De Novo Lipogenesis-Related Monounsaturated Fatty Acids in the Blood Are Associated with Cardiovascular Risk Factors in HFpEF Patients
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. The Aldo-DHF Trial
Laboratory Measurements
- Laboratory methods: Aldo-DHF Trial
- Laboratory methods: HS-Omega-3 Index® methodology
2.3. Ethics
2.4. Statistical Analysis
3. Results:
3.1. Study Population
3.2. Analysis of Individual MUFAs
- Palmitoleic acid (C16:1n7)
- Oleic acid (C18:1n9)
- Eicosenoic acid (C20:1n9)
- Nervonic acid (C24:1n9)
4. Discussion
4.1. Principal Findings
4.2. Individual MUFAs and Patient Characteristics
- De novo lipogenesis-related MUFAs palmitoleic acid and oleic acid
- The MUFAs eicosenoic acid and nervonic acid
- MUFAs and left ventricular diastolic function/neurohumoral activation
5. Strengths and Limitations
6. Translational Outlook
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pieske, B.; Tschöpe, C.; de Boer, R.A.; Fraser, A.G.; Anker, S.D.; Donal, E.; Edelmann, F.; Fu, M.; Guazzi, M.; Lam, C.S.P.; et al. How to diagnose heart failure with preserved ejection fraction: The HFA–PEFF diagnostic algorithm: A consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. Heart J. 2019, 40, 3297–3317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, S.J.; Kitzman, D.W.; Borlaug, B.A.; van Heerebeek, L.; Zile, M.R.; Kass, D.A.; Paulus, W.J. Phenotype-Specific Treatment of Heart Failure with Preserved Ejection Fraction. Circulation 2016, 134, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seferović, P.M.; Petrie, M.C.; Filippatos, G.S.; Anker, S.D.; Rosano, G.; Bauersachs, J.; Paulus, W.J.; Komajda, M.; Cosentino, F.; de Boer, R.A.; et al. Type 2 diabetes mellitus and heart failure: A position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 853–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, S.J.; Gheorghiade, M. Heart failure with preserved ejection fraction: Treat now by treating comorbidities. JAMA 2008, 300, 431–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Hoffmann, G. Monounsaturated fatty acids, olive oil and health status: A systematic review and meta-analysis of cohort studies. Lipids Health Dis. 2014, 13, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.J.; Lambert, J.E.; Hovhannisyan, Y.; Ramos-Roman, M.A.; Trombold, J.R.; Wagner, D.A.; Parks, E.J. Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis. Am. J. Clin. Nutr. 2015, 101, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front. Physiol. 2017, 8, 902. [Google Scholar] [CrossRef] [Green Version]
- Archer, E.; Hand, G.A.; Blair, S.N. Validity of U.S. nutritional surveillance:National Health and Nutrition Examination Survey caloric energy intake data, 1971–2010. PLoS ONE 2013, 8, e76632. [Google Scholar] [CrossRef]
- Harris, W.S.; Sands, S.A.; Windsor, S.L.; Ali, H.A.; Stevens, T.L.; Magalski, A.; Porter, C.B.; Borkon, A.M. Omega-3 fatty acids in cardiac biopsies from heart transplantation patients: Correlation with erythrocytes and response to supplementation. Circulation 2004, 110, 1645–1649. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.S.; Thomas, R.M. Biological variability of blood omega-3 biomarkers. Clin. Biochem. 2010, 43, 338–340. [Google Scholar] [CrossRef]
- Lee, Y.; Lai, H.T.M.; de Oliveira Otto, M.C.; Lemaitre, R.N.; McKnight, B.; King, I.B.; Song, X.; Huggins, G.S.; Vest, A.R.; Siscovick, D.S.; et al. Serial Biomarkers of De Novo Lipogenesis Fatty Acids and Incident Heart Failure in Older Adults: The Cardiovascular Health Study. J. Am. Heart Assoc. 2020, 9, e014119. [Google Scholar] [CrossRef]
- Qureshi, W.; Santaren, I.D.; Hanley, A.J.; Watkins, S.M.; Lorenzo, C.; Wagenknecht, L.E. Risk of diabetes associated with fatty acids in the de novo lipogenesis pathway is independent of insulin sensitivity and response: The Insulin Resistance Atherosclerosis Study (IRAS). BMJ Open Diabetes Res. Care 2019, 7, e000691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, G.E.; Krämer, B.K.; Lorkowski, S.; März, W.; von Schacky, C.; Kleber, M.E. Individual omega-9 monounsaturated fatty acids and mortality-The Ludwigshafen Risk and Cardiovascular Health Study. J. Clin. Lipidol. 2017, 11, 126–135.e25. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.T.M.; de Oliveira Otto, M.C.; Lee, Y.; Wu, J.H.Y.; Song, X.; King, I.B.; Psaty, B.M.; Lemaitre, R.N.; McKnight, B.; Siscovick, D.S.; et al. Serial Plasma Phospholipid Fatty Acids in the De Novo Lipogenesis Pathway and Total Mortality, Cause-Specific Mortality, and Cardiovascular Diseases in the Cardiovascular Health Study. J. Am. Heart Assoc. 2019, 8, e012881. [Google Scholar] [CrossRef] [PubMed]
- Lechner, K.; Scherr, J.; Lorenz, E.; Lechner, B.; Haller, B.; Krannich, A.; Halle, M.; Wachter, R.; Duvinage, A.; Edelmann, F. Omega-3 fatty acid blood levels are inversely associated with cardiometabolic risk factors in HFpEF patients: The Aldo-DHF randomized controlled trial. Clin. Res. Cardiol. 2022, 111, 308–321. [Google Scholar] [CrossRef]
- Edelmann, F.; Wachter, R.; Schmidt, A.G.; Kraigher-Krainer, E.; Colantonio, C.; Kamke, W.; Duvinage, A.; Stahrenberg, R.; Durstewitz, K.; Löffler, M.; et al. Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: The Aldo-DHF randomized controlled trial. JAMA 2013, 309, 781–791. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.S. The omega-3 index: Clinical utility for therapeutic intervention. Curr. Cardiol. Rep. 2010, 12, 503–508. [Google Scholar] [CrossRef]
- Lechner, K.; von Schacky, C.; Scherr, J.; Lorenz, E.; Bock, M.; Lechner, B.; Haller, B.; Krannich, A.; Halle, M.; Wachter, R.; et al. Saturated Fatty Acid Blood Levels and Cardiometabolic Phenotype in Patients with HFpEF: A Secondary Analysis of the Aldo-DHF Trial. Biomedicines 2022, 10, 2296. [Google Scholar] [CrossRef]
- Lechner, K.; Bock, M.; von Schacky, C.; Scherr, J.; Lorenz, E.; Lechner, B.; Haller, B.; Krannich, A.; Halle, M.; Wachter, R.; et al. Trans-fatty acid blood levels of industrial but not natural origin are associated with cardiovascular risk factors in patients with HFpEF: A secondary analysis of the Aldo-DHF trial. Clin. Res. Cardiol. 2023. Epub ahead of print. [Google Scholar] [CrossRef]
- Berliner, D.; Mattern, S.; Wellige, M.; Malsch, C.; Güder, G.; Brenner, S.; Morbach, C.; Deubner, N.; Breunig, M.; Kiefl, R.; et al. The omega-3 index in patients with heart failure: A prospective cohort study. Prostaglandins Leukot Essent Fat. Acids 2019, 140, 34–41. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2019, 41, 111–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechner, K.; Halle, M. Are Atherogenic Lipoprotein Phenotype and Inflammation Indicative of Plaque Phenotype and Clinical Stability in Coronary Artery Disease? JAMA Cardiol. 2019, 4, 950–951. [Google Scholar] [CrossRef] [PubMed]
- Vergallo, R.; Porto, I.; Crea, F. Are Atherogenic Lipoprotein Phenotype and Inflammation Indicative of Plaque Phenotype and Clinical Stability in Coronary Artery Disease?-Reply. JAMA Cardiol. 2019, 4, 951–952. [Google Scholar] [CrossRef] [PubMed]
- Vergallo, R.; Porto, I.; D’Amario, D.; Annibali, G.; Galli, M.; Benenati, S.; Bendandi, F.; Migliaro, S.; Fracassi, F.; Aurigemma, C.; et al. Coronary Atherosclerotic Phenotype and Plaque Healing in Patients With Recurrent Acute Coronary Syndromes Compared with Patients with Long-term Clinical Stability: An In Vivo Optical Coherence Tomography Study. JAMA Cardiol. 2019, 4, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Banderas, D.Z.; Escobedo, J.; Gonzalez, E.; Liceaga, M.G.; Ramírez, J.C.; Castro, M.G. γ-Glutamyl transferase: A marker of nonalcoholic fatty liver disease in patients with the metabolic syndrome. Eur. J. Gastroenterol. Hepatol. 2012, 24, 805–810. [Google Scholar] [CrossRef]
- Simental-Mendía, L.E.; Rodríguez-Hernández, H.; Rodríguez-Morán, M.; Guerrero-Romero, F. The alanine aminotransferase to triglycerides ratio as a marker to identify nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol. 2012, 24, 1173–1177. [Google Scholar] [CrossRef]
- Zhao, S.; Jang, C.; Liu, J.; Uehara, K.; Gilbert, M.; Izzo, L.; Zeng, X.; Trefely, S.; Fernandez, S.; Carrer, A.; et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature 2020, 579, 586–591. [Google Scholar] [CrossRef]
- Stahl, E.P.; Dhindsa, D.S.; Lee, S.K.; Sandesara, P.B.; Chalasani, N.P.; Sperling, L.S. Nonalcoholic Fatty Liver Disease and the Heart: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 948–963. [Google Scholar] [CrossRef]
- Wu, D.; Liu, J.; Pang, X.; Wang, S.; Zhao, J.; Zhang, X.; Feng, L. Palmitic acid exerts pro-inflammatory effects on vascular smooth muscle cells by inducing the expression of C-reactive protein, inducible nitric oxide synthase and tumor necrosis factor-α. Int. J. Mol. Med. 2014, 34, 1706–1712. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Cao, H.; King, I.B.; Lemaitre, R.N.; Song, X.; Siscovick, D.S.; Hotamisligil, G.S. Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. Am. J. Clin. Nutr. 2010, 92, 1350–1358. [Google Scholar] [CrossRef] [Green Version]
- McBurney, M.I.; Tintle, N.L.; Vasan, R.S.; Sala-Vila, A.; Harris, W.S. Using an erythrocyte fatty acid fingerprint to predict risk of all-cause mortality: The Framingham Offspring Cohort. Am. J. Clin. Nutr. 2021, 114, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Foryst-Ludwig, A.; Kreissl, M.C.; Benz, V.; Brix, S.; Smeir, E.; Ban, Z.; Januszewicz, E.; Salatzki, J.; Grune, J.; Schwanstecher, A.K.; et al. Adipose Tissue Lipolysis Promotes Exercise-induced Cardiac Hypertrophy Involving the Lipokine C16:1n7-Palmitoleate. J. Biol. Chem. 2015, 290, 23603–23615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astrup, A.; Magkos, F.; Bier, D.M.; Brenna, J.T.; de Oliveira Otto, M.C.; Hill, J.O.; King, J.C.; Mente, A.; Ordovas, J.M.; Volek, J.S.; et al. Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommendations: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 844–857. [Google Scholar] [CrossRef]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Steffen, B.T.; Duprez, D.; Szklo, M.; Guan, W.; Tsai, M.Y. Circulating oleic acid levels are related to greater risks of cardiovascular events and all-cause mortality: The Multi-Ethnic Study of Atherosclerosis. J. Clin. Lipidol. 2018, 12, 1404–1412. [Google Scholar] [CrossRef]
- Morin, S.J.; Gaziano, J.M.; Djoussé, L. Relation between plasma phospholipid oleic acid and risk of heart failure. Eur. J. Nutr. 2018, 57, 2937–2942. [Google Scholar] [CrossRef]
- Schuchardt, J.P.; Cerrato, M.; Ceseri, M.; DeFina, L.F.; Delgado, G.E.; Gellert, S.; Hahn, A.; Howard, B.V.; Kadota, A.; Kleber, M.E.; et al. Red blood cell fatty acid patterns from 7 countries: Focus on the Omega-3 index. Prostaglandins Leukot Essent Fat. Acids 2022, 179, 102418. [Google Scholar] [CrossRef]
- Sargent, J.R.; Coupland, K.; Wilson, R. Nervonic acid and demyelinating disease. Med. Hypotheses 1994, 42, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Volk, B.M.; Kunces, L.J.; Freidenreich, D.J.; Kupchak, B.R.; Saenz, C.; Artistizabal, J.C.; Fernandez, M.L.; Bruno, R.S.; Maresh, C.M.; Kraemer, W.J.; et al. Effects of step-wise increases in dietary carbohydrate on circulating saturated Fatty acids and palmitoleic Acid in adults with metabolic syndrome. PLoS ONE 2014, 9, e113605. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics a | Total (n = 404) |
---|---|
Demographics | |
Age, mean (SD), y | 67 (8) |
Female | 212 (53) |
Laboratory measures | |
HbA1c (%) | 6.0 (0.8) |
LDL-C (mg/dL) | 117 (42) |
HDL-C (mg/dL) | 56 (18) |
Triglycerides (mg/dL) | 161 (103) |
non-HDL-C (mg/dL) | 133 (47) |
Triglycerides-to-HDL-C ratio | 3.3 (2.8) |
NT-proBNP, median (IQR), ng/L | 158 (82–298) |
MUFAs (%) C16:1n7 C18:1n9 C20:1n9 C24:1n9 | 0.97 (0.43) 17.83 (2.20) 0.23 (0.04) 0.98 (0.213) |
Medical history | |
Hospitalization for heart failure in past 12 months b | 149 (37) |
Hypertension | 370 (92) |
Diabetes mellitus | 66 (16) |
Atrial fibrillation | 65 (16) |
Physical examination, mean (SD) | |
Body-mass-index c | 28.9 (3.6) |
Waist Circumference, (cm) In Men In Women | 98.1 (11.0) 103.7 (9.0) 93.1 (10.3) |
Waist-to-height ratio | 0.49 (0.1) |
Systolic blood pressure, mm Hg | 135 (18) |
Diastolic blood pressure, mm Hg | 79 (11) |
Heart rate,/min | 66 (11) |
Signs and symptoms | |
NYHA functional class | |
II | 350 (87) |
III | 54 (13) |
Peripheral edema | 160 (40) |
Nocturia | 325 (80) |
Paroxysmal nocturnal dyspnea | 66 (16) |
Nocturnal cough | 61 (15) |
Fatigue | 241 (60) |
Current medications | |
ACE inhibitors/angiotensin receptor antagonists | 310 (77) |
Beta-blockers | 290 (72) |
Diuretics | 213 (53) |
Calcium antagonists | 97 (24) |
Lipid-lowering drugs | 221 (55) |
Echocardiography, mean (SD) | |
LV ejection fraction, % | 68 (8) |
LV diameter (end-diastolic), mm | 46.5 (6.2) |
LV diameter (end-systolic), mm | 25.3 (6.4) |
LV mass index, g/m2 | 114.15 (45.53) |
Left atrial volume index, mL/m2 | 43.1 (41.6) |
E-wave velocity, cm/s | 73 (20) |
Medial e′ wave velocity, cm/s | 5.9 (1.3) |
E/e′ | 7.1 (1.5) |
E/A velocity ratio | 0.91 (0.33) |
Isovolumic relaxation time, ms | 88 (26) |
Deceleration time, ms | 243 (63) |
Grade of diastolic dysfunction, No. (%) | |
I | 295 (73) |
II | 81 (20) |
III | 4 (1) |
IV | 3 (1) |
C16:1n7 | C18:1n9 | C20:1n9 | C24:1n9 | ||
---|---|---|---|---|---|
LDL-C | r * p § | 0.201 <0.001 | −0.088 0.089 | −0.25 <0.001 | −0.123 0.018 |
non-HDL-C | r * p § | 0.311 <0.001 | 0.055 0.292 | −0.304 <0.001 | −0.244 <0.001 |
triglycerides | r * p § | 0.317 <0.001 | 0.418 <0.001 | −0.059 0.261 | −0.323 <0.001 |
triglycerides-to-HDL-C ratio | r * p § | 0.23 <0.001 | 0.436 <0.001 | 0.016 0.765 | −0.215 <0.001 |
HbA1c | r * p § | 0.05 0.333 | 0.209 <0.001 | 0.016 0.759 | −0.072 0.169 |
ASAT | r * p § | 0.161 0.002 | 0.159 0.002 | −0.006 0.903 | −0.088 0.091 |
ALAT | r * p § | 0.196 <0.001 | 0.166 0.001 | −0.014 0.79 | −0.094 0.071 |
GGT | r * p § | 0.201 <0.001 | 0.225 <0.001 | 0.024 0.641 | −0.116 0.026 |
BMI | r * p § | 0.208 <0.001 | 0.165 0.001 | −0.032 0.541 | −0.032 0.541 |
waist circumference | r * p § | 0.01 0.85 | 0.28 <0.001 | 0.134 0.01 | 0.056 0.281 |
waist-to-height ratio | r * p § | 0.11 0.034 | 0.215 <0.001 | 0.067 0.196 | 0.021 0.682 |
distance covered 6 MWT | r * p § | −0.126 0.015 | −0.122 0.019 | 0.038 0.462 | 0.034 0.51 |
VO2 peak | r * p § | −0.101 0.052 | −0.052 0.32 | −0.017 0.741 | 0.005 0.92 |
E/e′ | r * p § | −0.03 0.558 | −0.102 0.049 | −0.016 0.765 | 0.035 0.496 |
NT-proBNP | r * p § | −0.159 0.002 | −0.053 0.312 | 0.131 0.011 | 0.088 0.091 |
C16:1n7 | C18:1n9 | C20:1n9 | C24:1n9 | ||
---|---|---|---|---|---|
LDL-C | r * p § | 0.176 0.001 | −0.1 0.065 | −0.228 <0.001 | −0.108 0.046 |
non-HDL-C | r * p § | 0.287 <0.001 | 0.013 0.814 | −0.268 <0.001 | −0.193 <0.001 |
triglycerides | r * p § | 0.321 <0.001 | 0.308 <0.001 | −0.114 0.035 | −0.277 <0.001 |
triglycerides-to-HDL-C ratio | r * p § | 0.268 <0.001 | 0.368 <0.001 | −0.044 0.421 | −0.21 <0.001 |
HbA1c | r * p § | 0.094 0.083 | 0.242 <0.001 | −0.022 0.689 | −0.063 0.249 |
ASAT | r * p § | 0.158 0.004 | 0.135 0.012 | −0.055 0.31 | −0.063 0.243 |
ALAT | r * p § | 0.18 0.001 | 0.136 0.012 | −0.1 0.065 | −0.017 0.761 |
GGT | r * p § | 0.195 <0.001 | 0.182 0.001 | −0.025 0.641 | −0.035 0.524 |
BMI | r * p § | 0.197 <0.001 | 0.133 0.014 | −0.001 0.983 | 0.004 0.941 |
waist circumference | r * p § | 0.024 0.656 | 0.239 <0.001 | 0.133 0.014 | 0.086 0.115 |
waist-to-height ratio | r * p § | 0.144 0.008 | 0.181 <0.001 | 0.012 0.826 | 0.013 0.805 |
distance covered 6 MWT | r * p § | −0.17 0.002 | −0.137 0.011 | 0.095 0.078 | 0.101 0.062 |
VO2 peak | r * p § | −0.136 0.012 | −0.046 0.393 | 0.094 0.084 | 0.158 0.004 |
E/e′ | r * p § | −0.069 0.206 | −0.016 0.766 | −0.061 0.264 | 0.025 0.64 |
NT-proBNP | r * p § | −0.091 0.206 | −0.035 0.516 | 0.074 0.172 | 0.044 0.422 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bock, M.; von Schacky, C.; Scherr, J.; Lorenz, E.; Lechner, B.; Krannich, A.; Wachter, R.; Duvinage, A.; Edelmann, F.; Lechner, K. De Novo Lipogenesis-Related Monounsaturated Fatty Acids in the Blood Are Associated with Cardiovascular Risk Factors in HFpEF Patients. J. Clin. Med. 2023, 12, 4938. https://doi.org/10.3390/jcm12154938
Bock M, von Schacky C, Scherr J, Lorenz E, Lechner B, Krannich A, Wachter R, Duvinage A, Edelmann F, Lechner K. De Novo Lipogenesis-Related Monounsaturated Fatty Acids in the Blood Are Associated with Cardiovascular Risk Factors in HFpEF Patients. Journal of Clinical Medicine. 2023; 12(15):4938. https://doi.org/10.3390/jcm12154938
Chicago/Turabian StyleBock, Matthias, Clemens von Schacky, Johannes Scherr, Elke Lorenz, Benjamin Lechner, Alexander Krannich, Rolf Wachter, André Duvinage, Frank Edelmann, and Katharina Lechner. 2023. "De Novo Lipogenesis-Related Monounsaturated Fatty Acids in the Blood Are Associated with Cardiovascular Risk Factors in HFpEF Patients" Journal of Clinical Medicine 12, no. 15: 4938. https://doi.org/10.3390/jcm12154938
APA StyleBock, M., von Schacky, C., Scherr, J., Lorenz, E., Lechner, B., Krannich, A., Wachter, R., Duvinage, A., Edelmann, F., & Lechner, K. (2023). De Novo Lipogenesis-Related Monounsaturated Fatty Acids in the Blood Are Associated with Cardiovascular Risk Factors in HFpEF Patients. Journal of Clinical Medicine, 12(15), 4938. https://doi.org/10.3390/jcm12154938