, A.; Dazzi, F. Meta-Analysis of the Positive and Negative Syndrome Scale (PANSS) Factor Structure. J. Psychiatr. Res. 2019, 115, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Leemans, A.; Jeurissen, B.; Sijbers, J.; Jones, D.K. ExploreDTI: A graphical toolbox for processing, analyzing, and visualizing diffusion MR data. Proc. Int. Soc. Magn. Reson. Med. 2009, 17, 3537. [Google Scholar]
- Kohn, J.S. Michael Correlation Sample Size|Sample Size Calculators. Available online: http://sample-size.net/correlation-sample-size/ (accessed on 1 December 2022).
- Bujang, M.A.; Baharum, N. Sample Size Guideline for Correlation Analysis. World J. Soc. Sci. Res. 2016, 3, 37. [Google Scholar] [CrossRef]
- Kushner, I.; Antonelli, M.J. What Should We Regard as an “Elevated” C-Reactive Protein Level? Ann. Intern. Med. 2015, 163, 326. [Google Scholar] [CrossRef]
- Said, E.A.; Al-Reesi, I.; Al-Shizawi, N.; Jaju, S.; Al-Balushi, M.S.; Koh, C.Y.; Al-Jabri, A.A.; Jeyaseelan, L. Defining IL-6 Levels in Healthy Individuals: A Meta-Analysis. J. Med. Virol. 2021, 93, 3915–3924. [Google Scholar] [CrossRef] [PubMed]
Parameter | HC | UHR | FEP | SCH | H/x2 |
---|---|---|---|---|---|
n | 29 | 12 | 19 | 52 | |
Women | 17 (59) | 6 (50) | 13 (68) | 23 (44) | 3.82 |
Age (years) | 36 ± 8 (37) | 25 ± 5 (25.5) | 27 ± 5 (27) | 38 ± 7 (37.5) | 41.80 ***# |
Years of education | 15 ± 3 (15) | 13 ± 4 (12) | 14 ± 3 (12) | 13 ± 3 (12) | 5.89 |
BMI (kg/m2) | 25 ± 4 (25) | 22 ± 3 (22) | 24 ± 4 (24) | 28 ± 4 (28) | 21.24 ***# |
Smoking cigarettes | 0 (0) | 0 (0) | 4 (21) | 20 (38) | 19.33 ***# |
Duration of illness (years) | 1.07 ± 1.41 (0.5) | 0.36 ± 0.37 (0.25) | 15.10 ± 5.63 (13.00) | 59.40 ***# | |
Exacerbations ^ | 4.08 ± 5.85 (1.00) | 1.11 ± 0.32 (1) | 6.52 ± 4.54 (5) | 41.53 ***# | |
Antipsychotic medications: | |||||
atypical | 6 (50) | 15 (79) | 32 (62) | 27.20 ***# | |
atypical and typical | 0 (0) | 2 (11) | 16 (31) | ||
typical | 0 (0) | 1 (5) | 2 (4) | ||
none | 6 (50) | 1 (5) | 2 (4) | ||
chlorpromazine equivalent (mg) | 132 ± 226 (17) | 500 ± 345(450) | 628 ± 314 (600) | ||
Antidepressant medications | 4 (33) | 0 (0) | 2 (4) | 21.38 ***# | |
Global functioning in GAF | 64 ± 14 (67.5) | 61 ± 17 (65) | 58 ± 15 (60) | 1.94 | |
Psychopathological symptoms in PANSS: | |||||
positive | 11 ± 5 (12) | 8 ± 4 (6) | 2.77 ** | ||
negative | 14 ±5 (14) | 17 ± 6 (15) | −1.38 | ||
disorganization | 14 ± 4 (13) | 12 ± 4 (11) | 1.59 | ||
affect | 10 ± 4 (9) | 9 ± 3 (8) | 1.93 | ||
resistance | 6 ± 2 (5) | 5 ± 1 (4) | 1.96 * | ||
Psychopathological symptoms in SIPS: | |||||
positive | 5.8± 3.9 (5) | ||||
negative | 10.3 ± 6.1 (11) | ||||
disorganization | 3.8± 2.9 (2.5) | ||||
general | 7.4 ± 4.0 (7.5) | ||||
CRP (mg/L) | 1.55 ± 1.78 (0.86) | 3.32 ± 5.62 (0.91) | 1.13 ± 1.05 (0.65) | 3.01 ± 4.72 (2.05) | 7.45 |
IL-6 (pg/mL) | 1.14 ± 0.72 (0.95) | 2.12 ± 1.07 (2.19) | 1.33 ± 0.53 (1.37) | 2.73 ± 3.77 (1.62) | 19.46 ***# |
IL-8 (pg/mL) | 11.29 ± 7.36 (10.15) | 10.27 ± 3.66 (9.52) | 8.51 ± 4.06 (7.65) | 13.21 ± 25.14 (9.49) | 5.95 |
IL-10 (pg/mL) | 1.07 ± 0.95 (0.98) | 1.03 ± 0.71 (1.14) | 7.47 ± 27.46 (0.69) | 5.33 ± 25.86 (1.34) | 4.45 |
TNF-α (pg/mL) | 6.79 ± 2.54 (6.21) | 7.86 ± 4.26 (6.42) | 7.06 ± 2.81 (6.09) | 6.64 ± 2.52 (6.08) | 0.49 |
IFN-γ (pg/mL) | 3.25 ± 4.17 (2.00) | 11.67 ± 17.95 (4.63) | 4.72 ± 4.99 (3.36) | 11.29 ± 35.63 (2.97) | 9.88 * |
HC (n = 29) | UHR (n = 12) | FEP (n = 19) | SCH (n = 52) | |||||
---|---|---|---|---|---|---|---|---|
FA of SLF | Left | Right | Left | Right | Left | Right | Left | Right |
CRP | −0.060 | 0.176 | −0.063 | −0.210 | 0.489 * | 0.344 | 0.141 | 0.203 |
IL-6 | −0.209 | 0.019 | −0.315 | −0.224 | 0.298 | 0.074 | −0.004 | 0.008 |
IL-8 | 0.086 | 0.179 | −0.217 | −0.371 | 0.014 | 0.174 | 0.209 | 0.112 |
IL-10 | 0.256 | 0.305 | 0.053 | 0.049 | −0.159 | 0.063 | 0.003 | −0.224 |
TNF-α | −0.039 | 0.264 | 0.259 | 0.420 | −0.177 | −0.239 | 0.076 | 0.163 |
IFN-γ | −0.297 | −0.175 | −0.084 | −0.224 | −0.044 | 0.057 | 0.120 | −0.074 |
MD of SLF | Left | Right | Left | Right | Left | Right | Left | Right |
CRP | −0.113 | −0.310 | −0.266 | 0.063 | 0.177 | −0.032 | 0.255 | 0.208 |
IL-6 | 0.054 | −0.023 | −0.063 | 0.210 | 0.123 | 0.100 | 0.041 | −0.009 |
IL-8 | −0.180 | −0.400 * | −0.168 | 0.308 | −0.309 | −0.307 | −0.208 | −0.153 |
IL-10 | 0.096 | 0.157 | 0.053 | −0.284 | 0.178 | −0.152 | 0.132 | 0.151 |
TNF-α | −0.019 | −0.116 | −0.161 | −0.252 | 0.167 | −0.037 | 0.076 | 0.049 |
IFN-γ | 0.033 | 0.112 | −0.014 | 0.140 | −0.046 | 0.127 | −0.005 | 0.169 |
HC (n = 29) | UHR (n = 12) | FEP (n = 19) | SCH (n = 52) | |||||
---|---|---|---|---|---|---|---|---|
FA of ILF | Left | Right | Left | Right | Left | Right | Left | Right |
CRP | 0.041 | 0.081 | 0.133 | 0.238 | 0.518 * | 0.207 | −0.103 | −0.107 |
IL-6 | −0.191 | −0.138 | −0.175 | 0.238 | 0.182 | 0.056 | 0.088 | 0.110 |
IL-8 | −0.006 | −0.237 | −0.266 | −0.294 | 0.070 | 0.088 | 0.142 | 0.129 |
IL-10 | 0.008 | −0.122 | 0.294 | 0.130 | 0.071 | −0.076 | 0.016 | −0.087 |
TNF-α | 0.220 | 0.117 | −0.287 | 0.238 | −0.040 | −0.382 | −0.058 | 0.093 |
IFN-γ | 0.110 | 0.024 | 0.608 * | 0.280 | 0.211 | 0.006 | −0.019 | 0.021 |
MD of ILF | Left | Right | Left | Right | Left | Right | Left | Right |
CRP | −0.088 | −0.114 | 0.028 | −0.056 | −0.049 | −0.002 | 0.188 | 0.237 |
IL-6 | 0.149 | 0.135 | −0.014 | −0.427 | 0.089 | 0.163 | −0.072 | 0.026 |
IL-8 | −0.097 | 0.061 | −0.168 | 0.161 | −0.374 | −0.291 | −0.053 | −0.067 |
IL-10 | 0.214 | 0.167 | −0.375 | −0.462 | −0.160 | −0.256 | −0.027 | 0.140 |
TNF-α | −0.101 | −0.107 | −0.070 | −0.238 | −0.354 | −0.177 | 0.022 | −0.003 |
IFN-γ | −0.195 | −0.005 | −0.531 | −0.392 | −0.397 | −0.168 | −0.017 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalczyk, A.; Tyburski, E.; Podwalski, P.; Waszczuk, K.; Rudkowski, K.; Kucharska-Mazur, J.; Mak, M.; Rek-Owodziń, K.; Plichta, P.; Bielecki, M.; et al. Serum Inflammatory Markers and Integrity of the Superior Longitudinal Fasciculus and the Inferior Longitudinal Fasciculus in Schizophrenia, from Prodromal Stages to Chronic Psychosis—A Cross-Sectional Study. J. Clin. Med. 2023, 12, 683. https://doi.org/10.3390/jcm12020683
Michalczyk A, Tyburski E, Podwalski P, Waszczuk K, Rudkowski K, Kucharska-Mazur J, Mak M, Rek-Owodziń K, Plichta P, Bielecki M, et al. Serum Inflammatory Markers and Integrity of the Superior Longitudinal Fasciculus and the Inferior Longitudinal Fasciculus in Schizophrenia, from Prodromal Stages to Chronic Psychosis—A Cross-Sectional Study. Journal of Clinical Medicine. 2023; 12(2):683. https://doi.org/10.3390/jcm12020683
Chicago/Turabian StyleMichalczyk, Anna, Ernest Tyburski, Piotr Podwalski, Katarzyna Waszczuk, Krzysztof Rudkowski, Jolanta Kucharska-Mazur, Monika Mak, Katarzyna Rek-Owodziń, Piotr Plichta, Maksymilian Bielecki, and et al. 2023. "Serum Inflammatory Markers and Integrity of the Superior Longitudinal Fasciculus and the Inferior Longitudinal Fasciculus in Schizophrenia, from Prodromal Stages to Chronic Psychosis—A Cross-Sectional Study" Journal of Clinical Medicine 12, no. 2: 683. https://doi.org/10.3390/jcm12020683