Intraocular Pressure Variations in Postural Changes: Comparison between Obese and Non-Obese Controls
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, J.M.; Tanna, A.P. Glaucoma. Med. Clin. N. Am. 2021, 105, 493–510. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.W.; Lee, J.W.; Shin, J.H.; Lee, J.S. Relationship between intraocular pressure and parameters of obesity in ocular hypertension. Int. J. Ophthalmol. 2020, 13, 794–800. [Google Scholar] [CrossRef]
- De Bernardo, M.; Capasso, L.; Caliendo, L.; Vosa, Y.; Rosa, N. Intraocular Pressure Evaluation after Myopic Refractive Surgery: A Comparison of Methods in 121 Eyes. Semin. Ophthalmol. 2016, 31, 233–242. [Google Scholar] [CrossRef] [PubMed]
- De Bernardo, M.; Cembalo, G.; Rosa, N. Reliability of Intraocular Pressure Measurement by Goldmann Applanation Tonometry After Refractive Surgery: A Review of Different Correction Formulas. Clin. Ophthalmol. 2020, 14, 2783–2788. [Google Scholar] [CrossRef] [PubMed]
- Heijl, A.; Leske, M.C.; Bengtsson, B.; Hyman, L.; Bengtsson, B.; Hussein, M.; Early Manifest Glaucoma Trial Group. Early Manifest Glaucoma Trial Group. Reduction of intraocular pressure and glaucoma progression: Results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 2002, 120, 1268–1279. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.P.Y.; Broadway, D.C.; Khawaja, A.P.; Yip, J.L.Y.; Garway-Heath, D.F.; Burr, J.M.; Luben, R.; Hayat, S.; Dalzell, N.; Khaw, K.-T.; et al. Glaucoma and intraocular pressure in EPIC-Norfolk eye study: Cross sectional study. BMJ 2017, 358. [Google Scholar] [CrossRef] [PubMed]
- Boland, M.V.; Ervin, A.-M.; Friedman, D.S.; Jampel, H.D.; Hawkins, B.S.; Vollenweider, D.; Chelladurai, Y.; Ward, D.; Suarez-Cuervo, C.; Robinson, K.A. Comparative effectiveness of treatments for open-angle glaucoma: A systematic review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2013, 158, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Song, B.J.; Aiello, L.P.; Pasquale, L.R. Presence and Risk Factors for Glaucoma in Patients with Diabetes. Curr. Diab Rep. 2016, 16, 124. [Google Scholar] [CrossRef]
- Roddy, G.W. Metabolic Syndrome Is Associated with Ocular Hypertension and Glaucoma. J. Glaucoma 2020, 29, 726–731. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, P.; Guan, J.; Lu, Y.; Su, K. Association between glaucoma and obstructive sleep apnea syndrome: A meta-analysis and systematic review. PLoS ONE 2015, 10, e0115625. [Google Scholar] [CrossRef] [PubMed]
- Cheung, N.; Wong, T.Y. Obesity and eye diseases. Surv. Ophthalmol. 2007, 52, 180–195. [Google Scholar] [CrossRef] [PubMed]
- World Health Organizarion. Health Topics, Obesity. Available online: https://www.who.int/health-topics/obesity#tab=tab_1 (accessed on 1st August 2023).
- Van Leiden, H.A.; Dekker, J.M.; Moll, A.C.; Nijpels, G.; Heine, R.J.; Bouter, L.M.; Stehouwer, C.D.A.; Polak, B.C.P. Blood pres-sure, lipids, and obesity are associated with retinopathy: The hoorn study. Diabetes Care 2002, 25, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Glynn, R.J.; Christen, W.G.; Manson, J.E.; Bernheimer, J.; Hennekens, C.H. Body mass index an independent predictor of cataract. Arch. Ophthalmol. 1995, 113, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Seddon, J.M.; Cote, J.; Davis, N.; Rosner, B. Progression of age-related macular degeneration: Association with body mass index, waist circumference and waist-hip ratio. Arch. Ophthalmol. 2003, 121, 785–792. [Google Scholar] [CrossRef]
- Leske, M.C.; Connell, A.M.S.; Wu, S.Y.; Hyman, L.G.; Schachat, A.P. Risk factors for open-angle glaucoma. The Barbados Eye Study. Arch. Ophthalmol. 1995, 113, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Maimonides Emergency Medicine. How to Use the Reichert Tobo-Pen Avia. Available online: https://www.maimonidesem.org/blog/how-to-use-the-reichert-tono-pen-avia#:~:text=Try%20calibrating%20it%20before%20using,hear%205%20beeps%20in%20succession (accessed on 1st August 2023).
- Cione, F.; De Bernardo, M.; Gioia, M.; Oliviero, M.; Santoro, A.G.; Caputo, A.; Capasso, L.; Pagliarulo, S.; Rosa, N. A No-History Multi-Formula Approach to Improve the IOL Power Calculation after Laser Refractive Surgery: Preliminary Results. J. Clin. Med. 2023, 12, 2890. [Google Scholar] [CrossRef] [PubMed]
- De Bernardo, M.; Borrelli, M.; Cembalo, G.; Rosa, N. Intraocular Pressure Measurements in Standing Position with a Rebound Tonometer. Medicina 2019, 55, 701. [Google Scholar] [CrossRef]
- De Bernardo, M.; Salerno, G.; Gioia, M.; Capasso, L.; Russillo, M.C.; Picillo, M.; Erro, R.; Amboni, M.; Barone, P.; Rosa, N.; et al. Intraocular pressure and choroidal thickness postural changes in multiple system atrophy and Parkinson’s disease. Sci. Rep. 2021, 11, 8936. [Google Scholar] [CrossRef]
- Geloneck, M.M.; Crowell, E.L.; Wilson, E.B.; Synder, B.E.; Chuang, A.Z.; Baker, L.A.; Bell, N.P.; Feldman, R.M. Correlation between intraocular pressure and body mass index in the seated and supine positions. J. Glaucoma 2015, 24, 130–134. [Google Scholar] [CrossRef]
- Malihi, M.; Sit, A.J. Effect of head and body position on intraocular pressure. Ophthalmology 2012, 119, 987–991. [Google Scholar] [CrossRef]
- Friberg, T.R.; Sanborn, G.; Weinreb, R.N. Intraocular and episcleral venous pressure increase during inverted posture. Am. J. Ophthalmol. 1987, 103, 523–526. [Google Scholar] [CrossRef]
- Kiel, J.W. Choroidal myogenic autoregulation and intraocular pressure. Exp. Eye Res. 1994, 58, 529–543. [Google Scholar] [CrossRef]
- Bloomfield, G.L.; Ridings, P.C.; Blocher, C.R.B.; Marmarou, A.; Sugerman, H.J. A proposed relationship between increased intra-abdominal, intrathoracic, and intracranial pressure. Crit. Care Med. 1997, 25, 496–503. [Google Scholar] [CrossRef]
- Lam, C.T.; Trope, G.E.; Buys, Y.M. Effect of Head Position and Weight Loss on Intraocular Pressure in Obese Subjects. J. Glaucoma 2017, 26, 107–112. [Google Scholar] [CrossRef]
- Williams, B.I.; Peart, W.S.; Letley, E. Abnormal intraocular pressure control in systemic hypertension and diabetic mellitus. Br. J. Ophthalmol. 1980, 64, 845–851. [Google Scholar] [CrossRef]
- Yamabayashi, S.; Aguilar, R.N.; Hosoda, M.; Tsukahara, S. Postural change of intraocular and blood pressures in ocular hyper-tension and low-tension glaucoma. Br. J. Ophthalmol. 1991, 75, 652–655. [Google Scholar] [CrossRef]
- Leonard, T.J.; Muir, M.G.K.; Kirkby, G.R.; Hitchings, R.A. Ocular hypertension and posture. Br. J. Ophthalmol. 1983, 67, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Jung, S.W.; Nam, G.E.; Do Han, K.; Bok, A.R.; Baek, S.J.; Cho, K.-H.; Choi, Y.H.; Kim, S.-M.; Ju, S.-Y.; et al. High intraocular pressure is associated with cardiometabolic risk factors in South Korean men: Korean National Health and Nutrition Examination Survey, 2008–2010. Eye 2014, 28, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.W.; Lee, S.; Park, C.; Kim, D.J. Elevated intraocular pressure is associated with insulin resistance and metabolic syndrome. Diabets Metab. Res. Rev. 2005, 21, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Hamaguchi, M.; Mori, K.; Takeda, N.; Fukui, M.; Kato, T.; Kawahito, Y.; Kinoshita, S.; Kojima, T. Metabolic Syndrome as a risk factor for high-ocular tension. Int. J. Obes. 2010, 34, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Bouloumié, A.; Marumo, T.; Lafontan, M.; Busse, R. Leptin induces oxidative stress in human endothelial cells. FASEB J. 1999, 13, 1231–1238. [Google Scholar] [CrossRef]
- Karadag, R.; Arslanyilmaz, Z.; Aydin, B.; Hepsen, I.F. Effects of body mass index on intraocular Pressure and ocular pulse amplitude. Int. J. Ophthalmol. 2012, 5, 605–608. [Google Scholar]
- Aslam, D.W.; James, W.P. Obesity. Lancet 2005, 366, 1197–1209. [Google Scholar] [CrossRef] [PubMed]
- Panon, N.; Luangsawang, K.; Rugaber, C.; Tongchit, T.; Thongsepee, N.; Cheaha, D.; Kongjaidee, P.; Changtong, A.; Daradas, A.; Chotimol, P. Correlation between body mass index and ocular parameters. Clin. Ophthalmol. 2019, 13, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Çekiç, B.; Toslak, İ.E.; Doğan, B.; Çakır, T.; Erol, M.K.; Bülbüller, N. Effects of obesity on retrobulbar flow hemodynamics: Color Doppler ultrasound evaluation. Arq. Bras. Oftalmol. 2017, 80, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Stojanov, O.; Stokic, E.; Sveljo, O.; Naumovic, N. The influence of retrobulbar adipose tissue volume upon intraocular pressure in obesity. Vojnosanit. Pregl. 2013, 70, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Kaskan, B.; Ramezani, K.; Harris, A.; Siesky, B.; Olinde, C.; WuDunn, D.; Eikenberry, J.; Tobe, L.A.; Racette, L. Differences in ocular blood flow between people of African and European descent with healthy eyes. J. Glaucoma 2016, 25, 709–715. [Google Scholar] [CrossRef]
- Buys, Y.M.; Alasbali, T.; Jin, Y.P. Effect of sleeping in a head-up position on intraocular pressure in patients with glaucoma. Ophthalmology 2010, 117, 1348–5123. [Google Scholar] [CrossRef] [PubMed]
- Berk, T.A.; Yang, P.T.; Chan, C.C. Prospective comparative analysis of 4 different intraocular pressure measurement techniques and their effects on pressure readings. J. Glaucoma 2016, 25, e897–e904. [Google Scholar] [CrossRef]
- Wong, B.; Parikh, D.; Rosen, L.; Gorski, M.; Angelilli, A.; Shih, C. Comparison of Disposable Goldmann Applanation Tonometer, ICare ic100, and Tonopen XL to Standards of Care Goldmann Nondisposable Applanation Tonometer for Measuring Intraocular Pressure. J. Glaucoma 2018, 27, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Young, M.T.; Phelan, M.J.; Nguyen, N.T. A Decade Analysis of Trends and Outcomes of Male vs Female Patients Who Underwent Bariatric Surgery. J. Am. Coll. Surg. 2016, 222, 226–231. [Google Scholar] [CrossRef] [PubMed]
- De Bernardo, M.; Abbinante, G.; Borrelli, M.; Di Stasi, M.; Cione, F.; Rosa, N. Intraocular Pressure Measurements in Standing, Sitting, and Supine Position: Comparison between Tono-Pen Avia and Icare Pro Tonometers. J. Clin. Med. 2022, 11, 6234. [Google Scholar] [CrossRef] [PubMed]
Parameter | Standing 5′ | Sitting | Supine | Supine 5′ | Immediately Standing |
---|---|---|---|---|---|
IOP in different Positions—Obese Subjects | |||||
Mean ± SD | 15.01 ± 2.29 mmHg | 15.52 ± 2.84 mmHg | 17.13 ± 3.27 mmHg | 17.25 ± 2.95 mmHg | 15.29 ± 2.38 mmHg |
CI 95% | 15.01–15.95 mmHg | 14.93–16.11 mmHg | 16.45–17.81 mmHg | 16.64–17.86 mmHg | 14.80–15.79 mmHg |
Median | 15.00 mmHg | 15.00 mmHg | 16.00 mmHg | 16.50 mmHg | 15.00 mmHg |
Min/Max | 11.00/21.00 mmHg | 10.00/27.00 mmHg | 11.00/26.00 mmHg | 13.00/28.00 mmHg | 10.00/24.00 mmHg |
IQR | 3.00 mmHg | 3.00 mmHg | 4.00 mmHg | 4.00 mmHg | 2.00 mmHg |
KS | 0.094 | 0.002 | 0.010 | 0.001 | 0.039 |
IOP in different Positions—Non obese Controls | |||||
Mean ± SD | 14.88 ± 2.83 mmHg | 14.31 ± 2.27 mmHg | 15.60 ± 2.90 mmHg | 15.81 ± 2.70 mmHg | 14.23 ± 2.17 mmHg |
CI | 14.05/15.70 mmHg | 13.65/14.97 mmHg | 14.76/16.45 mmHg | 15.03/16.60 mmHg | 13.60/14.86 mmHg |
Median | 15.00 mmHg | 14.00 mmHg | 16.00 mmHg | 16.00 mmHg | 14.00 mmHg |
Min/Max | 10.00–21.00 mmHg | 9.00–18.00 mmHg | 10.00–21.00 mmHg | 10.00–20.00 mmHg | 9.00–19.00 mmHg |
IQR | 5.00 mmHg | 3.00 mmHg | 5.00 mmHg | 4.00 mmHg | 3.00 mmHg |
KS | 0.736 | 0.059 | 0.370 | 0.215 | 0.716 |
IOP in Different Positions—Obese Subjects | ||||||||
Parameter | Standing 5′ | Sitting | Supine | Supine 5′ | Immediately Standing | |||
BMI | 0.207 | 0.231 | 0.365 | 0.432 | 0.316 | |||
Height | 0.086 | 0.044 | 0.051 | 0.048 | 0.040 | |||
Weight | 0.196 | 0.083 | 0.291 | 0.355 | 0.264 | |||
ΔIOP in Different Positions—Obese Subjects | ||||||||
Parameter | ΔIOP Supine/ Standing | ΔIOP Supine/ Standing 5′ | ΔIOP Supine/ Sitting | ΔIOP Supine/ Immediately Standing | ΔIOP Supine 5′/ Standing | ΔIOP Supine 5′/ Standing 5′ | ΔIOP Supine 5′/ Sitting | ΔIOP Supine 5′/ Immediately Standing |
BMI | 0.330 | 0.314 | 0.325 | 0.131 | 0.282 | 0.311 | 0.291 | 0.227 |
Height | 0.076 | −0.040 | −0.053 | −0.046 | 0.109 | −0.012 | 0.018 | 0.023 |
Weight | 0.282 | 0.202 | 0.195 | 0.60 | 0.252 | 0.208 | 0.204 | 0.163 |
Parameter | ΔIOP Supine/ Standing 5′ | ΔIOP Supine/ Sitting | ΔIOP Supine/ Immediately Standing | ΔIOP Supine 5′/ Standing 5′ | ΔIOP Supine 5′/ Sitting | ΔIOP Supine 5′/ Immediately Standing |
---|---|---|---|---|---|---|
ΔIOP in different Positions—Obese Subjects | ||||||
Mean ± SD | 1.83 ± 2.47 mmHg | 2.02 ± 2.88 mmHg | 2.08 ± 2.55 mmHg | 1.96 ± 2.44 mmHg | 2.15 ± 2.74 mmHg | 2.21 ± 2.17 mmHg |
CI 95% | 1.12–2.55 mmHg | 1.18–2.86 mmHg | 1.34–2.82 mmHg | 1.25–2.67 mmHg | 1.35–2.94 mmHg | 1.58–2.84 mmHg |
Median | 1.50 mmHg | 1.50 mmHg | 1.50 mmHg | 2.00 mmHg | 2.00 mmHg | 2.00 mmHg |
Min/Max | −3.00/9.00 mmHg | −7.00/11.00 mmHg | −2.00/10.00 mmHg | −3.00/8.00 mmHg | −7.00/8.00 mmHg | −1.00/7.00 mmHg |
IQR | 3.00 mmHg | 2.00 mmHg | 3.00 mmHg | 3.00 mmHg | 3.00 mmHg | 4.00 mmHg |
KS | 0.062 | 0.049 | 0.068 | 0.008 | 0.041 | 0.101 |
ΔIOP in different Positions—Non-obese Controls | ||||||
Mean ± SD | 0.73 ± 1.83 mmHg | 1.29 ± 1.54 mmHg | 1.38 ± 1.90 mmHg | 0.94 ± 1.90 mmHg | 1.50 ± 1.64 mmHg | 1.58 ± 1.76 mmHg |
CI | 0.20–1.26 mmHg | 0.84–1.74 mmHg | 0.82–1.93 mmHg | 0.39–1.49 mmHg | 1.02–1.98 mmHg | 1.07–2.09 mmHg |
Median | 1.00 mmHg | 1.00 mmHg | 1.00 mmHg | 1.00 mmHg | 1.00 mmHg | 1.00 mmHg |
Min/Max | −3.00/5.00 mmHg | −3.00/5.00 mmHg | −3.00/5.00 mmHg | −3.00/6.00 mmHg | −2.00/4.00 mmHg | −3.00/6.00 mmHg |
IQR | 3.00 mmHg | 2.00 mmHg | 2.00 mmHg | 2.00 mmHg | 3.00 mmHg | 3.00 mmHg |
KS | 0.140 | 0.093 | 0.105 | 0.291 | 0.146 | 0.204 |
ΔIOP Patients – ΔIOP controls | 1.10 mmHg | 0.73 mmHg | 0.70 mmHg | 1.02 mmHg | 0.65 mmHg | 0.63 mmHg |
P | 0.015 | 0.272 | 0.280 | 0.027 | 0.336 | 0.213 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Bernardo, M.; Pilone, V.; Di Paola, I.; Cione, F.; Cembalo, G.; Calabrese, P.; Rosa, N. Intraocular Pressure Variations in Postural Changes: Comparison between Obese and Non-Obese Controls. J. Clin. Med. 2023, 12, 5883. https://doi.org/10.3390/jcm12185883
De Bernardo M, Pilone V, Di Paola I, Cione F, Cembalo G, Calabrese P, Rosa N. Intraocular Pressure Variations in Postural Changes: Comparison between Obese and Non-Obese Controls. Journal of Clinical Medicine. 2023; 12(18):5883. https://doi.org/10.3390/jcm12185883
Chicago/Turabian StyleDe Bernardo, Maddalena, Vincenzo Pilone, Ilenia Di Paola, Ferdinando Cione, Giovanni Cembalo, Pietro Calabrese, and Nicola Rosa. 2023. "Intraocular Pressure Variations in Postural Changes: Comparison between Obese and Non-Obese Controls" Journal of Clinical Medicine 12, no. 18: 5883. https://doi.org/10.3390/jcm12185883
APA StyleDe Bernardo, M., Pilone, V., Di Paola, I., Cione, F., Cembalo, G., Calabrese, P., & Rosa, N. (2023). Intraocular Pressure Variations in Postural Changes: Comparison between Obese and Non-Obese Controls. Journal of Clinical Medicine, 12(18), 5883. https://doi.org/10.3390/jcm12185883