Involvement of APOE in Incidence of Revascularization in Patients Affected by Peripheral Arterial Disease: A Prospective Study from Southern Italy
Abstract
:1. Introduction
2. Material and Methods
2.1. Genetic Analysis
2.2. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Comorbidities and Treatment
3.3. Outcomes
3.4. Subanalysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 14 December 2020).
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.R.; Hamburg, N.M.; Kinlay, S.; et al. 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2017, 135, e726–e779. [Google Scholar] [PubMed]
- Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [CrossRef] [PubMed] [Green Version]
- Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association. Available online: https://www.ahajournals.org/doi/epub/10.1161/CIR.0000000000000757 (accessed on 14 December 2020).
- Olinic, D.M.; Spinu, M.; Olinic, M.; Homorodean, C.; Tataru, D.A.; Liew, A.; Fowkes, G.; Catalano, M. Epidemiology of peripheral artery disease in Europe: VAS Educational Paper. Int. Angiol. 2018, 37, 327–334. [Google Scholar] [CrossRef]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Leeper Nicholas, J.; Kullo Iftikhar, J.; Cooke John, P. Genetics of Peripheral Artery Disease. Circulation 2012, 125, 3220–3228. [Google Scholar] [CrossRef] [Green Version]
- Safarova, M.S.; Fan, X.; Austin, E.E.; van Zuydam, N.; Hopewell, J.; Schaid, D.J.; Kullo, I.J. Targeted Sequencing Study to Uncover Shared Genetic Susceptibility Between Peripheral Artery Disease and Coronary Heart Disease-Brief Report. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1227–1233. [Google Scholar] [CrossRef] [Green Version]
- Forster, R.; Liew, A.; Bhattacharya, V.; Shaw, J.; Stansby, G. Gene Therapy for Peripheral Arterial Disease. Cochrane Database Syst. Rev. 2018, 2018, CD012058. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517203/ (accessed on 3 August 2023). [CrossRef]
- Xu, H.; Li, H.; Liu, J.; Zhu, D.; Wang, Z.; Chen, A.; Zhao, Q. Meta-analysis of apolipoprotein E gene polymorphism and susceptibility of myocardial infarction. PLoS ONE 2014, 9, e104608. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, R.; Likidlilid, A.; Peerapatdit, T.; Tresukosol, D.; Srisuma, S.; Ratanamaneechat, S.; Sriratanasathavorn, C. Apolipoprotein E gene polymorphism: Effects on plasma lipids and risk of type 2 diabetes and coronary artery disease. Cardiovasc. Diabetol. 2012, 11, 36. [Google Scholar] [CrossRef] [Green Version]
- Davignon, J. Apolipoprotein E and Atherosclerosis: Beyond Lipid Effect. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 267–269. [Google Scholar] [CrossRef] [Green Version]
- Poredoš, P.; Blinc, A. Arteriosclerosis and atherosclerosis of the lower limbs and cardiovascular risk. Atherosclerosis 2022, 340, 44–45. [Google Scholar] [CrossRef] [PubMed]
- Schönknecht, Y.B.; Crommen, S.; Stoffel-Wagner, B.; Coenen, M.; Fimmers, R.; Stehle, P.; Ramirez, A.; Egert, S. APOE ɛ4 Is Associated with Postprandial Inflammation in Older Adults with Metabolic Syndrome Traits. Nutrients 2021, 13, 3924. [Google Scholar] [CrossRef] [PubMed]
- Mahley, R.W. Apolipoprotein E: From cardiovascular disease to neurodegenerative disorders. J. Mol. Med. 2016, 94, 739–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastroianno, S.; Di Stolfo, G.; Seripa, D.; Pacilli, M.A.; Paroni, G.; Coli, C.; Urbano, M.; D’arienzo, C.; Gravina, C.; Potenza, D.R.; et al. Role of the APOE Polymorphism in Carotid and Lower Limb Revascularization: A Prospective Study from Southern Italy. PLoS ONE 2017, 12, e0171055. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5332070/ (accessed on 3 August 2023). [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef] [Green Version]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modif. Diet. Ren. Dis. Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- Aboyans, V.; Ricco, J.B.; Bartelink, M.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: The European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef] [Green Version]
- Seripa, D.; Signori, E.; Gravina, C.; Matera, M.G.; Rinaldi, M.; Fazio, V.M. Simple and effective determination of apolipoprotein E genotypes by positive/negative polymerase chain reaction products. Diagn. Mol. Pathol. 2006, 15, 180–185. [Google Scholar] [CrossRef]
- Resnick, H.E.; Rodriguez, B.; Havlik, R.; Ferrucci, L.; Foley, D.; Curb, J.D.; Harris, T.B. Apo E genotype, diabetes, and peripheral arterial disease in older men: The Honolulu Asia-aging study. Genet. Epidemiol. 2000, 19, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Koopal, C.; Geerlings, M.I.; Muller, M.; de Borst, G.; Algra, A.; van der Graaf, Y.; Visseren, F.L. The relation between apolipoprotein E (APOE) genotype and peripheral artery disease in patients at high risk for cardiovascular disease. Atherosclerosis 2016, 246, 187–192. [Google Scholar] [CrossRef]
- Hu, Y.; Ling, T.; Yu, M.; Bai, Y.; Feng, T.; Zhang, P.; Wang, Y. Apolipoprotein E Gene Polymorphism, Glycated Hemoglobin, and Peripheral Arterial Disease Risk in Chinese Type 2 Diabetic Patients. Dis. Markers 2020, 2020, 6040525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lumsden, A.L.; Mulugeta, A.; Zhou, A.; Hyppönen, E. Apolipoprotein E (APOE) genotype-associated disease risks: A phenome-wide, registry-based, case-control study utilising the UK Biobank. EBioMedicine 2020, 59, 102954. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.W.; Shi, J.K.; Li, Y.; Yang, Y.; Ren, S.P. Association between ApoE Polymorphism and Type 2 Diabetes: A Meta-Analysis of 59 Studies. Biomed. Environ. Sci. 2019, 32, 823–838. [Google Scholar] [PubMed]
- Czaplińska, M.; Ćwiklińska, A.; Sakowicz-Burkiewicz, M.; Wieczorek, E.; Kuchta, A.; Kowalski, R.; Kortas-Stempak, B.; Dębska-Ślizień, A.; Jankowski, M.; Król, E.; et al. Apolipoprotein E gene polymorphism and renal function are associated with apolipoprotein E concentration in patients with chronic kidney disease. Lipids Health Dis. 2019, 18, 60. [Google Scholar] [CrossRef] [Green Version]
- Lyall, D.M.; Celis-Morales, C.; Lyall, L.M.; Graham, C.; Graham, N.; Mackay, D.F.; Strawbridge, R.J.; Ward, J.; Gill, J.M.R.; Sattar, N.; et al. Assessing for interaction between APOE ε4, sex, and lifestyle on cognitive abilities. Neurology 2019, 92, e2691–e2698. [Google Scholar] [CrossRef]
- Griessenauer, C.J.; Farrell, S.; Sarkar, A.; Zand, R.; Abedi, V.; Holland, N.; Michael, A.; Cummings, C.L.; Metpally, R.; Carey, D.J.; et al. Genetic susceptibility to cerebrovascular disease: A systematic review. J. Cereb. Blood Flow. Metab. 2018, 38, 1853–1871. [Google Scholar] [CrossRef]
- Liu, Y.L.; Zhang, H.M.; Pan, H.M.; Bao, Y.H.; Xue, J.; Wang, T.C.; Dong, X.C.; Li, X.L.; Bao, H.G. The relationship between apolipoprotein E gene ε2/ε3/ε4 polymorphism and breast cancer risk: A systematic review and meta-analysis. Onco Targets Ther. 2016, 9, 1241–1249. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Xue, H.; Wang, H.; Ma, Y.; Liu, J.; Chen, Y. The association of apolipoprotein E (APOE) gene polymorphisms with atherosclerosis susceptibility: A meta-analysis. Minerva Cardioangiol. 2016, 64, 47–54. [Google Scholar]
- Artieda, M.; Gañán, A.; Cenarro, A.; García-Otín, A.L.; Jericó, I.; Civeira, F.; Pocoví, M. Association and linkage disequilibrium analyses of APOE polymorphisms in atherosclerosis. Dis. Markers 2008, 24, 65–72. [Google Scholar] [CrossRef]
- Pitchika, A.; Markus, M.R.P.; Schipf, S.; Teumer, A.; Van der Auwera, S.; Nauck, M.; Dörr, M.; Felix, S.; Grabe, H.-J.; Völzke, H.; et al. Effects of Apolipoprotein E polymorphism on carotid intima-media thickness, incident myocardial infarction and incident stroke. Sci. Rep. 2022, 12, 5142. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhang, L.; Luo, L.; Zhang, S.; Yang, S.; Yao, H.; Zhang, L.; Lu, X.; Feng, W. Effect of Apolipoprotein E ε4 Allele on the Progression of Carotid Atherosclerosis Through Apolipoprotein Levels. Pharmgenomics Pers. Med. 2022, 15, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.-H.; Choi, J.-S.; Rhee, J.-A.; Lee, Y.-H.; Nam, H.-S.; Jeong, S.-K.; Park, K.-S.; Kim, H.-Y.; Ryu, S.-Y.; Choi, S.-W.; et al. APOE polymorphism and carotid atherosclerosis in Korean population: The Dong-gu Study and the Namwon Study. Atherosclerosis 2014, 232, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Debette, S.; Lambert, J.-C.; Gariépy, J.; Fievet, N.; Tzourio, C.; Dartigues, J.-F.; Ritchie, K.; Dupuy, A.-M.; Alpérovitch, A.; Ducimetière, P.; et al. New insight into the association of apolipoprotein E genetic variants with carotid plaques and intima-media thickness. Stroke 2006, 37, 2917–2923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Z.; Cao, Y.; Li, L.; Zhang, G. The Association Between Apolipoprotein E Gene Polymorphism and In-Stent Restenosis After Extracranial and Intracranial Artery Stenting. J. Stroke Cerebrovasc. Dis. 2021, 30, 105424. [Google Scholar] [CrossRef]
- Yan, L.; Liu, J.; Chen, Y.; Chen, R.; Zhai, Q.; Chen, C.; Liu, L.; Zhao, Y.; Zhao, L. The Relationship Between APOE Gene Polymorphism and In-stent Restenosis After Stenting at the Beginning of the Vertebral Artery. World Neurosurg. 2022, 158, e277–e282. [Google Scholar] [CrossRef]
- Gonzalez-Aldaco, K.; Roman, S.; Torres-Reyes, L.A.; Panduro, A. Association of Apolipoprotein e2 Allele with Insulin Resistance and Risk of Type 2 Diabetes Mellitus Among an Admixed Population of Mexico. Diabetes Metab. Syndr. Obes. 2020, 13, 3527–3534. [Google Scholar] [CrossRef]
- Mozos, I.; Gug, C.; Mozos, C.; Stoian, D.; Pricop, M.; Jianu, D. Associations between Intrinsic Heart Rate, P Wave and QT Interval Durations and Pulse Wave Analysis in Patients with Hypertension and High Normal Blood Pressure. Int. J. Environ. Res. Public Health 2020, 17, 4350. [Google Scholar] [CrossRef]
- Kim, B.J.; Lee, H.A.; Kim, N.H.; Kim, M.W.; Kim, B.S.; Kang, J.H. The association of albuminuria, arterial stiffness, and blood pressure status in nondiabetic, nonhypertensive individuals. J. Hypertens. 2011, 29, 2091–2098. [Google Scholar] [CrossRef]
- Ason, B.; van der Hoorn, J.W.A.; Chan, J.; Lee, E.; Pieterman, E.J.; Nguyen, K.K.; Di, M.; Shetterly, S.; Tang, J.; Yeh, W.C.; et al. PCSK9 inhibition fails to alter hepatic LDLR, circulating cholesterol, and atherosclerosis in the absence of ApoE. J. Lipid Res. 2014, 55, 2370–2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavori, H.; Giunzioni, I.; Predazzi, I.M.; Plubell, D.; Shivinsky, A.; Miles, J.; Devay, R.M.; Liang, H.; Rashid, S.; Linton, M.F.; et al. Human PCSK9 promotes hepatic lipogenesis and atherosclerosis development via apoE- and LDLR-mediated mechanisms. Cardiovasc. Res. 2016, 110, 268–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
All Patients | APOE Genotypes | |||||
---|---|---|---|---|---|---|
ε2/ε3 | p | ε3/ε3 | p | ε3/ε4 + ε4/ε4 | ||
Number of subjects | 332 | 33 | 231 | 68 | ||
Age (years) | 70.86 ± 7.95 | 71.70 ± 8.49 | 0.53 | 70.79 ± 7.71 | 0.91 | 70.68 ± 8.56 |
Gender (male/female) | 259/73 | 23/10 | 0.19 | 184/47 | 0.57 | 52/16 |
BMI (kg/m2) a | 28.38 ± 4.08 | 29.83 ± 3.50 | 0.10 | 28.57 ± 4.22 | 0.004 | 27.07 ± 3.49 |
Waist circumference (cm) | 100.73 ± 10.54 | 102.73 ± 8.92 | 0.42 | 101.18 ± 10.81 | 0.08 | 98.15 ± 12.41 |
Waist–hip ratio | 0.96 ± 0.07 | 0.98 ± 0.06 | 0.18 | 0.96 ± 0.06 | 0.92 | 0.96 ± 0.09 |
Systolic blood pressure (mmHg) | 133.64 ± 17.94 | 133.37 ± 15.21 | 0.90 | 132.91 ± 17.73 | 0.23 | 136.30 ± 19.91 |
Diastolic blood pressure (mmHg) | 79.52 ± 6.50 | 80.67 ± 7.20 | 0.24 | 79.10 ± 6.24 | 0.20 | 80.38 ± 6.99 |
Pulse pressure (mmHg) | 54.12 ± 15.68 | 52.69 ± 13.77 | 0.73 | 53.81 ± 15.70 | 0.40 | 55.91 ± 16.62 |
Fasting glucose (mg/dL) | 118.37 ± 39.44 | 120.91 ± 43.80 | 0.58 | 117.14 ± 35.94 | 0.45 | 121.21 ± 47.88 |
HOMA-IR | 5.17 ± 10.02 | 9.70 ± 24.31 | 0.18 | 4.96 ± 7.59 | 0.33 | 4.12 ± 5.13 |
Triglycerides (mg/dL) | 120.74 ± 56.75 | 143.64 ± 75.20 | 0.07 | 120.42 ± 56.60 | 0.16 | 110.54 ± 42.77 |
Total Ch (mg/dL) | 166.37 ± 40.77 | 164.18 ± 53.16 | 0.82 | 166.34 ± 39.04 | 0.82 | 167.57 ± 40.15 |
HDL-Ch (mg/dL) | 48.61 ± 12.36 | 49.21 ± 11.91 | 0.72 | 48.40 ± 12.50 | 0.73 | 49.00 ± 12.26 |
LDL-Ch (mg/dL) | 94.46 ± 35.29 | 86.87 ± 47.61 | 0.22 | 94.93 ± 32.99 | 0.72 | 96.60 ± 35.86 |
Serum creatine (mg/dL) | 1.05 ± 0.57 | 1.03 ± 0.37 | 0.79 | 1.06 ± 0.62 | 0.80 | 1.04 ± 0.43 |
eGFR (mL/min/1.73 m2) | 81.79 ± 28.41 | 79.54 ± 23.51 | 0.63 | 82.40 ± 29.778 | 0.68 | 80.92 ± 25.53 |
Microalbuminuria (µg/min) | 70.14 ± 159.97 | 82.85 ± 152.58 | 0.72 | 71.49 ± 163.44 | 0.60 | 71.49 ± 163.44 |
PWV (m/s) | 14.66 ± 5.42 | 16.89 ± 3.98 | 0.18 | 14.77 ± 5.51 | 0.23 | 13.27 ± 5.36 |
PR interval (ms) | 163.93 ± 27.51 | 169.60 ± 26.38 | 0.35 | 163.65 ± 27.41 | 0.81 | 162.57 ± 28.66 |
QRS interval (ms) | 100.73 ± 21.51 | 104.70 ± 24.16 | 0.35 | 100.26 ± 22.27 | 0.89 | 100.69 ± 21.43 |
QTc interval (ms) | 415.34 ± 24.12 | 420.74 ± 26.75 | 0.29 | 415.12 ± 23.91 | 0.69 | 413.61 ± 23.88 |
Heart rate (bpm) | 70.08 ± 10.67 | 73.10 ± 8.53 | 0.14 | 70.12 ± 10.76 | 0.30 | 68.53 ± 11.13 |
LVEF (%) | 58.30 ± 5.80 | 58.58 ± 4.92 | 0.67 | 58.12 ± 5.86 | 0.42 | 58.79 ± 6.09 |
LVMI (gr/m2) | 76.83 ± 19.97 | 82.84 ± 20.58 | 0.16 | 76.99 ± 20.12 | 0.28 | 73.46 ± 18.81 |
All Patients | APOE Genotypes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
ε2/ε3 | p | ε3/ε3 | p | ε3/ε4 + ε4/ε4 | ||||||
Comorbidities | ||||||||||
Hypertension | 294 | (88.6%) | 28 | (84.8%) | 0.51 | 205 | (88.7%) | 0.82 | 61 | (89.7%) |
Dyslipidemia | 270 | (82.3%) | 29 | (87.9%) | 0.43 | 187 | (82.4%) | 0.57 | 54 | (79.4%) |
Type-2 diabetes | 156 | (47.0%) | 16 | (48.5%) | 0.85 | 108 | (46.8%) | 0.96 | 32 | (47.1%) |
Smoking | 75 | (22.6%) | 7 | (21.2%) | 0.78 | 54 | (23.4%) | 0.63 | 14 | (20.6%) |
Myocardial infarction | 134 | (40.4%) | 10 | (30.3%) | 0.25 | 94 | (40.7%) | 0.61 | 30 | (44.1%) |
Stroke | 52 | (15.7%) | 4 | (12.1%) | 0.45 | 40 | (17.3%) | 0.27 | 8 | (11.8%) |
Carotid revascularization | 98 | (29.5%) | 12 | (36.4%) | 0.30 | 64 | (27.7%) | 0.45 | 22 | (32.4%) |
Lower limb revascularization | 72 | (21.7%) | 5 | (15.2%) | 0.41 | 49 | (21.2%) | 0.36 | 18 | (26.5%) |
Myocardial revascularization | 124 | (37.5%) | 9 | (27.3%) | 0.24 | 87 | (37.8%) | 0.60 | 28 | (41.2%) |
Cancer | 53 | (16%) | 4 | (12.1%) | 0.39 | 42 | (18.2%) | 0.12 | 7 | (10.3%) |
Medical treatments | ||||||||||
ARBs | 134 | (40.4%) | 14 | (42.4%) | 0.63 | 88 | (38.1%) | 0.18 | 32 | (47.1%) |
ACE inhibitors | 124 | (37.3%) | 9 | (27.3%) | 0.12 | 95 | (41.1%) | 0.08 | 20 | (29.4%) |
Calcium channel blockers | 99 | (29.8%) | 13 | (39.4%) | 0.15 | 63 | (27.3%) | 0.29 | 23 | (33.8%) |
β-blockers | 90 | (27.1%) | 6 | (18.2%) | 0.26 | 63 | (27.3%) | 0.56 | 21 | (30.1%) |
Diuretics | 149 | (44.9%) | 20 | (60.6%) | 0.07 | 102 | (44.2%) | 0.51 | 27 | (39.7%) |
Antiplatelet | 291 | (87.7%) | 28 | (84.8%) | 0.41 | 207 | (89.6%) | 0.10 | 56 | (82.4%) |
Lipid-lowering drug | 288 | (86.7%) | 29 | (87.9%) | 0.94 | 202 | (87.4%) | 0.44 | 57 | (83.8%) |
Antidiabetic therapy | 111 | (33.4%) | 11 | (33.3%) | 0.96 | 76 | (32.9%) | 071 | 24 | (35.3%) |
APOE Genotypes | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
All Patients | ε2/ε3 | ε3/ε3 | ε3/ε4 + ε4/ε4 | |||||||||
p | HR (95% CI) | p | HR (95% CI) | |||||||||
Cardiovascular events | ||||||||||||
MACE | 78 | (23.5%) | 2 | (18.2%) | 0.588 | 1.262 (0.543–2.931) | 55 | (23.8%) | 0.744 | 1.095 (0.635–1.886) | 17 | (25.0%) |
Revascularizations | ||||||||||||
Myocardial | 40 | (12.0%) | 2 | (6.1%) | 0.223 | 2.425 (0.583–10.095) | 34 | (14.7%) | 0.074 | 0.389 (0.138–1.096) | 4 | (5.9%) |
Carotid | 26 | (7.8%) | 4 | (12.1%) | 0.153 | 0.442 (0.144–1.356) | 13 | (5.6%) | 0.036 | 2.485 (1.062–5.814) | 9 | (13.2%) |
Lower limb | 19 | (5.7%) | 1 | (3.0%) | 0.816 | 1.276 (0.163–9.986) | 10 | (4.3%) | 0.032 | 2.765 (1.091–7.008) | 8 | (11.8%) |
Total peripheral | 42 | (12.7%) | 4 | (12.1%) | 0.555 | 0.725 (0.250–2.106) | 22 | (9.5%) | 0.002 | 2.705 (1.420–5.151) | 16 | (13.5%) |
Fatal events | ||||||||||||
Total death | 85 | (25.6%) | 12 | (36.4%) | 0.127 | 0.616 (0.331–1.147) | 58 | (25.1%) | 0.609 | 0.862 (0.489–1.521) | 15 | (22.1%) |
Cardiovasculardeath | 24 | (7.2%) | 2 | (6.1%) | 0.992 | 1.008 (0.232–4.388) | 17 | (7.4%) | 0.927 | 1.048 (0.384–2.862) | 5 | (7.4%) |
Cancer death | 28 | (8.4%) | 5 | (15.2%) | 0.107 | 0.440 (0.162–1.195) | 17 | (7.4%) | 0.738 | 1.172 (0.462–2.974) | 6 | (8.8%) |
Revascularizations | ||||||||
---|---|---|---|---|---|---|---|---|
Myocardial | Carotid | Lower Limb | Total Peripheral | |||||
HR Adjustment (95% CI), p | ||||||||
Age and gender | 0.390 (0.138–1.099) | 0.075 | 2.523 (1.081–5.934) | 0.032 | 2.684 (1.057–6.814) | 0.038 | 2.719 (1.426–5.185) | 0.002 |
BMI | 0.380 (0.134–1.080) | 0.069 | 2.523 (1.062–5.994) | 0.036 | 2.744 (1.059–7.109) | 0.038 | 2.705 (1.402–5.220) | 0.003 |
Diabetes | 0.390 (0.138–1.099) | 0.075 | 2.492 (1.065–5.830) | 0.035 | 2.924 (1.153–7.415) | 0.024 | 2.720 (1.428–5.180) | 0.002 |
Hypertension | 0.385 (0.137–1.087) | 0.071 | 2.467 (1.054–5.773) | 0.037 | 2.781 (1.097–7.049) | 0.031 | 2.703 (1.419–5.148) | 0.002 |
Smoking | 0.390 (0.138–1.100) | 0.075 | 2.487 (1.062–5.823) | 0.036 | 2.838 (1.119–7.196) | 0.028 | 2.721 (1.428–5.185) | 0.002 |
Dyslipidemia | 0.396 (0.140–1.118) | 0.080 | 2.514 (1.074–5.883) | 0.034 | 2.724 (1.074–6.905) | 0.035 | 2.700 (1.418–5.143) | 0.003 |
LDL-Ch | 0.397 (0.141–1.121) | 0.081 | 2.166 (0.897–5.228) | 0.086 | 2.720 (1.012–7.311) | 0.047 | 2.650 (1.365–5.144) | 0.004 |
Triglyceride | 0.401 (0.142–1.134) | 0.085 | 2.212 (0.914–5.353) | 0.078 | 2.611 (0.971–7.027) | 0.057 | 2.589 (1.337–5.049) | 0.005 |
Age, gender, BMI, diabetes, hypertension, smoking and dyslipidemia | 0.364 (0.127–10.45) | 0.060 | 2.661 (1.117–6.341) | 0.027 | 2.810 (1.044–7.569) | 0.041 | 2.730 (1.404–5.309) | 0.003 |
APOE Genotypes | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Patients | ε2/ε3 | ε3/ε3 | ε3/ε4 + ε4/ε4 | |||||||||
p | HR (95% CI) | p | HR (95% CI) | |||||||||
Revascularized at baseline | ||||||||||||
Cardiovascular events | ||||||||||||
MACE | 76 | (35.0%) | 6 | (30.0%) | 0.262 | 2.263 (0.543–9.419) | 53 | (35.8%) | 0.99 | 1.004 (0.581–1.734) | 17 | (34.7%) |
Revascularizations | ||||||||||||
Myocardial | 40 | (18.4%) | 2 | (10.0%) | 0.26 | 2.263 (0.543–9.419) | 34 | (23.0%) | 0.036 | 0.329 (0.117–0.928) | 4 | (8.2%) |
Carotid | 26 | (7.8%) | 4 | (20.0%) | 0.12 | 0.413 (0.134–1.266) | 13 | (8.8%) | 0.05 | 2.529 (0.998–6.410) | 9 | (18.4%) |
Lower limb | 19 | (5.7%) | 1 | (5.0%) | 0.87 | 0.193 (0.152–9.336) | 10 | (6.8%) | 0.06 | 2.232 (0.953–5.227) | 8 | (16.3%) |
Total peripheral | 42 | (12.7%) | 4 | (20.0%) | 0.47 | 0.677 (0.233–1.966) | 22 | (14.9%) | 0.005 | 2.521 (1.322–4.008) | 16 | (32.7%) |
Fatal events | ||||||||||||
Total death | 66 | (19.9%) | 10 | (50%) | 0.05 | 0.501 (0.253–1.002) | 44 | (29.7%) | 0.56 | 0.829 (0.438–1.569) | 12 | (24.5%) |
Cardiovascular death | 17 | (7.8%) | 2 | (10.0%) | 0.53 | 0.615 (0.136–2.782) | 11 | (7.4%) | 0.89 | 1.084 (0.345–3.405) | 4 | (8.2%) |
Cancer death | 22 | (10.1%) | 3 | (15.0%) | 0.44 | – | 14 | (9.5%) | 0.81 | 1.321 (0.137–12.71) | 5 | (10.2%) |
Non-revascularized at baseline | ||||||||||||
Cardiovascular events | ||||||||||||
MACE | 2 | (1.7%) | 0 | (0%) | 0.57 | – | 2 | (2.4%) | 0.49 | – | 0 | (0%) |
Revascularizations | ||||||||||||
Myocardial | 0 | (0%) | 0 | (0%) | – | – | 0 | (0%) | – | – | 0 | (0%) |
Carotid | 0 | (0%) | 0 | (0%) | – | – | 0 | (0%) | – | – | 0 | (0%) |
Lower limb | 0 | (0%) | 0 | (0%) | – | – | 0 | (0%) | – | – | 0 | (0%) |
Total peripheral | 0 | (0%) | 0 | (0%) | – | – | 0 | (0%) | – | – | 0 | (0%) |
Fatal events | ||||||||||||
Total death | 19 | (16.5%) | 2 | (15.4%) | 0.95 | 1.049 (0.238–4.621) | 14 | (16.9%) | 0.82 | 0.862 (0.247–3.007) | 3 | (16.5%) |
Cardiovascular death | 6 | (5.2%) | 0 | (0%) | 0.58 | – | 5 | (6.0%) | 0.89 | 0.86 (0.100–7.361) | 1 | (5.3%) |
Cancer death | 6 | (5.2%) | 0 | (0%) | 0.36 | – | 5 | (6.0%) | 0.89 | 1.073 (0.387–2.980) | 1 | (5.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Stolfo, G.; Pacilli, M.A.; Seripa, D.; De Luca, G.; Urbano, M.; Coli, C.; Gravina, C.; Greco, A.; Potenza, D.R.; Salvatori, M.P.; et al. Involvement of APOE in Incidence of Revascularization in Patients Affected by Peripheral Arterial Disease: A Prospective Study from Southern Italy. J. Clin. Med. 2023, 12, 5178. https://doi.org/10.3390/jcm12165178
Di Stolfo G, Pacilli MA, Seripa D, De Luca G, Urbano M, Coli C, Gravina C, Greco A, Potenza DR, Salvatori MP, et al. Involvement of APOE in Incidence of Revascularization in Patients Affected by Peripheral Arterial Disease: A Prospective Study from Southern Italy. Journal of Clinical Medicine. 2023; 12(16):5178. https://doi.org/10.3390/jcm12165178
Chicago/Turabian StyleDi Stolfo, Giuseppe, Michele Antonio Pacilli, Davide Seripa, Giovanni De Luca, Maria Urbano, Carlo Coli, Carolina Gravina, Antonio Greco, Domenico Rosario Potenza, Mauro Pellegrino Salvatori, and et al. 2023. "Involvement of APOE in Incidence of Revascularization in Patients Affected by Peripheral Arterial Disease: A Prospective Study from Southern Italy" Journal of Clinical Medicine 12, no. 16: 5178. https://doi.org/10.3390/jcm12165178
APA StyleDi Stolfo, G., Pacilli, M. A., Seripa, D., De Luca, G., Urbano, M., Coli, C., Gravina, C., Greco, A., Potenza, D. R., Salvatori, M. P., Schernthaner, G.-H., Poredos, P., Catalano, M., & Mastroianno, S. (2023). Involvement of APOE in Incidence of Revascularization in Patients Affected by Peripheral Arterial Disease: A Prospective Study from Southern Italy. Journal of Clinical Medicine, 12(16), 5178. https://doi.org/10.3390/jcm12165178