Short-Term Dapagliflozin Administration in Autosomal Dominant Polycystic Kidney Disease—A Retrospective Single-Arm Case Series Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Patients
2.3. Physical and Laboratory Measurements and Other Clinical Information
2.4. Computed Tomography Imaging for Total Kidney Volume (TKV)
2.4.1. Pre-Dapagliflozin Treatment
2.4.2. Post-Dapagliflozin Treatment
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics of ADPKD Patients
3.2. Changes in Clinical Parameters after Dapagliflozin Treatment
3.3. Changes in eGFR before and after Dapagliflozin Treatment
3.4. Changes in htTKV before and after Dapagliflozin Treatment
3.5. Changes in eGFR and htTKV in ADPKD Patients with and without Tolvaptan Treatment
3.6. Changes in Annual htTKV Rate before and after Dapagliflozin Treatment
3.7. Correlations between Changes in htTKV and Changes in Clinical Parameters during Dapagliflozin Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torres, V.E.; Harris, P.C.; Pirson, Y. Autosomal dominant polycystic kidney disease. Lancet 2007, 369, 1287–1301. [Google Scholar] [CrossRef] [PubMed]
- Grantham, J.J. Clinical practice. Autosomal dominant polycystic kidney disease. N. Engl. J. Med. 2008, 359, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, K.; Mochizuki, T.; Shimada, Y.; Nishio, S.; Kataoka, H.; Mitobe, M.; Tsuchiya, K.; Hanaoka, K.; Ubara, Y.; Suwabe, T.; et al. Factors predicting decline in renal function and kidney volume growth in autosomal dominant polycystic kidney disease: A prospective cohort study (Japanese Polycystic Kidney Disease registry: J-PKD). Clin. Exp. Nephrol. 2021, 25, 970–980. [Google Scholar] [CrossRef] [PubMed]
- Nowak, K.L.; You, Z.; Gitomer, B.; Brosnahan, G.; Torres, V.E.; Chapman, A.B.; Perrone, R.D.; Steinman, T.I.; Abebe, K.Z.; Rahbari-Oskoui, F.F.; et al. Overweight and Obesity Are Predictors of Progression in Early Autosomal Dominant Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2018, 29, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Gabow, P.A.; Johnson, A.M.; Kaehny, W.D.; Kimberling, W.J.; Lezotte, D.C.; Duley, I.T.; Jones, R.H. Factors affecting the progression of renal disease in autosomal-dominant polycystic kidney disease. Kidney Int. 1992, 41, 1311–1319. [Google Scholar] [CrossRef]
- Cornec-Le Gall, E.; Audrezet, M.P.; Rousseau, A.; Hourmant, M.; Renaudineau, E.; Charasse, C.; Morin, M.P.; Moal, M.C.; Dantal, J.; Wehbe, B.; et al. The PROPKD Score: A New Algorithm to Predict Renal Survival in Autosomal Dominant Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.A.; Kruger, S.L.; Broderick, C.; Amarlkhagva, T.; Agrawal, S.; Dodam, J.R.; Mrug, M.; Lyons, L.A.; Weimbs, T. Ketosis Ameliorates Renal Cyst Growth in Polycystic Kidney Disease. Cell Metab. 2019, 30, 1007–1023.e1005. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Stefansson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- Kohn, O.F. In CKD, the effect of dapagliflozin on kidney outcomes did not vary by T2DM status or CKD cause. Ann. Intern. Med. 2021, 174, JC53. [Google Scholar] [CrossRef]
- The, E.-K.C.G.; Herrington, W.G.; Staplin, N.; Wanner, C.; Green, J.B.; Hauske, S.J.; Emberson, J.R.; Preiss, D.; Judge, P.; Mayne, K.J.; et al. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [CrossRef]
- Wheeler, D.C.; Stefansson, B.V.; Jongs, N.; Chertow, G.M.; Greene, T.; Hou, F.F.; McMurray, J.J.V.; Correa-Rotter, R.; Rossing, P.; Toto, R.D.; et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: A prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021, 9, 22–31. [Google Scholar] [CrossRef]
- Petrie, M.C.; Verma, S.; Docherty, K.F.; Inzucchi, S.E.; Anand, I.; Belohlavek, J.; Bohm, M.; Chiang, C.E.; Chopra, V.K.; de Boer, R.A.; et al. Effect of Dapagliflozin on Worsening Heart Failure and Cardiovascular Death in Patients with Heart Failure with and without Diabetes. JAMA 2020, 323, 1353–1368. [Google Scholar] [CrossRef]
- Tomita, I.; Kume, S.; Sugahara, S.; Osawa, N.; Yamahara, K.; Yasuda-Yamahara, M.; Takeda, N.; Chin-Kanasaki, M.; Kaneko, T.; Mayoux, E.; et al. SGLT2 Inhibition Mediates Protection from Diabetic Kidney Disease by Promoting Ketone Body-Induced mTORC1 Inhibition. Cell Metab. 2020, 32, 404–419.e406. [Google Scholar] [CrossRef]
- Gigante, A.; Perrotta, A.M.; Tinti, F.; Assanto, E.; Muscaritoli, M.; Lai, S.; Cianci, R. Assessment of cardiovascular disease in Autosomal dominant polycystic kidney disease. Appl. Sci. 2023, 13, 7175. [Google Scholar] [CrossRef]
- Luciano, R.L.; Dahl, N.K. Extra-renal manifestations of autosomal dominant polycystic kidney disease (ADPKD): Considerations for routine screening and management. Nephrol. Dial. Transplant. 2013, 29, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Gorriz, J.L.; Arroyo, D.; D’Marco, L.; Torra, R.; Tomás, P.; Puchades, M.J.; Panizo, N.; Pantoja, J.; Montomoli, M.; Llisterri, J.L.; et al. Cardiovascular risk factors and the impact on prognosis in patients with chronic kidney disease secondary to autosomal dominant polycystic kidney disease. BMC Nephrol. 2021, 22, 110. [Google Scholar] [CrossRef] [PubMed]
- González Martínez, M.Á.; Hernández García, E.; Morales García, A.I. Autosomal dominant polycystic kidney disease: Cardiovascular risk factor. Med. Clin. 2023, 161, 271–272. [Google Scholar] [CrossRef] [PubMed]
- Perrone, R.D.; Ruthazer, R.; Terrin, N.C. Survival after end-stage renal disease in autosomal dominant polycystic kidney disease: Contribution of extrarenal complications to mortality. Am. J. Kidney Dis. 2001, 38, 777–784. [Google Scholar] [CrossRef]
- Muller, R.U.; Messchendorp, A.L.; Birn, H.; Capasso, G.; Cornec-Le Gall, E.; Devuyst, O.; van Eerde, A.; Guirchoun, P.; Harris, T.; Hoorn, E.J.; et al. An update on the use of tolvaptan for autosomal dominant polycystic kidney disease: Consensus statement on behalf of the ERA Working Group on Inherited Kidney Disorders, the European Rare Kidney Disease Reference Network and Polycystic Kidney Disease International. Nephrol. Dial. Transplant. 2022, 37, 825–839. [Google Scholar] [CrossRef]
- Torres, V.E.; Chapman, A.B.; Devuyst, O.; Gansevoort, R.T.; Grantham, J.J.; Higashihara, E.; Perrone, R.D.; Krasa, H.B.; Ouyang, J.; Czerwiec, F.S.; et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 2012, 367, 2407–2418. [Google Scholar] [CrossRef]
- Menne, J.; Dumann, E.; Haller, H.; Schmidt, B.M.W. Acute kidney injury and adverse renal events in patients receiving SGLT2-inhibitors: A systematic review and meta-analysis. PLoS Med. 2019, 16, e1002983. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Cherney, D.; Postmus, D.; Stefansson, B.V.; Chertow, G.M.; Dwyer, J.P.; Greene, T.; Kosiborod, M.; Langkilde, A.M.; McMurray, J.J.V.; et al. A pre-specified analysis of the Dapagliflozin and Prevention of Adverse Outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial on the incidence of abrupt declines in kidney function. Kidney Int. 2022, 101, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, S.; Liu, Y.; Spichtig, D.; Kapoor, S.; Koepsell, H.; Mohebbi, N.; Segerer, S.; Serra, A.L.; Rodriguez, D.; et al. Targeting of sodium-glucose cotransporters with phlorizin inhibits polycystic kidney disease progression in Han:SPRD rats. Kidney Int. 2013, 84, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, D.; Kapoor, S.; Edenhofer, I.; Segerer, S.; Riwanto, M.; Kipar, A.; Yang, M.; Mei, C.; Wuthrich, R.P. Inhibition of Sodium-Glucose Cotransporter 2 with Dapagliflozin in Han: SPRD Rats with Polycystic Kidney Disease. Kidney Blood Press. Res. 2015, 40, 638–647. [Google Scholar] [CrossRef]
- Kapoor, S.; Rodriguez, D.; Riwanto, M.; Edenhofer, I.; Segerer, S.; Mitchell, K.; Wuthrich, R.P. Effect of Sodium-Glucose Cotransport Inhibition on Polycystic Kidney Disease Progression in PCK Rats. PLoS ONE 2015, 10, e0125603. [Google Scholar] [CrossRef]
- Nishio, S.; Tsuchiya, K.; Nakatani, S.; Muto, S.; Mochizuki, T.; Kawano, H.; Hanaoka, K.; Hidaka, S.; Ichikawa, D.; Ishikawa, E.; et al. A digest from evidence-based Clinical Practice Guideline for Polycystic Kidney Disease 2020. Clin. Exp. Nephrol. 2021, 25, 1292–1302. [Google Scholar] [CrossRef]
- Nakatani, S.; Nakatani, A.; Tsugawa, N.; Yamada, S.; Mori, K.; Imanishi, Y.; Ishimura, E.; Okano, T.; Inaba, M. Fibroblast Growth Factor-23 and Vitamin D Metabolism in Subjects with eGFR >/= 60 mL/min/1.73 m(2). Nephron 2015, 130, 119–126. [Google Scholar] [CrossRef]
- Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus; Seino, Y.; Nanjo, K.; Tajima, N.; Kadowaki, T.; Kashiwagi, A.; Araki, E.; Ito, C.; Inagaki, N.; Iwamoto, Y.; et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J. Diabetes Investig. 2010, 1, 212–228. [Google Scholar] [CrossRef]
- Expert Committee on the, D.; Classification of Diabetes, M. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003, 26 (Suppl. 1), S5–S20. [Google Scholar] [CrossRef]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A.; et al. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef]
- Guideline Working Group, J.S.f.D.T. Clinical practice guideline for the management of secondary hyperparathyroidism in chronic dialysis patients. Ther. Apher. Dial. 2008, 12, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Al Ghali, R.; El-Mallah, C.; Obeid, O.; El-Saleh, O.; Smail, L.; Haroun, D. Urinary minerals excretion among primary schoolchildren in Dubai-United Arab Emirates. PLoS ONE 2021, 16, e0255195. [Google Scholar] [CrossRef] [PubMed]
- Soga, S.; Britz-Cunningham, S.; Kumamaru, K.K.; Malek, S.K.; Tullius, S.G.; Rybicki, F.J. Comprehensive comparative study of computed tomography-based estimates of split renal function for potential renal donors: Modified ellipsoid method and other CT-based methods. J. Comput. Assist. Tomogr. 2012, 36, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.B.; Wei, W. Imaging approaches to patients with polycystic kidney disease. Semin. Nephrol. 2011, 31, 237–244. [Google Scholar] [CrossRef]
- Geraghty, E.M.; Boone, J.M.; McGahan, J.P.; Jain, K. Normal organ volume assessment from abdominal CT. Abdom. Imaging 2004, 29, 482–490. [Google Scholar] [CrossRef]
- Shibata, R.; Taguchi, K.; Kaida, Y.; Fukami, K. Effect of dapagliflozin on the initial estimated glomerular filtration rate dip in chronic kidney disease patients without diabetes mellitus. Clin. Exp. Nephrol. 2023, 27, 44–53. [Google Scholar] [CrossRef]
- Dachy, A.; Decuypere, J.P.; Vennekens, R.; Jouret, F.; Mekahli, D. Is autosomal dominant polycystic kidney disease an early sweet disease? Pediatr. Nephrol. 2022, 37, 1945–1955. [Google Scholar] [CrossRef]
- Li, S.R.; Gulieva, R.E.; Helms, L.; Cruz, N.M.; Vincent, T.; Fu, H.; Himmelfarb, J.; Freedman, B.S. Glucose absorption drives cystogenesis in a human organoid-on-chip model of polycystic kidney disease. Nat. Commun. 2022, 13, 7918. [Google Scholar] [CrossRef]
- Rowe, I.; Chiaravalli, M.; Mannella, V.; Ulisse, V.; Quilici, G.; Pema, M.; Song, X.W.; Xu, H.; Mari, S.; Qian, F.; et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat. Med. 2013, 19, 488–493. [Google Scholar] [CrossRef]
- Riwanto, M.; Kapoor, S.; Rodriguez, D.; Edenhofer, I.; Segerer, S.; Wuthrich, R.P. Inhibition of Aerobic Glycolysis Attenuates Disease Progression in Polycystic Kidney Disease. PLoS ONE 2016, 11, e0146654. [Google Scholar] [CrossRef]
- Chiaravalli, M.; Rowe, I.; Mannella, V.; Quilici, G.; Canu, T.; Bianchi, V.; Gurgone, A.; Antunes, S.; D’Adamo, P.; Esposito, A.; et al. 2-Deoxy-d-Glucose Ameliorates PKD Progression. J. Am. Soc. Nephrol. 2016, 27, 1958–1969. [Google Scholar] [CrossRef] [PubMed]
- Vallon, V. Glucose transporters in the kidney in health and disease. Pflug. Arch. 2020, 472, 1345–1370. [Google Scholar] [CrossRef] [PubMed]
- Rieg, T.; Masuda, T.; Gerasimova, M.; Mayoux, E.; Platt, K.; Powell, D.R.; Thomson, S.C.; Koepsell, H.; Vallon, V. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am. J. Physiol. Renal Physiol. 2014, 306, F188–F193. [Google Scholar] [CrossRef] [PubMed]
- Vallon, V.; Platt, K.A.; Cunard, R.; Schroth, J.; Whaley, J.; Thomson, S.C.; Koepsell, H.; Rieg, T. SGLT2 mediates glucose reabsorption in the early proximal tubule. J. Am. Soc. Nephrol. 2011, 22, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Devuyst, O.; Chapman, A.B.; Gansevoort, R.T.; Higashihara, E.; Perrone, R.D.; Torres, V.E.; Blais, J.D.; Zhou, W.; Ouyang, J.; Czerwiec, F.S. Urine Osmolality, Response to Tolvaptan, and Outcome in Autosomal Dominant Polycystic Kidney Disease: Results from the TEMPO 3:4 Trial. J. Am. Soc. Nephrol. 2017, 28, 1592–1602. [Google Scholar] [CrossRef]
- Yamashita, T.; Konishi, M.; Miyake, A.; Inui, K.; Itoh, N. Fibroblast growth factor (FGF)-23 inhibits renal phosphate reabsorption by activation of the mitogen-activated protein kinase pathway. J. Biol. Chem. 2002, 277, 28265–28270. [Google Scholar] [CrossRef]
- El Ters, M.; Lu, P.; Mahnken, J.D.; Stubbs, J.R.; Zhang, S.; Wallace, D.P.; Grantham, J.J.; Chapman, A.B.; Torres, V.E.; Harris, P.C.; et al. Prognostic Value of Fibroblast Growth Factor 23 in Autosomal Dominant Polycystic Kidney Disease. Kidney Int. Rep. 2021, 6, 953–961. [Google Scholar] [CrossRef]
- Torres, J.A.; Rezaei, M.; Broderick, C.; Lin, L.; Wang, X.; Hoppe, B.; Cowley, B.D., Jr.; Savica, V.; Torres, V.E.; Khan, S.; et al. Crystal deposition triggers tubule dilation that accelerates cystogenesis in polycystic kidney disease. J. Clin. Investig. 2019, 129, 4506–4522. [Google Scholar] [CrossRef]
- Muto, S.; Kawano, H.; Isotani, S.; Ide, H.; Horie, S. Novel semi-automated kidney volume measurements in autosomal dominant polycystic kidney disease. Clin. Exp. Nephrol. 2018, 22, 583–590. [Google Scholar] [CrossRef]
- Sorohan, B.M.; Ismail, G.; Andronesi, A.; Micu, G.; Obrișcă, B.; Jurubiță, R.; Sinescu, L.; Baston, C. A single-arm study of metformin in patients with autosomal dominant polycystic kidney disease. BMC Nephrol. 2019, 20, 276. [Google Scholar] [CrossRef]
- Strubl, S.; Oehm, S.; Torres, J.A.; Grundmann, F.; Haratani, J.; Decker, M.; Vuong, S.; Bhandal, A.K.; Methot, N.; Haynie-Cion, R.; et al. Ketogenic dietary interventions in autosomal dominant polycystic kidney disease-a retrospective case series study: First insights into feasibility, safety and effects. Clin. Kidney J. 2021, 15, 1079–1092. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, T.; Muto, S.; Miyake, M.; Tanaka, T.; Wang, W. Safety and efficacy of Tolvaptan in real-world patients with autosomal dominant polycystic kidney disease- interim results of SLOW-PKD surveillance. Clin. Exp. Nephrol. 2021, 25, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Tahara, A.; Takasu, T.; Yokono, M.; Imamura, M.; Kurosaki, E. Characterization and comparison of sodium-glucose cotransporter 2 inhibitors: Part 2. Antidiabetic effects in type 2 diabetic mice. J. Pharmacol. Sci. 2016, 131, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, V.; Yakovleva, T.; Chu, L.; Tang, W.; Greasley, P.J.; Johansson, S.; Peskov, K.; Helmlinger, G.; Boulton, D.W.; Penland, R.C. Differentiating the Sodium-Glucose Cotransporter 1 Inhibition Capacity of Canagliflozin vs. Dapagliflozin and Empagliflozin Using Quantitative Systems Pharmacology Modeling. CPT Pharmacomet. Syst. Pharmacol. 2020, 9, 222–229. [Google Scholar] [CrossRef]
- Blau, J.E.; Bauman, V.; Conway, E.M.; Piaggi, P.; Walter, M.F.; Wright, E.C.; Bernstein, S.; Courville, A.B.; Collins, M.T.; Rother, K.I.; et al. Canagliflozin triggers the FGF23/1,25-dihydroxyvitamin D/PTH axis in healthy volunteers in a randomized crossover study. JCI Insight 2018, 3, e99123. [Google Scholar] [CrossRef]
- de Jong, M.A.; Petrykiv, S.I.; Laverman, G.D.; van Herwaarden, A.E.; de Zeeuw, D.; Bakker, S.J.L.; Heerspink, H.J.L.; de Borst, M.H. Effects of Dapagliflozin on Circulating Markers of Phosphate Homeostasis. Clin. J. Am. Soc. Nephrol. 2019, 14, 66–73. [Google Scholar] [CrossRef]
- Sakai, T.; Miura, S. Effects of Sodium-Glucose Cotransporter 2 Inhibitor on Vascular Endothelial and Diastolic Function in Heart Failure with Preserved Ejection Fraction―Novel Prospective Cohort Study. Circ. Rep. 2019, 1, 286–295. [Google Scholar] [CrossRef]
- Puckrin, R.; Saltiel, M.P.; Reynier, P.; Azoulay, L.; Yu, O.H.Y.; Filion, K.B. SGLT-2 inhibitors and the risk of infections: A systematic review and meta-analysis of randomized controlled trials. Acta Diabetol. 2018, 55, 503–514. [Google Scholar] [CrossRef]
- Idrizi, A.; Barbullushi, M.; Koroshi, A.; Dibra, M.; Bolleku, E.; Bajrami, V.; Xhaferri, X.; Thereska, N. Urinary tract infections in polycystic kidney disease. Med. Arh. 2011, 65, 213–215. [Google Scholar] [CrossRef]
No. | ||
---|---|---|
Demographics | ||
Male/female | 20 | 9/11 |
Age (years) | 20 | 51 (46–57) |
Body mass index (kg/m2) | 20 | 23.0 (20.9–24.8) |
Systolic blood pressure (mmHg) | 20 | 135 (129–142) |
Diastolic blood pressure (mmHg) | 19 | 86 (79–94) |
Total kidney volume (mL) | 20 | 967 (689–1168) |
Height-adjusted total kidney volume (mL/m) | 20 | 599 (423–707) |
Laboratory data | ||
Blood urea nitrogen (mg/dL) | 20 | 19 (14–22) |
Creatinine (mg/dL) | 20 | 1.13 (0.93–1.34) |
eGFR (mL/min/1.73 m2) | 20 | 47.9 (39.7–56.9) |
Hemoglobin (g/dL) | 20 | 13.1 (12.2–14.4) |
Serum albumin (g/dL) | 20 | 4.4 (4.2–4.5) |
Calcium (mg/dL) | 19 | 9.4 (9.2–9.6) |
Phosphate (mg/dL) | 19 | 3.5 (3.3–3.7) |
HbA1c (%) | 14 | 5.6 (5.4–5.7) |
Plasma glucose (mg/dL) | 15 | 99 (91–133) |
Urinary protein (g/gCr) | 19 | 0.08 (0.04–0.17) |
Urinary phosphate (g/gCr) | 17 | 0.42 (0.30–0.61) |
Complications | ||
Liver cysts, no. (%) | 20 | 20 (100) |
Hypertension, no. (%) | 20 | 14 (70) |
Intracranial aneurysms, no. (%) | 20 | 4 (20) |
Diabetes, no. (%) | 20 | 1 (5.0) |
Medications | ||
Tolvaptan, no. (%) | 20 | 11 (55) |
RAAS inhibitor, no. (%) | 20 | 11 (55) |
Calcium channel blocker, no (%) | 20 | 12 (60) |
Beta blocker, no (%) | 20 | 4 (20) |
Anti-diabetic agent, no (%) | 20 | 1 (5.0) |
Phosphorus binder, no (%) | 20 | 1 (5.0) |
No. | Pre | Post | p Value | |
---|---|---|---|---|
Systolic blood pressure (mmHg) | 17 | 135 (129–143) | 127 (121–137) | 0.192 |
Diastolic blood pressure (mmHg) | 15 | 82 (76–90) | 85 (80–87) | 1.000 |
Total kidney volume (mL) | 20 | 967 (689–1168) | 992 (766–1413) | 0.002 |
Body weight (kg) | 11 | 60 (56–69) | 58 (56–69) | 0.059 |
Height-adjusted total kidney volume (mL/m) | 20 | 599 (423–707) | 617 (446–827) | 0.002 |
Blood urea nitrogen (g/dL) | 20 | 19 (14–22) | 19 (13–21) | 0.733 |
Creatinine (mg/dL) | 20 | 1.13 (0.93–1.34) | 1.37 (1.05–1.55) | <0.001 |
eGFR (mL/min/1.73 m2) | 20 | 47.9 (39.7–56.9) | 40.8 (33.7–44.5) | <0.001 |
Hemoglobin (g/dL) | 20 | 13.1 (12.2–14.4) | 14.0 (13.1–15.1) | <0.001 |
Serum albumin (g/dL) | 20 | 4.4 (4.2–4.5) | 4.3 (4.2–4.5) | 0.818 |
Calcium (mg/dL) | 19 | 9.4 (9.2–9.6) | 9.4 (9.2–9.5) | 0.732 |
Phosphate (mg/dL) | 19 | 3.5 (3.3–3.7) | 3.7 (3.3–4.1) | 0.068 |
Urinary protein (g/gCr) | 19 | 0.08 (0.04–0.17) | 0.06 (0.00–0.24) | 0.118 |
Urinary phosphate (g/gCr) | 16 | 0.39 (0.29–0.56) | 0.45 (0.34–0.56) | 0.722 |
Urinary osmolality (mOsm/kg) | 8 | 329 (126–526) | 266 (124–695) | 0.813 |
Pre-Dapagliflozin | Post-Dapagliflozin | |||||||
---|---|---|---|---|---|---|---|---|
Pt. No. | Gender | Age | BMI | Tolvaptan | eGFR | htTKV | eGFR | htTKV |
1 | F | 49 | 27.1 | + | 24.7 | 441 | 23.8 | 497 |
2 | F | 57 | 23.4 | + | 32.8 | 600 | 27.6 | 616 |
3 | F | 43 | 18.4 | + | 34.8 | 411 | 30.6 | 444 |
4 | F | 30 | 26.7 | − | 35.2 | 676 | 25.2 | 908 |
5 | F | 54 | 18.4 | + | 38.4 | 1047 | 32.1 | 1101 |
6 | M | 45 | 23.7 | − | 43.7 | 680 | 39.7 | 715 |
7 | F | 52 | 26.7 | − | 44.7 | 355 | 38.5 | 363 |
8 | M | 52 | 22.8 | − | 45.3 | 438 | 39.6 | 445 |
9 | M | 48 | 21.1 | − | 46.7 | 419 | 41.0 | 447 |
10 | F | 60 | 21.7 | − | 47.4 | 665 | 40.7 | 672 |
11 | M | 48 | 23.8 | + | 48.3 | 732 | 41.9 | 892 |
12 | F | 62 | 20.9 | + | 48.6 | 243 | 44.8 | 268 |
13 | M | 42 | 28.2 | + | 50.0 | 648 | 40.2 | 743 |
14 | M | 62 | 25.0 | − | 54.0 | 175 | 43.2 | 168 |
15 | F | 52 | 23.1 | + | 56.6 | 592 | 43.3 | 554 |
16 | M | 57 | 22.9 | + | 57.0 | 1059 | 43.6 | 1104 |
17 | M | 49 | 19.9 | + | 60.6 | 434 | 60.2 | 479 |
18 | M | 64 | 19.6 | + | 63.7 | 750 | 58.8 | 830 |
19 | F | 36 | 24.3 | − | 67.3 | 717 | 56.2 | 819 |
20 | F | 47 | 21.6 | − | 70.2 | 598 | 57.9 | 619 |
Clinical Variable | No. | rs | p Value |
---|---|---|---|
Blood urea nitrogen | 20 | −0.076 | 0.750 |
eGFR | 20 | −0.038 | 0.873 |
Hemoglobin | 20 | −0.297 | 0.204 |
Serum albumin | 20 | 0.069 | 0.771 |
Calcium | 19 | −0.230 | 0.343 |
Phosphate | 19 | −0.306 | 0.203 |
Urinary protein | 19 | −0.034 | 0.889 |
Urinary phosphate | 16 | 0.575 | 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morioka, F.; Nakatani, S.; Uedono, H.; Tsuda, A.; Mori, K.; Emoto, M. Short-Term Dapagliflozin Administration in Autosomal Dominant Polycystic Kidney Disease—A Retrospective Single-Arm Case Series Study. J. Clin. Med. 2023, 12, 6341. https://doi.org/10.3390/jcm12196341
Morioka F, Nakatani S, Uedono H, Tsuda A, Mori K, Emoto M. Short-Term Dapagliflozin Administration in Autosomal Dominant Polycystic Kidney Disease—A Retrospective Single-Arm Case Series Study. Journal of Clinical Medicine. 2023; 12(19):6341. https://doi.org/10.3390/jcm12196341
Chicago/Turabian StyleMorioka, Fumiyuki, Shinya Nakatani, Hideki Uedono, Akihiro Tsuda, Katsuhito Mori, and Masanori Emoto. 2023. "Short-Term Dapagliflozin Administration in Autosomal Dominant Polycystic Kidney Disease—A Retrospective Single-Arm Case Series Study" Journal of Clinical Medicine 12, no. 19: 6341. https://doi.org/10.3390/jcm12196341