ETView SL versus Macintosh Direct Laryngoscope for Endotracheal Intubation Amid Simulated COVID-19 Cardiac Arrest: A Randomized Crossover Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scenario Design
- (a)
- ETVIEW SL (ETView Ltd., Misgav, Israel) as a representative of tubes with integrated cameras;
- (b)
- Laryngoscope with a Macintosh blade no. 3 (MAC; HEINE Optotechnik GmbH & Co., KG, Gilching, Germany). Due to the high prevalence of this method, the Macintosh laryngoscope was chosen as the gold standard for intubation.
2.2. Outcomes
2.3. Statistical Analysis
3. Results
3.1. Intubation without PPE-AGP Scenario
3.2. Intubation with PPE-AGP Scenario
3.3. Impact of PPE-AGP on Intubation with ETView
3.4. Impact of PPE-AGP on Intubation with Macintosh Laryngoscope
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haileamlak, A. The impact of COVID-19 on health and health systems. Ethiop. J. Health Sci. 2021, 31, 1073–1074. [Google Scholar] [PubMed]
- Galanis, P.; Vraka, I.; Fragkou, D.; Bilali, A.; Kaitelidou, D. Impact of personal protective equipment use on health care workers’ physical health during the COVID-19 pandemic: A systematic review and meta-analysis. Am. J. Infect. Control 2021, 49, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Smereka, J.; Szarpak, L.; Filipiak, K. Modern medicine in COVID-19 era. Disaster Emerg. Med. J. 2020, 5, 103–105. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Jiang, B.; Behringer, E.C.; Hofmeyr, R.; Myatra, S.N.; Wong, D.T.; Sullivan, E.P.O.; Hagberg, C.A.; McGuire, B.; Baker, P.A.; et al. Controversies in airway management of COVID-19 patients: Updated information and international expert consensus recommendations. Br. J. Anaesth. 2021, 126, 361–366. [Google Scholar] [CrossRef]
- Jackson, T.; Deibert, D.; Wyatt, G.; Durand-Moreau, Q.; Adisesh, A.; Khunti, K.; Khunti, S.; Smith, S.; Chan, X.H.S.; Ross, L.; et al. Classification of aerosol-generating procedures: A rapid systematic review. BMJ Open Respir. Res. 2020, 7, e000730. [Google Scholar] [CrossRef]
- Leal, J.; Farkas, B.; Mastikhina, L.; Flanagan, J.; Skidmore, B.; Salmon, C.; Dixit, D.; Smith, S.; Tsekrekos, S.; Lee, B.; et al. Risk of transmission of respiratory viruses during aerosol-generating medical procedures (AGMPs) revisited in the COVID-19 pandemic: A systematic review. Antimicrob. Resist. Infect. Control 2022, 11, 102. [Google Scholar] [CrossRef]
- Kecskés, A.; Kobi, L.; Togay, E.; Burak, K.; Torlinski, T.; Pruc, M.; Szarpak, L. The impact of COVID-19 on airway management in prehospital resuscitation. Disaster Emerg. Med. J. 2020, 5, 216–217. [Google Scholar]
- Lázaro-Pérez, C.; Martínez-López, J.Á.; Gómez-Galán, J.; Fernández-Martínez, M.D.M. COVID-19 Pandemic and Death Anxiety in Security Forces in Spain. Int. J. Environ. Res. Public. Health 2020, 17, 7760. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.E.; Benger, J.R. Endotracheal intubation during out-of-hospital cardiac arrest: New insights from recent clinical trials. J. Am. Coll. Emerg. Physicians Open 2019, 1, 24–29. [Google Scholar] [CrossRef]
- Orser, B.A. Recommendations for Endotracheal Intubation of COVID-19 Patients. Anesth. Analg. 2020, 130, 1109–1110. [Google Scholar] [CrossRef]
- Yao, W.; Wang, T.; Jiang, B.; Gao, F.; Wang, L.; Zheng, H.; Xiao, W.; Yao, S.; Mei, W.; Chen, X.; et al. Emergency tracheal intubation in 202 patients with COVID-19 in Wuhan, China: Lessons learnt and international expert recommendations. Br. J. Anaesth. 2020, 125, e28–e37. [Google Scholar] [CrossRef] [PubMed]
- Foley, L.J.; Urdaneta, F.; Berkow, L.; Aziz, M.F.; Baker, P.A.; Jagannathan, N.; Rosenblatt, W.; Straker, T.M.; Wong, D.T.; Hagberg, C.A. Difficult Airway Management in Adult Coronavirus Disease 2019 Patients: Statement by the Society of Airway Management. Anesth. Analg. 2021, 133, 876–890. [Google Scholar] [CrossRef] [PubMed]
- Matuszewski, M.; Zadorozna, Z.; Doan, S.; Chabowski, L. Videolaryngoscopy: The relevance in patients with COVID-19. Disaster Emerg. Med. J. 2023, 8, 128–129. [Google Scholar] [CrossRef]
- Kriege, M.; Piepho, T.; Buggenhagen, H.; Noppens, R.R. Comparison of GlideScope® Cobalt and McGrath® Series 5 video laryngoscopes with direct laryngoscopy in a simulated regurgitation/aspiration scenario. Med. Klin. Intensivmed. Notfmed. 2015, 110, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Piegeler, T.; Roessler, B.; Goliasch, G.; Fischer, H.; Schlaepfer, M.; Lang, S.; Ruetzler, K. Evaluation of six different airway devices regarding regurgitation and pulmonary aspiration during cardio-pulmonary resuscitation (CPR)—A human cadaver pilot study. Resuscitation 2016, 102, 70–74. [Google Scholar] [CrossRef]
- Brown, E.; Chan, L.M. Should chest compressions be considered an aerosol-generating procedure? A literature review in response to recent guidelines on personal protective equipment for patients with suspected COVID-19. Clin. Med. 2020, 20, e154–e159. [Google Scholar] [CrossRef]
- Goraya, H.; Meena, N.; Jagana, R. Personal Protective Equipment Efficiency in Healthcare Emergencies: A Single-Center Experience. Cureus 2022, 14, e27823. [Google Scholar] [CrossRef]
- Saracoglu, A.; Saracoglu, K.T. VivaSight: A new era in the evolution of tracheal tubes. J. Clin. Anesth. 2016, 33, 442–449. [Google Scholar] [CrossRef]
- Szarpak, L. Laryngoscopes for difficult airway scenarios: A comparison of the available devices. Expert. Rev. Med. Devices 2018, 15, 631–643. [Google Scholar] [CrossRef]
- Truszewski, Z.; Krajewski, P.; Fudalej, M.; Smereka, J.; Frass, M.; Robak, O.; Nguyen, B.; Ruetzler, K.; Szarpak, L. A comparison of a traditional endotracheal tube versus ETView SL in endotracheal intubation during different emergency conditions: A randomized, crossover cadaver trial. Medicine 2016, 95, e5170. [Google Scholar] [CrossRef]
- Al-Jeabory, M.; Borkowska, G.O.; Olecka, A.; Goss, A.; Wieczorek, W.; Evrin, T. Mechanical chest compression devices as an option for out-of-hospital cardiac arrest in COVID-19 pandemic. Disaster Emerg. Med. J. 2021, 6, 50–51. [Google Scholar] [CrossRef]
- Urbaniak, G.C.; Plous, S. Research Randomizer. Version 4.0. Computer Software. 2013. Available online: http://www.randomizer.org/ (accessed on 12 September 2022).
- Cattano, D.; Schober, P.; Krage, R.; van Rijn, C.; van Groeningen, D.; Loer, S.A.; Schwarte, L.A. Cormack-Lehane classification revisited. Br. J. Anaesth. 2010, 105, 698–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castle, N.; Owen, R.; Hann, M.; Clark, S.; Reeves, D.; Gurney, I. Impact of chemical, biological, radiation, and nuclear personal protective equipment on the performance of low- and high-dexterity airway and vascular access skills. Resuscitation 2009, 80, 1290–1295. [Google Scholar] [CrossRef] [PubMed]
- Sule, H.; Kulkarni, M.; Sugalski, G.; Murano, T. Maintenance of Skill Proficiency for Emergency Skills with and without Adjuncts Despite the Use of Level C Personal Protective Equipment. Cureus 2020, 12, e7433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobi, L.; Bialka, S.; Czyzewski, L.; Smerek, J.; Dabrowski, M.; Dabrowska, A.; Ladny, J.R.; Ruetzler, K.; Szarpak, L. Video laryngoscopy for endotracheal intubation of adult patients with suspected/ confirmed COVID-19. A systematic review and meta-analysis of randomized controlled trials. Disaster Emerg. Med. J. 2020, 5, 85–97. [Google Scholar]
- Schumacher, J.; Arlidge, J.; Dudley, D.; Sicinski, M.; Ahmad, I. The impact of respiratory protective equipment on difficult airway management: A randomised, crossover, simulation study. Anaesthesia 2020, 75, 1301–1306. [Google Scholar] [CrossRef]
- Drozd, A.; Smereka, J.; Filipiak, K.J.; Jaguszewski, M.; Ładny, J.R.; Bielski, K.; Nadolny, K.; Ruetzler, K.; Szarpak, Ł. Intraosseous versus intravenous access while wearing personal protective equipment: A meta-analysis in the era of COVID-19. Kardiol. Pol. 2021, 79, 277–286. [Google Scholar] [CrossRef]
- Smereka, J.; Szarpak, L.; Filipiak, K.J.; Jaguszewski, M.; Ladny, J.R. Which intravascular access should we use in patients with suspected/confirmed COVID-19? Resuscitation 2020, 151, 8–9. [Google Scholar] [CrossRef]
- Malysz, M.; Dabrowski, M.; Böttiger, B.W.; Smereka, J.; Kulak, K.; Szarpak, A.; Jaguszewski, M.; Filipiak, K.J.; Ladny, J.R.; Ruetzler, K.; et al. Resuscitation of the patient with suspected/confirmed COVID-19 when wearing personal protective equipment: A randomized multicenter crossover simulation trial. Cardiol. J. 2020, 27, 497–506. [Google Scholar] [CrossRef]
- Giwangkancana, G.; Oktaliansyah, E.; Hardianti Saputri, R.A. Management of Anaesthesia for a High-Risk Aerosol-Generating Procedure in a Paediatric Patient with COVID-19. Case Rep. Anesthesiol. 2021, 2021, 5568725. [Google Scholar] [CrossRef]
- Sorbello, M.; Rosenblatt, W.; Hofmeyr, R.; Greif, R.; Urdaneta, F. Aerosol boxes and barrier enclosures for airway management in COVID-19 patients: A scoping review and narrative synthesis. Br. J. Anaesth. 2020, 125, 880–894. [Google Scholar] [CrossRef]
- Merajikhah, A.; Beigi-khoozani, A.; Soleimani, M. Risk of spreading delta coronavirus to operating room personnel after COVID-19 vaccination. Disaster Emerg. Med. J. 2021, 6, 206–207. [Google Scholar] [CrossRef]
- Iyer, A.; Tikka, T.; Calder, N.; Qamar, S.N.; Chin, A. Effect of Personal Protection Equipment (PPE) and the Distance From the Eye Piece of Surgical Microscope on the Field of Vision; An Experimental Study. Otol. Neurotol. 2021, 42, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Foula, M.S.; Nwesar, F.A.; Oraby, E.H.; Foula, A.; Alarfaj, M.A.; Foula, H.S.; Mohamed, N.E. Does wearing personal protective equipment affect the performance and decision of physicians? A cross-sectional study during the COVID-19 pandemic. Ann. Med. Surg. 2021, 67, 102488. [Google Scholar] [CrossRef] [PubMed]
- Hunt, A.; Ting, J.; Schweitzer, D.; Laakso, E.L.; Stewart, I. Personal protective equipment for COVID-19 among healthcare workers in an emergency department: An exploratory survey of workload, thermal discomfort and symptoms of heat strain. Emerg. Med. Australas. 2023, 35, 483–488. [Google Scholar] [CrossRef]
- Fang, Z.; Mao, Y.; Zhu, Y.; Lu, J.; Zheng, Z.; Chen, X. Human thermal physiological response of wearing personal protective equipment: An educational building semi-open space experimental investigation. Sci. Total Environ. 2023, 877, 162779. [Google Scholar] [CrossRef]
- Li, S.; Hsieh, T.C.; Rehder, K.J.; Nett, S.; Kamat, P.; Napolitano, N.; Turner, D.A.; Adu-Darko, M.; Jarvis, J.D.; Krawiec, C.; et al. Frequency of Desaturation and Association with Hemodynamic Adverse Events During Tracheal Intubations in PICUs. Pediatr. Crit. Care Med. 2018, 19, e41–e50. [Google Scholar] [CrossRef]
- Andersen, L.W.; Holmberg, M.J.; Berg, K.M.; Donnino, M.W.; Granfeldt, A. In-Hospital Cardiac Arrest: A Review. JAMA 2019, 321, 1200–1210. [Google Scholar] [CrossRef]
- Oh, S.K.; Lim, B.G.; Kim, Y.S.; Lee, J.H.; Won, Y.J. ETView VivaSight single lumen vs. conventional intubation in simulated studies: A systematic review and meta-analysis. J. Int. Med. Res. 2020, 48, 300060520925653. [Google Scholar] [CrossRef]
- Gadek, L.; Szarpak, L.; Konge, L.; Dabrowski, M.; Telecka-Gadek, D.; Maslanka, M.; Drela, W.L.; Jachowicz, M.; Iskrzycki, L.; Bialka, S.; et al. Direct vs. Video-Laryngoscopy for Intubation by Paramedics of Simulated COVID-19 Patients under Cardiopulmonary Resuscitation: A Randomized Crossover Trial. J. Clin. Med. 2021, 10, 5740. [Google Scholar] [CrossRef]
- Guru, S.; Singh, N.; Sahoo, S.; Hansda, U.; Mohanty, C. Comparison of endotracheal intubation with Macintosh versus King Vision video laryngoscope using coronavirus disease 2019 barrier box on manikins: A randomized crossover study. Turk. J. Emerg. Med. 2022, 22, 149–155. [Google Scholar]
- Gawlowski, P.; Smereka, J.; Madziala, M.; Cohen, B.; Ruetzler, K.; Szarpak, L. Comparison of the ETView Single Lumen and Macintosh laryngoscopes for endotracheal intubation in an airway manikin with immobilized cervical spine by novice paramedics: A randomized crossover manikin trial. Medicine 2017, 96, e5873. [Google Scholar] [CrossRef]
- Castle, N.; Pillay, Y.; Spencer, N. Comparison of six different intubation aids for use while wearing CBRN-PPE: A manikin study. Resuscitation 2011, 82, 1548–1552. [Google Scholar] [CrossRef]
- Claret, P.G.; Asencio, R.; Rogier, D.; Roger, C.; Fournier, P.; Tran, T.A.; Sebbane, M.; Bobbia, X.; Emmanuel de La Coussaye, J. Comparison of Miller and Airtraq laryngoscopes for orotracheal intubation by physicians wearing CBRN protective equipment during infant resuscitation: A randomized crossover simulation study. Scand. J. Trauma Resusc. Emerg. Med. 2016, 24, 35. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.H.; Choi, P.C.; Na, J.U.; Cho, J.H.; Han, S.K. Utility of the Pentax-AWS in performing tracheal intubation while wearing chemical, biological, radiation and nuclear personal protective equipment: A randomised crossover trial using a manikin. Emerg. Med. J. 2013, 30, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Claret, P.G.; Bobbia, X.; Asencio, R.; Sanche, E.; Gervais, E.; Roger, C.; Sebbane, M.; de La Coussaye, J.E. Comparison of the Airtraq laryngoscope versus the conventional Macintosh laryngoscope while wearing CBRN-PPE. Eur. J. Emerg. Med. 2016, 23, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Shruthi, A.H.; Dinakara, D.; Chandrika, Y.R. Role of videolaryngoscope in the management of difficult airway in adults: A survey. Indian J. Anaesth. 2020, 64, 855–862. [Google Scholar] [PubMed]
- Boedeker, B.H.; Nicholas, T.A.; Carpenter, J.; Leighton, S.; Bernhagen, M.A.; Murray, W.B.; Wadman, M.C. A comparison of direct versus indirect laryngoscopic visualization during endotracheal intubation of lightly embalmed cadavers utilizing the GlideScope®, Storz Medi Pack Mobile Imaging System™ and the New Storz CMAC™ video-laryngoscope. J. Spec. Oper. Med. 2011, 11, 21–29. [Google Scholar] [CrossRef]
- Yong, S.A.; Chaou, C.H.; Yu, S.R.; Kuan, J.T.; Lin, C.C.; Liu, H.P.; Chiu, T.F. Video Assisted Laryngoscope Fa-cilitates Intubation Skill Learning in the Emergency Department. J. Acute Med. 2020, 10, 60–69. [Google Scholar]
- Baciarello, M.; Zasa, M.; Manferdini, M.E.; Tosi, M.; Berti, M.; Fanelli, G. The learning curve for laryngoscopy: Airtraq versus Macintosh laryngoscopes. J. Anesth. 2012, 26, 516–524. [Google Scholar] [CrossRef]
- Butchart, A.G.; Young, P. The learning curve for videolaryngoscopy. Anaesthesia 2010, 65, 1145–1146. [Google Scholar] [CrossRef] [PubMed]
Parameter | ETView | MAC | p-Value |
---|---|---|---|
FPS, n(%) | 49 (94.2%) | 43 (82.7%) | 0.187 |
Time to intubation (s), mean (SD) | 27.1 ± 4.9 | 37.2 ± 5.7 | <0.001 |
Cormack–Lehane | |||
1 | 22 (42.3%) | 2 (3.8%) | <0.001 |
2 | 26 (50.0%) | 38 (73.2%) | |
3 | 4 (7.7%) | 10 (19.2%) | |
4 | 0 (0.0%) | 2 (3.8%) | |
POGO score, mean (SD) | 73.9 ± 16.0 | 60.2 ± 20.0 | <0.001 |
Ease of intubation (1–10), mean (SD) | 4.1 ± 1.3 | 4.8 ± 1.4 | 0.004 |
Parameter | ETView | MAC | p-Value |
---|---|---|---|
FPS, n(%) | 46 (88.5%) | 36 (69.2%) | 0.016 |
Time to intubation, mean (SD) | 30.5 ± 5.3 | 45.2 ± 6.2 | <0.001 |
Cormack–Lehane | |||
1 | 13 (25.0%) | 0 (0.0%) | <0.001 |
2 | 33 (63.5%) | 11 (21.2%) | |
3 | 6 (11.5%) | 34 (65.4%) | |
4 | 0 (0.0%) | 7 (13.4%) | |
POGO score, mean (SD) | 72.1 ± 15.3 | 38.3 ± 14.2 | <0.001 |
Ease of intubation (1–10), mean (SD) | 4.8 ± 1.5 | 7.1 ± 1.1 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evrin, T.; Dabkowski, M.; Pruc, M.; Hernik, J.; Wieczorek, W.; Chabowski, L.; Wieczorek, P.; Chmielewski, J.; Feduniw, S.; Szarpak, L. ETView SL versus Macintosh Direct Laryngoscope for Endotracheal Intubation Amid Simulated COVID-19 Cardiac Arrest: A Randomized Crossover Study. J. Clin. Med. 2023, 12, 5074. https://doi.org/10.3390/jcm12155074
Evrin T, Dabkowski M, Pruc M, Hernik J, Wieczorek W, Chabowski L, Wieczorek P, Chmielewski J, Feduniw S, Szarpak L. ETView SL versus Macintosh Direct Laryngoscope for Endotracheal Intubation Amid Simulated COVID-19 Cardiac Arrest: A Randomized Crossover Study. Journal of Clinical Medicine. 2023; 12(15):5074. https://doi.org/10.3390/jcm12155074
Chicago/Turabian StyleEvrin, Togay, Miroslaw Dabkowski, Michal Pruc, Jacek Hernik, Wojciech Wieczorek, Lukasz Chabowski, Pawel Wieczorek, Jaroslaw Chmielewski, Stepan Feduniw, and Lukasz Szarpak. 2023. "ETView SL versus Macintosh Direct Laryngoscope for Endotracheal Intubation Amid Simulated COVID-19 Cardiac Arrest: A Randomized Crossover Study" Journal of Clinical Medicine 12, no. 15: 5074. https://doi.org/10.3390/jcm12155074
APA StyleEvrin, T., Dabkowski, M., Pruc, M., Hernik, J., Wieczorek, W., Chabowski, L., Wieczorek, P., Chmielewski, J., Feduniw, S., & Szarpak, L. (2023). ETView SL versus Macintosh Direct Laryngoscope for Endotracheal Intubation Amid Simulated COVID-19 Cardiac Arrest: A Randomized Crossover Study. Journal of Clinical Medicine, 12(15), 5074. https://doi.org/10.3390/jcm12155074