Cognitive Impairment in Cardiovascular Patients after Myocardial Infarction: Prospective Clinical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Prospective Multicentral Study
2.2. Psychiatric Assessment of Cognitive Function and Other Mental Disorders
2.3. Statistical Methods
3. Results
3.1. Study Sample
3.2. Cognitive Impairment
3.3. Relationship between Severity of CI and Clinical Parameters
3.4. Other Mental Disorders and Cognitive Deficits
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jayaraj, J.C.; Davatyan, K.; Subramanian, S.; Priya, J. Epidemiology of Myocardial Infarction. Myocard. Infarct. 2019, 10, 74768. [Google Scholar] [CrossRef]
- World Health Organization. The Global Dementia Observatory Reference Guide; License: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2018; Available online: https://apps.who.int/iris/handle/10665/272669 (accessed on 6 July 2023).
- Mitchell, A.J.; Shiri-Feshki, M. Rate of progression of mild cognitive impairment to dementia-metaanalysis of 41 robust inception cohort studies. Acta Psychiatr. Scand. 2009, 119, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Huang, Y.; Han, X. Associations between coronary heart disease and risk of cognitive impairment: A meta-analysis. Brain Behav. 2021, 11, e02108. [Google Scholar] [CrossRef] [PubMed]
- Deckers, K.; Schievink, S.H.; Rodriquez, M.M.; van Oostenbrugge, R.J.; van Boxtel, M.P.; Verhey, F.R.; Köhler, S. Coronary heart disease and risk for cognitive impairment or dementia: Systematic review and meta-analysis. PLoS ONE 2017, 12, e0184244. [Google Scholar] [CrossRef]
- Ng, J.B.; Turek, M.; Hakim, A.M. Heart disease as a risk factor for dementia. Clin. Epidemiol. 2013, 5, 135–145. [Google Scholar]
- Kasprzak, D.; Rzeźniczak, J.; Ganowicz, T.; Łuczak, T.; Słomczyński, M.; Hiczkiewicz, J.; Burchardt, P. A Review of Acute Coronary Syndrome and its Potential Impact on Cognitive Function. Glob. Heart 2021, 16, 53. [Google Scholar] [CrossRef]
- Xie, W.; Zheng, F.; Yan, L.; Zhong, B. Cognitive decline before and after incident coronary events. J. Am. Coll. Cardiol. 2019, 73, 3041–3050. [Google Scholar] [CrossRef]
- Gaalema, D.E.; Mahoney, K.; Ballon, J.S. Cognition and exercise: General overview and implications for cardiac rehabilitation. J. Cardiopulm. Rehabil. Prev. 2021, 41, 400–406. [Google Scholar] [CrossRef]
- Gallagher, R.; Woolaston, A.; Tofler, G.; Bauman, A.; Zhao, E.; Jeon, Y.H.; Neubeck, L.; Mitchell, J.A.; Naismith, S.L. Cognitive impairment and psychological state in acute coronary syndrome patients: A prospective descriptive study at cardiac rehabilitation entry, completion and follow-up. Eur. J. Cardiovasc. Nurs. 2021, 20, 56–63. [Google Scholar] [CrossRef]
- Visseren, F.L.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Zhao, E.; Lowres, N.; Woolaston, A.; Naismith, S.; Gallagher, R. Prevalence and patterns of cognitive impairment in acute coronary syndrome patients: A systematic review. Eur. J. Prev. Cardiol. 2020, 27, 284–293. [Google Scholar] [CrossRef]
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.D.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S.; et al. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018, 90, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Cermakova, P.; Eriksdotter, M.; Lund, L.H.; Winblad, B.; Religa, P.; Religa, D. Heart failure and Alzheimer’s disease. J. Intern. Med. 2015, 277, 406–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, G.; Bianchi, F.; Cotugno, M.; Volpe, M.; Rubattu, S. Natriuretic Peptides, Cognitive Impairment and Dementia: An Intriguing Pathogenic Link with Implications in Hypertension. J. Clin. Med. 2020, 9, 2265. [Google Scholar] [CrossRef]
- Deveci, O.S.; Celik, A.I.; Ikikardes, F.; Ozmen, C.; Caglıyan, C.E.; Deniz, A.; Bicakci, K.; Bicakci, S.; Evlice, A.; Demir, T.; et al. The Incidence and the Risk Factors of Silent Embolic Cerebral Infarction After Coronary Angiography and Percutaneous Coronary Interventions. Angiology 2016, 67, 433–437. [Google Scholar] [CrossRef] [PubMed]
- McFarlane, O.; Kozakiewicz, M.; Kędziora-Kornatowska, K.; Gębka, D.; Szybalska, A.; Szwed, M.; Klich-Rączka, A. Blood Lipids and Cognitive Performance of Aging Polish Adults: A Case-Control Study Based on the PolSenior Project. Front. Aging Neurosci. 2020, 12, 590546. [Google Scholar] [CrossRef]
- Svensson, T.; Sawada, N.; Mimura, M.; Nozaki, S.; Shikimoto, R.; Tsugane, S. The association between midlife serum high-density lipoprotein and mild cognitive impairment and dementia after 19 years of follow-up. Transl. Psychiatry 2019, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Agrawal, S.; Ingole, V.; Acharya, S.; Wanjari, A.; Bawankule, S.; Raisinghani, N. Does anemia affects cognitive functions in neurologically intact adult patients: Two year cross sectional study at rural tertiary care hospital. J. Fam. Med. Prim. Care 2019, 30, 3005–3008. [Google Scholar] [CrossRef]
- Schmidt, M.; Jacobsen, J.B.; Lash, T.L.; Bøtker, H.E.; Sørensen, H.T. 25 Year trends in first time hospitalisation for acute myocardial infarction, subsequent short and long term mortality, and the prognostic impact of sex and comorbidity: A Danish nationwide cohort study. BMJ 2012, 344, e356. [Google Scholar] [CrossRef] [Green Version]
- Ferri, C.P.; Prince, M.; Brayne, C.; Brodaty, H.; Fratiglioni, L.; Ganguli, M.; Hall, K.; Hasegawa, K.; Hendrie, H.; Huang, Y.; et al. Alzheimer’s Disease International. Global prevalence of dementia: A Delphi consensus study. Lancet 2005, 366, 2112–2117. [Google Scholar] [CrossRef]
- Titova, O.E.; Baron, J.A.; Michaëlsson, K.; Larsson, S.C. Anger frequency and risk of cardiovascular morbidity and mortality. Eur. Heart J. Open 2022, 2, oeac050. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.W.; Glazer, K.; Ruiz, J.M.; Gallo, L.C. Hostility, anger, aggressiveness, and coronary heart disease: An interpersonal perspective on personality, emotion, and health. J. Pers. 2004, 72, 1217–1270. [Google Scholar] [CrossRef]
- De Hert, M.; Detraux, J.; Vancampfort, D. The intriguing relationship between coronary heart disease and mental disorders. Dialogues Clin. Neurosci. 2018, 20, 31–40. [Google Scholar] [CrossRef]
- Margari, L.; Margari, F.; Sicolo, M.; Spinelli, L.; Mastroianni, F.; Pastore, A.; Craig, F.; Petruzzelli, M.G. Aggressive behavior, cognitive impairment, and depressive symptoms in elderly subjects. Neuropsychiatr. Dis. Treat. 2012, 8, 347–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denson, T.F.; O’dean, S.M.; Blake, K.; Beames, J.R. Aggression in Women: Behavior, Brain and Hormones. Front. Behav. Neurosci. 2018, 12, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marek, G.; Tomasz, Z.; Bogdan, W.; Irina, M.W. Incidence, treatment, in-hospital mortality and one-year outcomes of acute myocardial infarction in Poland in 2009–2012—Nationwide AMI-PL database. Kardiol. Pol. 2015, 73, 142–158. [Google Scholar]
Variables | Without Cognitive Impairment (n = 94) | Cognitive Impairment (n = 74) | p-Value | Total (n = 468) |
---|---|---|---|---|
Age (years) | 58.3 ± 9.3 | 60.4 ± 10.2 | 0.03 * | 59 ± 9.6 |
BMI (kg/m2) | 27.6 (25.1–31.2) | 28.1 (24.9–31.2) | 0.82 | 27.8 (25–31.2) |
Clinical Factors, n (%) | ||||
History of diabetes | 53 (18%) | 42 (24%) | 0.14 | 95 (20%) |
History of heart failure | 23 (8%) | 23 (13%) | 0.08 | 46 (10%) |
History of hypertension | 173 (59%) | 100 (57%) | 0.85 | 273 (58%) |
History of myocardial infarction | 27 (9%) | 29 (17%) | 0.02 * | 56 (12%) |
ACS type, n (%) | ||||
STEMI | 182 (62%) | 99 (58%) | 0.41 | 281 (60%) |
NSTEMI | 110 (37%) | 73 (42%) | 0.33 | 183 (39%) |
SYNTAX (points) | 9 (6–14) | 10 (7–16) | 0.05 * | 9 (6–15) |
Laboratory Values | ||||
Hgb (g/dL) | 13.9 (13.1–14.7) | 13.8 (12.7–14.7) | 0.23 | 13.8 (12.9–14.7) |
Hct (%) | 41 ± 3.8 | 40.3 ± 4.2 | 0.08 | 40.7 ± 3.9 |
RBC (mln/µL) | 4.57 (4.27–4.92) | 4.56 (4.2–4.85) | 0.31 | 4.56 (4.26–4.89) |
WBC (tys/µL) | 9.5 (7.6–11.7) | 9.6 (7.9–11.7) | 0.36 | 9.5 (7.6–11.7) |
PLT (tys/µL) | 229 (194–275.8) | 221 (191.3–259.8) | 0.21 | 226.5 (193–272) |
Na (mmol/L) | 140 (139–142) | 141 (139–142) | 0.41 | 140 (139–142) |
K (mmol/L) | 4.29 (4.02–4.51) | 4.25 (4–4.5) | 0.53 | 4.28 (4.02–4.51) |
Creatinine (µmol/L) | 80 (66–90) | 79 (70–91) | 0.26 | 80 (68–91) |
Urea (mmol/L) | 5 (4.3–6.3) | 5.3 (4.2–6.3) | 0.78 | 5.1 (4.3–6.3) |
Uric acid (µmol/L) | 337 ± 81.6 | 335 ± 79 | 0.89 | 335 ± 80.5 |
GFR (mL/min/1.73 m2) | 90 (76–105) | 85 (73–101) | 0.02 * | 88 (75–103) |
TN (ng/L) | 519 (75.5–3041) | 635 (66–4504) | 0.56 | 549.5 (71.8–3434.5) |
BNP (pg/ml) | 96.9 (53.2–199.8) | 127.4 (73.1–265.1) | 0.01 * | 109.1 (55–214.4) |
HDL (mmol/L) | 1.1 (1–1.4) | 1.2 (0.9–1.4) | 0.47 | 1.1 (1–1.4) |
LDL (mmol/L) | 3 (2.3–3.8) | 3.2 (2.3–3.9) | 0.49 | 3.1 (2.3–3.85) |
TG (mmol/L) | 1.45 (1.1–2) | 1.6 (1.1–2) | 0.44 | 1.5 (1.1–2) |
TSH (µIU/mL) | 1.1 (0.7–1.8) | 1 (0.6–1.7) | 0.45 | 1.1 (0.7–1.7) |
CK (IU/L) | 51 (25–117) | 62.5 (25–156.5) | 0.22 | 52 (25–132.5) |
ALAT (U/L) | 35 (25–50.5) | 35 (25–56) | 0.57 | 35 (25–52) |
EF (%) | 48 (45–54) | 48 (41–50) | 0.05 * | 48 (45–52) |
Psychiatric scale | ||||
Beck’s Depression Inventory | 7 (4–13) | 9 (6–14) | 0.02 * | 8 (4–13) |
The Overt Aggression Scale Modified | 0 (0–1) | 0 (0–1) | 0.88 | 0 (0–1) |
Insomnia Severity Index | 7 (3–11) | 9 (4–14) | <0.001 * | 7 (3–13) |
Athens Insomnia Scale | 5 (3–8) | 7 (3–10) | 0.04 * | 6 (3–9) |
Epworth Sleepiness Scale | 6 (4–9) | 6 (4–9) | 0.33 | 6 (4–9) |
Variables | Without Cognitive Impairment (n = 279) | Cognitive Impairment (n = 91) | p-Value | Total (n = 364) |
---|---|---|---|---|
BMI (kg/m2) | 27.9 (25.3–31.5) | 28.1 (24.7–30.9) | 0.39 | 28 (25.2–31.2) |
Clinical Factors, n (%) | ||||
History of diabetes | 51 (19%) | 23 (25%) | 0.23 | 74 (20%) |
History of heart failure | 24 (9%) | 7 (8%) | 0.91 | 31 (9%) |
History of hypertension | 158 (58%) | 57 (63%) | 0.5 | 215 (59%) |
History of myocardial infarction | 30 (11%) | 29 (17%) | 1.0 | 40 (11%) |
ACS type, n (%) | ||||
STEMI | 170 (63%) | 51 (57%) | 0.39 | 221 (61%) |
NSTEMI | 110 (37%) | 38 (42%) | 0.46 | 139 (38%) |
SYNTAX (points) | 10 (7–14) | 9 (6–14) | 0.52 | 9 (6–14) |
Laboratory Values | ||||
Hgb (g/dL) | 14.6 (13.7–15.2) | 14.2 (13.4–15.2) | 0.06 | 14.5 (13.6–15.2) |
Hct (%) | 43.1 ± 3.5 | 42.3 ± 3.3 | 0.02 * | 43 ± 3.4 |
RBC (mln/µL) | 4.8 (4.6–5.1) | 4.7 (4.5–5.0) | 0.19 | 4.8 (4.5–5.1) |
WBC (tys/µL) | 7.4 (6.2–8.8) | 7.9 (6.6–9) | 0.14 | 7.5 (6.3–8.8) |
PLT (tys/µL) | 236.5 (201.3–275.5) | 248 (215.5–281) | 0.18 | 237 (205–277) |
Na (mmol/L) | 141 (139–143) | 141 (139–142) | 0.54 | 141 (139–142) |
K (mmol/L) | 4.6 (4.4–4.8) | 4.6 (4.4–4.9) | 0.7 | 4.3 (4.0–4.5) |
Creatinine (µmol/L) | 82.5 (72–92) | 78 (65.5–91) | 0.02 * | 81 (71–92) |
Urea (mmol/L) | 5.7 (4.7–6.7) | 5.4 (4.5–6.5) | 0.37 | 5.6 (4.7–6.7) |
Uric acid (µmol/L) | 348 ± 89.2 | 352 ± 73.4 | 0.74 | 349 ± 86.2 |
GFR (ml/min/1.73 m2) | 85 (71–98) | 85 (71–98) | 0.18 | 86 (72–99) |
TN (ng/L) | 9 (9–9) | 9 (9–10.5) | 0.13 | 9 (9–9) |
BNP (pg/mL) | 32.7 (16.2–64.9) | 40.2 (20.9–81.2) | 0.07 | 36.4 (17.4–66.7) |
HDL (mmol/L) | 1.2 (1–1.5) | 1.4 (1.1–1.55) | 0.05 * | 1.2 (1.1–1.5) |
LDL (mmol/L) | 1.8 (1.5–2.3) | 2.1 (1.6–2.6) | 0.05 * | 1.9 (1.5–2.3) |
TG (mmol/L) | 1.4 (1–1.8) | 1.2 (1–1.6) | 0.24 | 1.3 (1–1.8) |
TSH (µIU/ml) | 1.13 (0.8–1.7) | 1.1 (0.7–1.6) | 0.67 | 1.1 (0.8–1.7) |
CK (IU/L) | 116 (87–166.5) | 116 (87–166.5) | 0.44 | 115 (85–167) |
ALAT (U/L) | 26 (19–35) | 25 (18–33) | 0.57 | 26 (19–34) |
EF (%) | 50 (48–55) | 50 (47–56) | 0.45 | 50 (47–55) |
Psychiatric scale | ||||
Beck’s Depression Inventory | 7 (3–12) | 8 (4–13) | 0.27 | 8 (4–12) |
The Overt Aggression Scale Modified | 0 (0–1) | 0 (0–1) | 0.9 | 0 (0–1) |
Insomnia Severity Index | 6 (2–10) | 5.5 (3–10) | 0.64 | 6 (2–10) |
Athens Insomnia Scale | 5 (3–8) | 4 (2–7) | 0.14 | 5 (3–8) |
Epworth Sleepiness Scale | 6 (4–9) | 5 (3–9) | 0.38 | 6 (4–9) |
Variables | Regression Coefficient (β) | p-Value | 95% CI |
---|---|---|---|
Hgb | 0.21 | <0.001 | 0.09 to 0.32 |
Hct | 0.10 | <0.001 | 0.06 to 0.14 |
RBC | 0.65 | <0.001 | 0.32 to 0.97 |
WBC | −0.11 | <0.001 | −0.16 to −0.06 |
K | 0.48 | <0.001 | 0.18 to 0.78 |
LDL | −0.28 | <0.001 | −0.41 to −0.15 |
Psychiatric Scale | First Hospitalization | Follow-Up (After 6 Months) | p-Value |
---|---|---|---|
Mini-Mental State Examination | 37% (N-174) | 25% (N-91) | p < 0.001 * |
Beck’s Depression Inventory | 32% (N-135) | 24% (N-103) | 0.003 * |
The Overt Aggression Scale Modified | 44% (N-154) | 41% (N-141) | 0.2 |
Insomnia Severity Index | 48% (N-171) | 39% (N-139) | 0.002 * |
Athens Insomnia Scale | 52% (N-187) | 44% (N-157) | 0.003 * |
Epworth Sleepiness Scale | 15% (N-55) | 14,6% (N-52) | 0.7 |
Variables | Group of Patients | Regression Coefficient (β) | p-Value | 95% CI |
---|---|---|---|---|
Insomnia Severity Index | Total | −0.05 | 0.001 * | −0.1 to 0.0 |
Men | −0.04 | 0.02 * | −0.1 to 0.0 | |
Women | −0.06 | 0.03 * | −0.1 to 0.0 | |
Epworth Sleepiness Scale | Total | −0.01 | 0.7 | −0.1 to 0.0 |
Men | −0.01 | 0.84 | −0.1 to 0.0 | |
Women | −0.02 | 0.69 | −0.1 to 0.1 | |
Athens Insomnia Scale | Total | −0.03 | 0.15 | −0.1 to 0.0 |
Men | −0.03 | 0.31 | −0.1 to 0.0 | |
Women | −0.03 | 0.43 | −0.1 to 0.0 | |
The Overt Aggression Scale Modified | Total | −0.1 | 0.2 | −0.2 to 0.1 |
Men | 0.0 | 0.96 | −0.2 to 0.2 | |
Women | −0.28 | 0.03 * | −0.5 to 0.0 | |
Beck’s Depression Inventory | Total | −0.02 | 0.13 | 0.0 to 0.0 |
Men | −0.01 | 0.37 | 0.0 to 0.0 | |
Women | −0.02 | 0.38 | −0.1 to 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasprzak, D.; Kaczmarek-Majer, K.; Rzeźniczak, J.; Klamecka-Pohl, K.; Ganowicz-Kaatz, T.; Słomczyński, M.; Budzianowski, J.; Pieszko, K.; Hiczkiewicz, J.; Tykarski, A.; et al. Cognitive Impairment in Cardiovascular Patients after Myocardial Infarction: Prospective Clinical Study. J. Clin. Med. 2023, 12, 4954. https://doi.org/10.3390/jcm12154954
Kasprzak D, Kaczmarek-Majer K, Rzeźniczak J, Klamecka-Pohl K, Ganowicz-Kaatz T, Słomczyński M, Budzianowski J, Pieszko K, Hiczkiewicz J, Tykarski A, et al. Cognitive Impairment in Cardiovascular Patients after Myocardial Infarction: Prospective Clinical Study. Journal of Clinical Medicine. 2023; 12(15):4954. https://doi.org/10.3390/jcm12154954
Chicago/Turabian StyleKasprzak, Dominika, Katarzyna Kaczmarek-Majer, Janusz Rzeźniczak, Katarzyna Klamecka-Pohl, Teresa Ganowicz-Kaatz, Marek Słomczyński, Jan Budzianowski, Konrad Pieszko, Jarosław Hiczkiewicz, Andrzej Tykarski, and et al. 2023. "Cognitive Impairment in Cardiovascular Patients after Myocardial Infarction: Prospective Clinical Study" Journal of Clinical Medicine 12, no. 15: 4954. https://doi.org/10.3390/jcm12154954
APA StyleKasprzak, D., Kaczmarek-Majer, K., Rzeźniczak, J., Klamecka-Pohl, K., Ganowicz-Kaatz, T., Słomczyński, M., Budzianowski, J., Pieszko, K., Hiczkiewicz, J., Tykarski, A., & Burchardt, P. (2023). Cognitive Impairment in Cardiovascular Patients after Myocardial Infarction: Prospective Clinical Study. Journal of Clinical Medicine, 12(15), 4954. https://doi.org/10.3390/jcm12154954