Factors Associated with Refractive Prediction Error after Phacotrabeculectomy
Abstract
:1. Introduction
2. Materials and Methods
Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steinmetz, J.D.; Bourne, R.R.; Briant, P.S.; Flaxman, S.R.; Taylor, H.R.; Jonas, J.B.; Abdoli, A.A.; Abrha, W.A.; Abualhasan, A.; Abu-Gharbieh, E.G.; et al. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to vision 2020: The right to sight: An analysis for the global burden of disease study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef] [PubMed]
- Krupin, T.; Feitl, M.E.; Bishop, K.I. Postoperative intraocular pressure rise in open-angle glaucoma patients after cataract or combined cataract-filtration surgery. Ophthalmology 1989, 96, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Murchison, J.F., Jr.; Shields, M.B. Limbal-based vs fornix-based conjunctival flaps in combined extracapsular cataract surgery and glaucoma filtering procedure. Am. J. Ophthalmol. 1990, 109, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Vaideanu, D.; Mandal, K.; Hildreth, A.; Fraser, S.G.; Phelan, P.S. Visual and refractive outcome of one-site phacotrabeculectomy compared with temporal approach phacoemulsification. Clin. Ophthalmol. 2008, 2, 569–574. [Google Scholar] [CrossRef]
- Chan, P.P.; Li, E.Y.; Tsoi, K.K.F.; Kwong, Y.Y.; Tham, C.C. Cost-effectiveness of phacoemulsification versus combined phacotrabeculectomy for treating primary angle closure glaucoma. J. Glaucoma 2017, 26, 911–922. [Google Scholar] [CrossRef]
- El Sayed, Y.M.; Elhusseiny, A.M.; Albalkini, A.S.; El Sheikh, R.H.; Osman, M.A. Mitomycin c-augmented phacotrabeculectomy versus phacoemulsification in primary angle-closure glaucoma: A randomized controlled study. J. Glaucoma 2019, 28, 911–915. [Google Scholar] [CrossRef]
- Francis, B.A.; Wang, M.; Lei, H.; Du, L.; Minckler, D.; Green, R.; Roland, C. Changes in axial length following trabeculectomy and glaucoma drainage device surgery. Br. J. Ophthalmol. 2005, 89, 17–20. [Google Scholar] [CrossRef]
- Claridge, K.; Galbraith, J.; Karmel, V.; Bates, A. The effect of trabeculectomy on refraction, keratometry and corneal topography. Eye 1995, 9, 292–298. [Google Scholar] [CrossRef]
- Husain, R.; Li, W.; Gazzard, G.; Foster, P.J.; Chew, P.T.; Oen, F.T.; Phillips, R.; Khaw, P.T.; Seah, S.K.; Aung, T. Longitudinal changes in anterior chamber depth and axial length in asian subjects after trabeculectomy surgery. Br. J. Ophthalmol. 2013, 97, 852–856. [Google Scholar] [CrossRef]
- Kook, M.S.; Kim, H.B.; Lee, S.U. Short-term effect of mitomycin-c augmented trabeculectomy on axial length and corneal astigmatism. J. Cataract Refract. Surg. 2001, 27, 518–523. [Google Scholar] [CrossRef]
- Law, S.K.; Mansury, A.M.; Vasudev, D.; Caprioli, J. Effects of combined cataract surgery and trabeculectomy with mitomycin c on ocular dimensions. Br. J. Ophthalmol. 2005, 89, 1021–1025. [Google Scholar] [CrossRef] [PubMed]
- Bae, H.W.; Lee, Y.H.; Kim, D.W.; Lee, T.; Hong, S.; Seong, G.J.; Kim, C.Y. Effect of trabeculectomy on the accuracy of intraocular lens calculations in patients with open-angle glaucoma. Clin. Exp. Ophthalmol. 2016, 44, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Lee, C.E.; Park, J.H.; Seo, S.; Lee, K.W. Refractive error induced by combined phacotrabeculectomy. J. Korean Ophthalmol. Soc. 2018, 59, 1173–1180. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Su, C.-C.; Wang, T.-H.; Huang, J.-Y. Refractive outcomes of cataract surgery in patients receiving trabeculectomy—A comparative study of combined and sequential approaches. J. Formos. Med. Assoc. 2021, 120, 415–421. [Google Scholar] [CrossRef]
- Ong, C.; Nongpiur, M.; Peter, L.; Perera, S.A. Combined approach to phacoemulsification and trabeculectomy results in less ideal refractive outcomes compared with the sequential approach. J. Glaucoma 2016, 25, e873–e878. [Google Scholar] [CrossRef]
- Tzu, J.H.; Shah, C.T.; Galor, A.; Junk, A.K.; Sastry, A.; Wellik, S.R. Refractive outcomes of combined cataract and glaucoma surgery. J. Glaucoma 2015, 24, 161–164. [Google Scholar] [CrossRef]
- Chan, J.C.; Lai, J.S.; Tham, C.C. Comparison of postoperative refractive outcome in phacotrabeculectomy and phacoemulsification with posterior chamber intraocular lens implantation. J. Glaucoma 2006, 15, 26–29. [Google Scholar] [CrossRef]
- Olsen, T. Calculation of intraocular lens power: A review. Acta Ophthalmol. Scand. 2007, 85, 472–485. [Google Scholar] [CrossRef]
- Kane, J.X.; Van Heerden, A.; Atik, A.; Petsoglou, C. Intraocular lens power formula accuracy: Comparison of 7 formulas. J. Cataract Refract. Surg. 2016, 42, 1490–1500. [Google Scholar] [CrossRef]
- Cashwell, L.F.; Martin, C.A. Axial length decrease accompanying successful glaucoma filtration surgery. Ophthalmology 1999, 106, 2307–2311. [Google Scholar] [CrossRef]
- Kane, J.X.; Chang, D.F. Intraocular lens power formulas, biometry, and intraoperative aberrometry: A review. Ophthalmology 2021, 128, e94–e114. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Eom, Y.; Yoon, E.G.; Choi, Y.; Song, J.S.; Jeong, J.W.; Park, S.K.; Kim, H.M. Algorithmic intraocular lens power calculation formula selection by keratometry, anterior chamber depth and axial length. Acta Ophthalmol. 2022, 100, e701–e709. [Google Scholar] [CrossRef] [PubMed]
- Iijima, K.; Kamiya, K.; Iida, Y.; Kasahara, M.; Shoji, N. Predictability of combined cataract surgery and trabeculectomy using barrett universal ⅱ formula. PLoS ONE 2022, 17, e0270363. [Google Scholar] [CrossRef] [PubMed]
- Melles, R.B.; Holladay, J.T.; Chang, W.J. Accuracy of intraocular lens calculation formulas. Ophthalmology 2018, 125, 169–178. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, M.; Huang, Y.; Chen, B.; Lam, D.S.; Congdon, N. Corneal hysteresis is correlated with reduction in axial length after trabeculectomy. Curr. Eye Res. 2012, 37, 381–387. [Google Scholar] [CrossRef]
- Haddad, J.S.; Rocha, K.M.; Yeh, K.; Waring, G.O.T. Lens anatomy parameters with intraoperative spectral-domain optical coherence tomography in cataractous eyes. Clin. Ophthalmol. 2019, 13, 253–260. [Google Scholar] [CrossRef]
- Khan, A.M.; Waldner, D.M.; Luong, M.; Sanders, E.; Crichton, A.; Ford, B.A. Stabilization of refractive error and associated factors following small incision phacoemulsification cataract surgery. BMC Ophthalmol. 2022, 22, 13. [Google Scholar] [CrossRef]
- Ostri, C.; Holfort, S.K.; Fich, M.S.; Riise, P. Automated refraction is stable 1 week after uncomplicated cataract surgery. Acta Ophthalmol. 2018, 96, 149–153. [Google Scholar] [CrossRef]
- Kang, Y.S.; Sung, M.S.; Heo, H.; Ji, Y.S.; Park, S.W. Long-term outcomes of prediction error after combined phacoemulsification and trabeculectomy in glaucoma patients. BMC Ophthalmol. 2021, 21, 60. [Google Scholar] [CrossRef]
- Chung, J.K.; Wi, J.M.; Lee, K.B.; Ahn, B.H.; Hwang, Y.H.; Kim, M.; Jung, J.J.; Yoo, Y.C. Long-term comparison of postoperative refractive outcomes between phacotrabeculectomy and phacoemulsification. J. Cataract Refract. Surg. 2018, 44, 964–970. [Google Scholar] [CrossRef]
Phacotrabeculectomy (n = 48) | Phacoemulsification (n = 48) | p Value | |
---|---|---|---|
Age, years | 66.1 ± 11.1 | 68.9 ± 10.0 | 0.198 a |
Sex (Male/Female) | 19/29 | 20/28 | 0.835 b |
AL, mm (range) | 23.5 ± 1.5 (21.64–30.92) | 23.6 ± 1.6 (21.73–30.47) | 0.814 a |
ACD, mm | 2.77 ± 0.54 | 2.99 ± 0.54 | 0.047 a |
Average K, Diopter | 44.3 ± 1.6 | 44.4 ± 1.4 | 0.722 a |
IOL type (four-haptic/two-haptic) | 17/31 | 5/43 | 0.004 |
Preoperative IOP, mmHg | 27.6 ± 11.5 | 13.0 ± 3.9 | <0.001 a |
IOP, mmHg | 16.5 ± 12.1 | 2.1 ± 2.6 | <0.001 a |
Prediction error, Diopter | −0.23 ± 0.59 | −0.31 ± 0.31 | 0.436 |
Absolute prediction error, Diopter | 0.51 ± 0.37 | 0.38 ± 0.22 | 0.033 |
Diagnosis | OAG (39.6%) ACG (60.4%) |
Univariable Analysis | Multivariable Analysis (Model 1) a | Multivariable Analysis (Model 2) a | |||||||
---|---|---|---|---|---|---|---|---|---|
Coefficient | 95% CI | p | Coefficient | 95% CI | p | Coefficient | 95% CI | p | |
Age, years | −0.001 | −0.007, 0.005 | 0.765 | ||||||
Female (vs. male sex) | −0.062 | −0.190, 0.066 | 0.341 | ||||||
AL, mm | 0.046 | 0.006, 0.087 | 0.026 | 0.053 | 0.013, 0.092 | 0.010 | 0.047 | 0.008, 0.087 | 0.020 |
ACD, mm | 0.031 | −0.086, 0.148 | 0.598 | ||||||
Average K, Diopter | −0.009 | −0.051, 0.034 | 0.694 | ||||||
Four-haptic IOL (vs. two-haptic IOL) | 0.056 | −0.094, 0.206 | 0.460 | ||||||
IOP, mmHg | 0.006 | 0.001, 0.012 | 0.030 | 0.007 | 0.002, 0.012 | 0.012 | |||
Phacotrabeculectomy (vs. control group) | 0.135 | 0.011, 0.258 | 0.033 | 0.138 | 0.018, 0.259 | 0.025 |
Univariable Analysis | Multivariable Analysis (Model 1) a | Multivariable Analysis (Model 2) a | |||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
Age, years | 1.030 | 0.982, 1.081 | 0.220 | ||||||
Female (vs. male sex) | 1.784 | 0.655, 4.856 | 0.257 | ||||||
AL, mm | 0.570 | 0.341, 0.953 | 0.032 | 0.647 | 0.385, 1.086 | 0.100 | |||
ACD,mm | 0.180 | 0.062, 0.517 | 0.001 | 0.284 | 0.093, 0.868 | 0.027 | |||
Average K, Diopter | 1.186 | 0.862, 1.631 | 0.296 | ||||||
Four-haptic IOL (vs. two-haptic IOL) | 0.763 | 0.540, 1.079 | 0.126 | ||||||
IOP, mmHg | 1.072 | 1.028, 1.118 | 0.001 | 1.077 | 1.013, 1.144 | 0.017 | 1.062 | 0.998, 1.130 | 0.057 |
Phacotrabeculectomy (vs. control group) | 0.821 | −0.153, 1.795 | 0.099 | 0.709 | 0.167, 3.001 | 0.641 | 0.690 | 0.162, 2.941 | 0.616 |
Univariable Analysis | Multivariable Analysis (Model 1) a | Multivariable Analysis (Model 2) a | |||||||
---|---|---|---|---|---|---|---|---|---|
Coefficient | 95% CI | p | Coefficient | 95% CI | p | Coefficient | 95% CI | p | |
Age, years | 0.007 | −0.008, 0.023 | 0.359 | ||||||
Female (vs. male sex) | 0.402 | 0.068, 0.736 | 0.019 | 0.146 | −0.206, 0.498 | 0.407 | 0.296 | −0.063, 0.654 | 0.103 |
AL, mm | −0.195 | −0.297, −0.094 | <0.001 | −0.213 | −0.346, −0.080 | 0.002 | |||
ACD, mm | −0.418 | −0.720, −0.115 | 0.008 | −0.472 | −0.957, 0.013 | 0.056 | |||
Average K, Diopter | 0.064 | −0.043, 0.171 | 0.236 | ||||||
Four-haptic IOL (vs. two-haptic IOL) | 0.054 | −0.513, 0.622 | 0.848 | ||||||
IOP, mmHg | 0.012 | −0.002, 0.026 | 0.084 | 0.011 | −0.004, 0026 | 0.133 | 0.005 | −0.011, 0.020 | 0.556 |
ACG (vs. OAG) | 0.294 | −0.049, 0.638 | 0.091 | −0.277 | −0.709, 0.155 | 0.203 | −0.273 | −0.814, 0.268 | 0.315 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.H.; Kim, S.H.; Oh, S.; Lee, K.M. Factors Associated with Refractive Prediction Error after Phacotrabeculectomy. J. Clin. Med. 2023, 12, 5706. https://doi.org/10.3390/jcm12175706
Shin JH, Kim SH, Oh S, Lee KM. Factors Associated with Refractive Prediction Error after Phacotrabeculectomy. Journal of Clinical Medicine. 2023; 12(17):5706. https://doi.org/10.3390/jcm12175706
Chicago/Turabian StyleShin, Jung Hye, Seok Hwan Kim, Sohee Oh, and Kyoung Min Lee. 2023. "Factors Associated with Refractive Prediction Error after Phacotrabeculectomy" Journal of Clinical Medicine 12, no. 17: 5706. https://doi.org/10.3390/jcm12175706
APA StyleShin, J. H., Kim, S. H., Oh, S., & Lee, K. M. (2023). Factors Associated with Refractive Prediction Error after Phacotrabeculectomy. Journal of Clinical Medicine, 12(17), 5706. https://doi.org/10.3390/jcm12175706