Molecular Alterations and Putative Therapeutic Targeting of Planar Cell Polarity Proteins in Breast Cancer
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 438–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 2001, 98, 10869–10874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voutsadakis, I.A. Chromosome 17 centromere amplification and chromosomal instability (CIN) in breast cancer: Pathogenic and therapeutic implications. Neoplasma 2019, 66, 859–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voutsadakis, I.A. Clinical Implications of Chromosomal Instability (CIN) and Kinetochore Abnormalities in Breast Cancers. Mol. Diagn. Ther. 2019, 23, 707–721. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Martin, M.; Rugo, H.S.; Jones, S.; Im, S.A.; Gelmon, K.; Harbeck, N.; Lipatov, O.N.; Walshe, J.M.; Moulder, S.; et al. Palbociclib and Letrozole in Advanced Breast Cancer. N. Engl. J. Med. 2016, 375, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Stravodimou, A.; Voutsadakis, I.A. The Future of ER+/HER2- Metastatic Breast Cancer Therapy: Beyond PI3K Inhibitors. Anticancer Res. 2020, 40, 4829–4841. [Google Scholar] [CrossRef]
- Slamon, D.; Eiermann, W.; Robert, N.; Pienkowski, T.; Martin, M.; Press, M.; Mackey, J.; Glaspy, J.; Chan, A.; Pawlicki, M.; et al. Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl. J. Med. 2011, 365, 1273–1283. [Google Scholar] [CrossRef] [Green Version]
- Curigliano, G.; Mueller, V.; Borges, V.; Hamilton, E.; Hurvitz, S.; Loi, S.; Murthy, R.; Okines, A.; Paplomata, E.; Cameron, D.; et al. Tucatinib versus placebo added to trastuzumab and capecitabine for patients with pretreated HER2+ metastatic breast cancer with and without brain metastases (HER2CLIMB): Final overall survival analysis. Ann. Oncol. 2022, 33, 321–329. [Google Scholar] [CrossRef]
- Cortes, J.; Cescon, D.W.; Rugo, H.S.; Nowecki, Z.; Im, S.A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Holgado, E.; et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): A randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 2020, 396, 1817–1828. [Google Scholar] [CrossRef]
- Voutsadakis, I.A. Immune Blockade Inhibition in Breast Cancer. Anticancer Res. 2016, 36, 5607–5622. [Google Scholar] [CrossRef] [Green Version]
- Robson, M.; Im, S.A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N. Engl. J. Med. 2017, 377, 523–533. [Google Scholar] [CrossRef]
- Čada, Š.; Bryja, V. Local Wnt signalling in the asymmetric migrating vertebrate cells. Semin. Cell Dev. Biol. 2022, 125, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Montcouquiol, M.; Rachel, R.A.; Lanford, P.J.; Copeland, N.G.; Jenkins, N.A.; Kelley, M.W. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 2003, 423, 173–177. [Google Scholar] [CrossRef]
- Baker, L.; BeGora, M.; Au Yeung, F.; Feigin, M.E.; Rosenberg, A.Z.; Lowe, S.W.; Kislinger, T.; Muthuswamy, S.K. Scribble is required for pregnancy-induced alveologenesis in the adult mammary gland. J. Cell Sci. 2016, 129, 2307–2315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- VanderVorst, K.; Hatakeyama, J.; Berg, A.; Lee, H.; Carraway, K.L., 3rd. Cellular and molecular mechanisms underlying planar cell polarity pathway contributions to cancer malignancy. Semin. Cell Dev. Biol. 2018, 81, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Anastas, J.N.; Biechele, T.L.; Robitaille, M.; Muster, J.; Allison, K.H.; Angers, S.; Moon, R.T. A protein complex of SCRIB, NOS1AP and VANGL1 regulates cell polarity and migration, and is associated with breast cancer progression. Oncogene 2012, 31, 3696–3708. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Curtis, C.; Shah, S.P.; Chin, S.F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012, 486, 346–352. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, A.M.; Shih, J.; Ha, G.; Gao, G.F.; Zhang, X.; Berger, A.C.; Schumacher, S.E.; Wang, C.; Hu, H.; Liu, J.; et al. Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell 2018, 33, 676–689. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakravarty, D.; Gao, J.; Phillips, S.M.; Kundra, R.; Zhang, H.; Wang, J.; Rudolph, J.E.; Yaeger, R.; Soumerai, T.; Nissan, M.H.; et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis. Oncol. 2017, 2017, PO.17.00011. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012, 483, 603–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iorio, F.; Knijnenburg, T.A.; Vis, D.J.; Bignell, G.R.; Menden, M.P.; Schubert, M.; Aben, N.; Gonçalves, E.; Barthorpe, S.; Lightfoot, H.; et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 2016, 166, 740–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behan, F.M.; Iorio, F.; Picco, G.; Gonçalves, E.; Beaver, C.M.; Migliardi, G.; Santos, R.; Rao, Y.; Sassi, F.; Pinnelli, M.; et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 2019, 568, 511–516. [Google Scholar] [CrossRef]
- Van der Meer, D.; Barthorpe, S.; Yang, W.; Lightfoot, H.; Hall, C.; Gilbert, J.; Francies, H.E.; Garnett, M.J. Cell Model Passports-a hub for clinical, genetic and functional datasets of preclinical cancer models. Nucleic Acids Res. 2019, 47, D923–D929. [Google Scholar] [CrossRef] [Green Version]
- Tsherniak, A.; Vazquez, F.; Montgomery, P.G.; Weir, B.A.; Kryukov, G.; Cowley, G.S.; Gill, S.; Harrington, W.F.; Pantel, S.; Krill-Burger, J.M.; et al. Defining a Cancer Dependency Map. Cell 2017, 170, 564–576.e16. [Google Scholar] [CrossRef]
- Marcotte, R.; Sayad, A.; Brown, K.R.; Sanchez-Garcia, F.; Reimand, J.; Haider, M.; Virtanen, C.; Bradner, J.E.; Bader, G.D.; Mills, G.B.; et al. Functional Genomic Landscape of Human Breast Cancer Drivers, Vulnerabilities, and Resistance. Cell 2016, 164, 293–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fomicheva, M.; Tross, E.M.; Macara, I.G. Polarity proteins in oncogenesis. Curr. Opin. Cell Biol. 2020, 62, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Stahley, S.N.; Basta, L.P.; Sharan, R.; Devenport, D. Celsr1 adhesive interactions mediate the asymmetric organization of planar polarity complexes. Elife 2021, 10, e62097. [Google Scholar] [CrossRef] [PubMed]
- Humphries, A.C.; Mlodzik, M. From instruction to output: Wnt/PCP signaling in development and cancer. Curr. Opin. Cell Biol. 2018, 51, 110–116. [Google Scholar] [CrossRef]
- Martin, E.; Girardello, R.; Dittmar, G.; Ludwig, A. New insights into the organization and regulation of the apical polarity network in mammalian epithelial cells. FEBS J. 2021, 288, 7073–7095. [Google Scholar] [CrossRef]
- How, J.Y.; Stephens, R.K.; Lim, K.Y.B.; Humbert, P.O.; Kvansakul, M. Structural basis of the human Scribble-Vangl2 association in health and disease. Biochem. J. 2021, 478, 1321–1332. [Google Scholar] [CrossRef]
- Feng, D.; Wang, J.; Yang, W.; Li, J.; Lin, X.; Zha, F.; Wang, X.; Ma, L.; Choi, N.T.; Mii, Y.; et al. Regulation of Wnt/PCP signaling through p97/VCP-KBTBD7-mediated Vangl ubiquitination and endoplasmic reticulum-associated degradation. Sci. Adv. 2021, 7, eabg2099. [Google Scholar] [CrossRef]
- Katoh, M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int. J. Oncol. 2017, 51, 1357–1369. [Google Scholar] [CrossRef] [Green Version]
- Bernatik, O.; Paclikova, P.; Sri Ganji, R.; Bryja, V. Activity of Smurf2 Ubiquitin Ligase Is Regulated by the Wnt Pathway Protein Dishevelled. Cells 2020, 9, 1147. [Google Scholar] [CrossRef]
- Guo, Y.; Arciero, C.A.; Jiang, R.; Behera, M.; Peng, L.; Li, X. Different Breast Cancer Subtypes Show Different Metastatic Patterns: A Study from a Large Public Database. Asian Pac. J. Cancer Prev. 2020, 21, 3587–3593. [Google Scholar] [CrossRef]
- Van Mechelen, M.; Van Herck, A.; Punie, K.; Nevelsteen, I.; Smeets, A.; Neven, P.; Weltens, C.; Han, S.; Vanderstichele, A.; Floris, G.; et al. Behavior of metastatic breast cancer according to subtype. Breast Cancer Res. Treat. 2020, 181, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jin, J.; Liang, T.; Feng, X.H. To Ub or not to Ub: A regulatory question in TGF-β signaling. Trends Biochem. Sci. 2022, 47, 1059–1072. [Google Scholar] [CrossRef] [PubMed]
- Stephens, R.; Lim, K.; Portela, M.; Kvansakul, M.; Humbert, P.O.; Richardson, H.E. The Scribble Cell Polarity Module in the Regulation of Cell Signaling in Tissue Development and Tumorigenesis. J. Mol. Biol. 2018, 430, 3585–3612. [Google Scholar] [CrossRef]
- Feigin, M.E.; Akshinthala, S.D.; Araki, K.; Rosenberg, A.Z.; Muthuswamy, L.B.; Martin, B.; Lehmann, B.D.; Berman, H.K.; Pietenpol, J.A.; Cardiff, R.D.; et al. Mislocalization of the cell polarity protein scribble promotes mammary tumorigenesis and is associated with basal breast cancer. Cancer Res. 2014, 74, 3180–3194. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.H.; Asmann, Y.W.; Anastasiadis, P.Z. Expression of polarity genes in human cancer. Cancer Inform. 2015, 14 (Suppl. 3), 15–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakakibara, J.; Sakakibara, M.; Shiina, N.; Fujimori, T.; Okubo, Y.; Fujisaki, K.; Nagashima, T.; Sangai, T.; Nakatani, Y.; Miyazaki, M. Expression of cell polarity protein scribble differently affects prognosis in primary tumor and lymph node metastasis of breast cancer patients. Breast Cancer 2017, 24, 393–399. [Google Scholar] [CrossRef]
- Krishnamurthy, N.; Kurzrock, R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat. Rev. 2018, 62, 50–60. [Google Scholar] [CrossRef]
- Torres, V.I.; Godoy, J.A.; Inestrosa, N.C. Modulating Wnt signaling at the root: Porcupine and Wnt acylation. Pharmacol. Ther. 2019, 198, 34–45. [Google Scholar] [CrossRef]
- Riffell, J.L.; Lord, C.J.; Ashworth, A. Tankyrase-targeted therapeutics: Expanding opportunities in the PARP family. Nat. Rev. Drug Discov. 2012, 11, 923–936. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, X.; Donnelly, L.; Elghobashi-Meinhardt, N.; Long, T.; Zhou, R.W.; Sun, Y.; Wang, B.; Li, X. Mechanisms and inhibition of Porcupine-mediated Wnt acylation. Nature 2022, 607, 816–822. [Google Scholar] [CrossRef]
- Wang, W.; Liu, P.; Lavrijsen, M.; Li, S.; Zhang, R.; Li, S.; van de Geer, W.S.; van de Werken, H.J.G.; Peppelenbosch, M.P.; Smits, R. Evaluation of AXIN1 and AXIN2 as targets of tankyrase inhibition in hepatocellular carcinoma cell lines. Sci. Rep. 2021, 11, 7470. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.; Dynek, J.N.; Smith, S. NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis. Biochem. J. 2005, 391 Pt 2, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, S.J.; Smith, S. Sister telomeres rendered dysfunctional by persistent cohesion are fused by NHEJ. J. Cell Biol. 2009, 184, 515–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamond, J.R.; Becerra, C.; Richards, D.; Mita, A.; Osborne, C.; O’Shaughnessy, J.; Zhang, C.; Henner, R.; Kapoun, A.M.; Xu, L.; et al. Phase Ib clinical trial of the anti-frizzled antibody vantictumab (OMP-18R5) plus paclitaxel in patients with locally advanced or metastatic HER2-negative breast cancer. Breast Cancer Res. Treat. 2020, 184, 53–62. [Google Scholar] [CrossRef] [PubMed]
Gene | Function | Mutations (%) | Missense | Nonsense | FSs | Amplifications (%) | Deletions (%) |
---|---|---|---|---|---|---|---|
WNT5A | Ligands of the β-catenin independent WNT pathway | 0 | 0 | 4 (0.4) | |||
WNT11 | 1 (0.1) | 1 | 0 | 0 | 56 (5.2) | 2 (0.2) | |
FZD7 | Receptor of the β-catenin independent WNT pathway | 2 (0.2) | 1 | 1 | 0 | 2 (0.2) | 5 (0.5) |
VANGL1 | Membrane tetraspanin | 7 (0.7) | 6 | 0 | 1 | 6 (0.6) | 3 (0.3) |
VANGL2 | Membrane tetraspanin | 8 (0.8) | 8 | 0 | 0 | 94 (8.8) | 0 |
PRICKLE1 | Homologous scaffold proteins interacting with VANGL proteins and negative regulating DVL | 7 (0.7) | 3 | 2 | 2 | 10 (0.9) | 0 |
PRICKLE2 | 6 (0.6) | 4 | 2 | 0 | 0 | 6 (0.6) | |
PRICKLE3 | 5 (0.5) | 0 | 0 | 0 | 10 (0.9) | 1 (0.1) | |
PRICKLE4 | 4 (0.4) | 3 | 0 | 0 | 18 (1.7) | 3 (0.3) | |
DVL1 | Scaffold proteins interacting with FZD receptors of the WNT/β-catenin-dependent and -independent pathways | 3 (0.3) | 3 | 0 | 0 | 3 (0.3) | 10 (0.9) |
DVL2 | 3 (0.3) | 2 | 0 | 1 | 0 | 7 (0.7) | |
DVL3 | 3 (0.3) | 3 | 0 | 0 | 22 (2.1) | 0 | |
DAAM1 | Formin homology domain scaffolding proteins interacting with DVL and RhoA | 10 (0.9) | 8 | 0 | 1 | 8 (0.7) | 0 |
DAAM2 | 12 (1.1) | 9 | 0 | 1 | 11 (1) | 2 (0.2) | |
SCRIB | Scaffold protein with PDZ domain | 8 (0.8) | 5 | 0 | 3 | 110 (10.3) | 3 (0.3) |
RNF41 | Ubiquitin ligase, negative regulator of DVL | 5 (0.5) | 3 | 1 | 1 | 2 (0.2) | 0 |
NOS1AP | Adaptor protein interacting with SCRIB involved in migration | 5 (0.5) | 5 | 0 | 0 | 97 (9.1) | 0 |
RHOA | Small GTPase involved in actin cytoskeleton reorganization | 8 (0.8) | 6 | 0 | 2 | 1 (0.1) | 5 (0.5) |
ROCK1 | Serine threonine kinase bound to GTP-bound RhoA | 9 (0.8) | 7 | 1 | 1 | 3 (0.3) | 2 (0.2) |
SQSTM1 | Adaptor protein involved in endocytosis of VANGL proteins | 5 (0.5) | 3 | 0 | 1 | 10 (0.9) | 2 (0.2) |
MINK1 | Kinase phosphorylating PRICKLE proteins promoting asymmetric localization | 5 (0.5) | 4 | 0 | 0 | 2 (0.2) | 4 (0.4) |
SMURF2 | Ubiquitin ligase, negative regulator of PRICKLE | 6 (0.6) | 4 | 1 | 1 | 66 (6.2) | 0 |
Gene | Mutations | Amplifications | Deletions |
---|---|---|---|
SCRIB | HCC1395, HCC1569, KPL1, MCF7, MDA-MB-361 | BT483, HCC1187, HCC1806 BT549, HCC1395, HCC1937, CAMA1, HCC1500, HCC2157, EFM19, HCC1569, HCC2218, HCC1143, HCC1599, HCC70, HDQ-P1, HS-578-T, MCF7, MDA-MB-436, UACC893, ZR7530 | HCC1428 |
VANGL2 | HCC1569, HS-343-T | BT483, CAL148, CAMA1, DU4475, HCC2157, HCC38, MDA-MB-436, ZR7530 | MCF7 |
NOS1AP | HCC1143, MDA-MB-415 | BT483, CAL148, CAMA1, DU4475, HCC38, MDA-MB-436, ZR7530 | MCF7 |
Cell Line | DepMap ID | Type | Ploidy | Mutations/Mb |
---|---|---|---|---|
CAMA1 | ACH-000783 | ER+/HER2−, Luminal | 1.93 | 47.03 |
BT-483 | ACH-000818 | ER+/HER2−, Luminal | 3.84 | 46.45 |
MDA-MB-436 | ACH-000573 | ER−/HER2− Basal B | 2.97 | 32.76 |
ZR-75-30 | ACH-000828 | ER +/HER2+ amplified | 3.74 | 45.32 |
Cell Line | Target | Dataset | N with/n without | Mean IC50 with (µM) | Mean IC50 without (µM) | p |
---|---|---|---|---|---|---|
IWP-2 | PORCN | GDSC2 | 7/34 | 17.03 | 17.9 | 0.79 |
LGK974 | PORCN | GDSC1 | 7/41 | 7.08 | 6.82 | 1 |
GDSC2 | 9/39 | 44.97 | 52.21 | 0.69 | ||
Wnt-C59 | PORCN | GDSC2 | 7/34 | 45.2 | 70.67 | 0.26 |
GDSC1 | 7/41 | 6.78 | 6.63 | 0.88 | ||
AZ6102 | Tankyrases 1 and 2 | GDSC2 | 9/35 | 20.04 | 15.6 | 0.3 |
MN-64 | Tankyrases 1 and 2 | GDSC2 | 7/34 | 62.19 | 90.47 | 0.34 |
WIKI4 | Tankyrases 1 and 2 | GDSC2 | 9/35 | 68.49 | 38.54 | 0.36 |
XAV939 | Tankyrases 1 and 2 | GDSC2 | 7/34 | 106.47 | 85.35 | 0.24 |
GDSC1 | 9/38 | 56.76 | 33.99 | 0.17 |
Cell Line | CRISPR Preferential Essential Genes | RNAi |
---|---|---|
CAMA1 | EIF1AX, YPEL5, TRPS1, UBE2H, PCYT1A, PSMB5, ARIH1, ACTB, NAMPT and GPX4 | UBC, MAP3K7, CDK4, FOXA1, TFDP1, CIT, LRRC46, STRAP, MAGOHB and TRPS1 |
BT-483 | NA | PREB, PTP4A1, NACAD, PITPNM1, HIGD1A, NEK11, POLM, NDC80, BTN3A1 and SNW1 |
MDA-MB-436 | TYMS, INTS6, VPS4A, GPATCH1, DNAJC9, IER3IP1, WDR48, LEMD2, XRCC1 and ACO2 | HSPA8, PPIL2, NSF, DHX8, CDC27, VPS4A, COPG1, TOPBP1, PCNA and WDR70 |
ZR-75-30 | NA | MYL12B, UBA6, MED1, PIK3CA, CDC37, FOXA1, SRPRA, FSTL4, ERBB2 and ASCC3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voutsadakis, I.A. Molecular Alterations and Putative Therapeutic Targeting of Planar Cell Polarity Proteins in Breast Cancer. J. Clin. Med. 2023, 12, 411. https://doi.org/10.3390/jcm12020411
Voutsadakis IA. Molecular Alterations and Putative Therapeutic Targeting of Planar Cell Polarity Proteins in Breast Cancer. Journal of Clinical Medicine. 2023; 12(2):411. https://doi.org/10.3390/jcm12020411
Chicago/Turabian StyleVoutsadakis, Ioannis A. 2023. "Molecular Alterations and Putative Therapeutic Targeting of Planar Cell Polarity Proteins in Breast Cancer" Journal of Clinical Medicine 12, no. 2: 411. https://doi.org/10.3390/jcm12020411
APA StyleVoutsadakis, I. A. (2023). Molecular Alterations and Putative Therapeutic Targeting of Planar Cell Polarity Proteins in Breast Cancer. Journal of Clinical Medicine, 12(2), 411. https://doi.org/10.3390/jcm12020411