Pituitary Diseases and COVID-19 Outcomes in South Korea: A Nationwide Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Population
2.3. Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elrobaa, I.H.; New, K.J. COVID-19: Pulmonary and Extra Pulmonary Manifestations. Front. Public Health 2021, 9, 711616. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef] [PubMed]
- Marazuela, M.; Giustina, A.; Puig-Domingo, M. Endocrine and metabolic aspects of the COVID-19 pandemic. Rev. Endocr. Metab. Disord. 2020, 21, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.L.; Gregory, K.D.; Smithson, S.S.; Naqvi, M.; Mamelak, A.N. Pituitary apoplexy associated with acute COVID-19 infection and pregnancy. Pituitary 2020, 23, 716–720. [Google Scholar] [CrossRef] [PubMed]
- Solorio-Pineda, S.; Almendárez-Sánchez, C.A.; Tafur-Grandett, A.A.; Ramos-Martínez, G.A.; Huato-Reyes, R.; Ruiz-Flores, M.I.; Sosa-Najera, A. Pituitary macroadenoma apoplexy in a severe acute respiratory syndrome-coronavirus-2-positive testing: Causal or casual? Surg. Neurol. Int. 2020, 11, 304. [Google Scholar] [CrossRef]
- Ghosh, R.; Roy, D.; Roy, D.; Mandal, A.; Dutta, A.; Naga, D.; Benito-León, J. A Rare Case of SARS-CoV-2 Infection Associated with Pituitary Apoplexy without Comorbidities. J. Endocr. Soc. 2021, 5, bvaa203. [Google Scholar] [CrossRef]
- Han, T.; Kang, J.; Li, G.; Ge, J.; Gu, J. Analysis of 2019-nCoV receptor ACE2 expression in different tissues and its significance study. Ann. Transl. Med. 2020, 8, 1077. [Google Scholar] [CrossRef]
- Berni, A.; Malandrino, D.; Parenti, G.; Maggi, M.; Poggesi, L.; Peri, A. Hyponatremia, IL-6, and SARS-CoV-2 (COVID-19) infection: May all fit together? J. Endocrinol. Investig. 2020, 43, 1137–1139. [Google Scholar] [CrossRef]
- Frara, S.; Allora, A.; Castellino, L.; di Filippo, L.; Loli, P.; Giustina, A. COVID-19 and the pituitary. Pituitary 2021, 24, 465–481. [Google Scholar] [CrossRef]
- Geslot, A.; Chanson, P.; Caron, P. COVID-19, the thyroid and the pituitary-The real state of play. Ann. Endocrinol. 2022, 83, 103–108. [Google Scholar] [CrossRef]
- Ku, E.J.; Song, K.H.; Kim, K.M.; Seo, G.H.; Yoo, S.J. Mortality and Severity of Coronavirus Disease 2019 in Patients with Long-Term Glucocorticoid Therapy: A Korean Nationwide Cohort Study. Endocrinol. Metab. 2023, 38, 253–259. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, K.M.; Song, K.; Seo, G.H. Risk for Newly Diagnosed Type 2 Diabetes Mellitus after COVID-19 among Korean Adults: A Nationwide Matched Cohort Study. Endocrinol. Metab. 2023, 38, 245–252. [Google Scholar] [CrossRef]
- Taleghani, N.; Taghipour, F. Diagnosis of COVID-19 for controlling the pandemic: A review of the state-of-the-art. Biosens. Bioelectron. 2021, 174, 112830. [Google Scholar] [CrossRef]
- Cho, S.W.; Kim, J.H.; Choi, H.S.; Ahn, H.Y.; Kim, M.K.; Rhee, E.J. Big Data Research in the Field of Endocrine Diseases Using the Korean National Health Information Database. Endocrinol. Metab. 2023, 38, 10–24. [Google Scholar] [CrossRef]
- Mundell, L.; Lindemann, R.; Douglas, J. Monitoring long-term oral corticosteroids. BMJ Open Qual. 2017, 6, e000209. [Google Scholar] [CrossRef]
- Puig-Domingo, M.; Marazuela, M.; Yildiz, B.O.; Giustina, A. COVID-19 and endocrine and metabolic diseases. An updated statement from the European Society of Endocrinology. Endocrine 2021, 72, 301–316. [Google Scholar] [CrossRef]
- Bancos, I.; Hazeldine, J.; Chortis, V.; Hampson, P.; Taylor, A.E.; Lord, J.M.; Arlt, W. Primary adrenal insufficiency is associated with impaired natural killer cell function: A potential link to increased mortality. Eur. J. Endocrinol. 2017, 176, 471–480. [Google Scholar] [CrossRef]
- Isidori, A.M.; Venneri, M.A.; Graziadio, C.; Simeoli, C.; Fiore, D.; Hasenmajer, V.; Sbardella, E.; Gianfrilli, D.; Pozza, C.; Pasqualetti, P.; et al. Effect of once-daily, modified-release hydrocortisone versus standard glucocorticoid therapy on metabolism and innate immunity in patients with adrenal insufficiency (DREAM): A single-blind, randomised controlled trial. Lancet Diabetes Endocrinol. 2018, 6, 173–185. [Google Scholar] [CrossRef]
- Arlt, W.; Baldeweg, S.E.; Pearce, S.H.S.; Simpson, H.L. ENDOCRINOLOGY IN THE TIME OF COVID-19: Management of adrenal insufficiency. Eur. J. Endocrinol. 2020, 183, G25–G32. [Google Scholar] [CrossRef] [Green Version]
- Stewart, P.M.; Biller, B.M.; Marelli, C.; Gunnarsson, C.; Ryan, M.P.; Johannsson, G. Exploring Inpatient Hospitalizations and Morbidity in Patients with Adrenal Insufficiency. J. Clin. Endocrinol. Metab. 2016, 101, 4843–4850. [Google Scholar] [CrossRef] [Green Version]
- Ku, C.R.; Jung, K.Y.; Ahn, C.H.; Moon, J.S.; Lee, J.H.; Kim, E.H.; Kwon, H.; Kim, H.K.; Suh, S.; Hong, S.; et al. COVID-19 Vaccination for Endocrine Patients: A Position Statement from the Korean Endocrine Society. Endocrinol. Metab. 2021, 36, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liao, X.; Zhou, Y.; Wang, L.; Yang, H.; Zhang, W.; Zhang, Z.; Kang, Y. Association between glucocorticoids treatment and viral clearance delay in patients with COVID-19: A systematic review and meta-analysis. BMC Infect. Dis. 2021, 21, 1063. [Google Scholar] [CrossRef]
- Baang, J.H.; Smith, C.; Mirabelli, C.; Valesano, A.L.; Manthei, D.M.; Bachman, M.A.; Wobus, C.E.; Adams, M.; Washer, L.; Martin, E.T.; et al. Prolonged Severe Acute Respiratory Syndrome Coronavirus 2 Replication in an Immunocompromised Patient. J. Infect. Dis. 2021, 223, 23–27. [Google Scholar] [CrossRef]
- Kim, M.K.; Jeon, J.H.; Kim, S.W.; Moon, J.S.; Cho, N.H.; Han, E.; You, J.H.; Lee, J.Y.; Hyun, M.; Park, J.S.; et al. The Clinical Characteristics and Outcomes of Patients with Moderate-to-Severe Coronavirus Disease 2019 Infection and Diabetes in Daegu, South Korea. Diabetes Metab. J. 2020, 44, 602–613. [Google Scholar] [CrossRef] [PubMed]
- Adir, Y.; Humbert, M.; Saliba, W. COVID-19 risk and outcomes in adult asthmatic patients treated with biologics or systemic corticosteroids: Nationwide real-world evidence. J. Allergy Clin. Immunol. 2021, 148, 361–367.e313. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.H.; Shin, J.I.; Moon, S.Y.; Jin, H.Y.; Kim, S.Y.; Yang, J.M.; Cho, S.H.; Kim, S.; Lee, M.; Park, Y.; et al. Autoimmune inflammatory rheumatic diseases and COVID-19 outcomes in South Korea: A nationwide cohort study. Lancet Rheumatol. 2021, 3, e698–e706. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.; Gørtz, S.; Ernst, M.T.; Andersen, N.N.; Kjær, S.K.; Hallas, J.; Christensen, S.; Christiansen, C.F.; Israelsen, S.B.; Benfield, T.; et al. The effect of immunosuppressants on the prognosis of SARS-CoV-2 infection. Eur. Respir. J. 2022, 59, 2100769. [Google Scholar] [CrossRef] [PubMed]
- Katznelson, L.; Gadelha, M. Glucocorticoid use in patients with adrenal insufficiency following administration of the COVID-19 vaccine: A pituitary society statement. Pituitary 2021, 24, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Rhee, E.J.; Kim, J.H.; Moon, S.J.; Lee, W.Y. Encountering COVID-19 as Endocrinologists. Endocrinol. Metab. 2020, 35, 197–205. [Google Scholar] [CrossRef]
- Tomazini, B.M.; Maia, I.S.; Cavalcanti, A.B.; Berwanger, O.; Rosa, R.G.; Veiga, V.C.; Avezum, A.; Lopes, R.D.; Bueno, F.R.; Silva, M.; et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients with Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA 2020, 324, 1307–1316. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.P.; Berwanger, O.; Cavalcanti, A.B.; et al. Association between Administration of Systemic Corticosteroids and Mortality among Critically Ill Patients with COVID-19: A Meta-analysis. JAMA 2020, 324, 1330–1341. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Casas-Rojo, J.M.; Antón-Santos, J.M.; Millán-Núñez-Cortés, J.; Lumbreras-Bermejo, C.; Ramos-Rincón, J.M.; Roy-Vallejo, E.; Artero-Mora, A.; Arnalich-Fernández, F.; García-Bruñén, J.M.; Vargas-Núñez, J.A.; et al. Clinical characteristics of patients hospitalized with COVID-19 in Spain: Results from the SEMI-COVID-19 Registry. Rev. Clin. Esp. 2020, 220, 480–494. [Google Scholar] [CrossRef] [PubMed]
- You, J.H.; Lee, S.A.; Chun, S.Y.; Song, S.O.; Lee, B.W.; Kim, D.J.; Boyko, E.J. Clinical Outcomes of COVID-19 Patients with Type 2 Diabetes: A Population-Based Study in Korea. Endocrinol. Metab. 2020, 35, 901–908. [Google Scholar] [CrossRef]
- Coppelli, A.; Giannarelli, R.; Aragona, M.; Penno, G.; Falcone, M.; Tiseo, G.; Ghiadoni, L.; Barbieri, G.; Monzani, F.; Virdis, A.; et al. Hyperglycemia at Hospital Admission Is Associated with Severity of the Prognosis in Patients Hospitalized for COVID-19: The Pisa COVID-19 Study. Diabetes Care 2020, 43, 2345–2348. [Google Scholar] [CrossRef]
- Muniangi-Muhitu, H.; Akalestou, E.; Salem, V.; Misra, S.; Oliver, N.S.; Rutter, G.A. COVID-19 and Diabetes: A Complex Bidirectional Relationship. Front. Endocrinol. 2020, 11, 582936. [Google Scholar] [CrossRef] [PubMed]
- Leung, J.M.; Niikura, M.; Yang, C.W.T.; Sin, D.D. COVID-19 and COPD. Eur. Respir. J. 2020, 56, 2002108. [Google Scholar] [CrossRef]
- Dufour, J.F.; Marjot, T.; Becchetti, C.; Tilg, H. COVID-19 and Liver Disease. Gut 2022, 71, 2350–2362. [Google Scholar] [CrossRef]
- Savoia, C.; Volpe, M.; Kreutz, R. Hypertension, a Moving Target in COVID-19: Current Views and Perspectives. Circ. Res. 2021, 128, 1062–1079. [Google Scholar] [CrossRef]
- O’Reilly, M.W.; Reulen, R.C.; Gupta, S.; Thompson, C.A.; Dineen, R.; Goulden, E.L.; Bugg, G.; Pearce, H.; Toogood, A.A.; Gittoes, N.J.; et al. ACTH and gonadotropin deficiencies predict mortality in patients treated for nonfunctioning pituitary adenoma: Long-term follow-up of 519 patients in two large European centres. Clin. Endocrinol. 2016, 85, 748–756. [Google Scholar] [CrossRef] [Green Version]
- Sherlock, M.; Reulen, R.C.; Alonso, A.A.; Ayuk, J.; Clayton, R.N.; Sheppard, M.C.; Hawkins, M.M.; Bates, A.S.; Stewart, P.M. ACTH deficiency, higher doses of hydrocortisone replacement, and radiotherapy are independent predictors of mortality in patients with acromegaly. J. Clin. Endocrinol. Metab. 2009, 94, 4216–4223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, J.; Baek, H.; Jeong, C.; Yeo, M.; Lee, S.H.; Cho, J.H.; Baek, K.H.; Kang, M.I.; Lim, D.J. Heart Rate Variability in Postoperative Patients with Nonfunctioning Pituitary Adenoma. Endocrinol. Metab. 2021, 36, 678–687. [Google Scholar] [CrossRef] [PubMed]
Group A (n = 725,170) | Group B (n = 1509) | Group C (n = 365) | |
---|---|---|---|
Mean age (years) | 48.2 ± 17.5 | 47.0 ± 17.1 | 61.3 ± 16.8 |
<60 years, % | 70.9% | 74.9% | 36.7% |
≥60 years, % | 29.1% | 25.1% | 63.3% |
Female | 50.0% | 75.2% | 62.2% |
Comorbidity, n (%) | |||
COPD or asthma | 38,266 (5.3) | 117 (7.8) | 58 (15.9) |
Liver cirrhosis | 3972 (0.5) | 13 (0.9) | 11 (3.0) |
Diabetes | 11,841 (1.6) | 57 (3.8) | 41 (11.2) |
CKD | 9427 (1.3) | 54 (3.6) | 27 (7.5) |
Hypertension | 116,111 (16.0) | 396 (26.3) | 184 (50.4) |
Underlying pituitary disease, n (%) | |||
Nonfunctioning pituitary adenoma | 0 (0) | 773 (51.2) | 136 (37.2) |
Acromegaly | 0 (0) | 28 (1.9) | 15 (4.1) |
Prolactinoma | 0 (0) | 659 (43.7) | 15 (4.1) |
Cushing’s disease | 0 (0) | 7 (0.5) | 8 (2.2) |
Hypopituitarism | 0 (0) | 239 (15.8) | 194 (53.2) |
Group A (n = 725,170) | Group B (n = 1509) | Group C (n = 365) | |
---|---|---|---|
Severe SARS-CoV-2 | |||
General ward admission | 63.2% | 67.9% | 82.2% |
ICU admission | 3.1% | 4.3% | 13.7% |
Requirement for oxygen therapy | 13.1% | 16.7% | 34.2% |
Requirement for mechanical ventilation or ECMO | 1.4% | 2.3% | 8.2% |
Any of the above | 13.4% | 17.2% | 35.3% |
Death within 30 days after infection | 1.2% | 1.2% | 6.8% |
Group A | Group B | Group C | |
---|---|---|---|
Severe COVID-19 | |||
Odds ratio | Ref. | 1.34 (1.17–1.53) | 3.54 (2.85–4.39) |
Ref. | 2.64 (2.05–3.40) | ||
Adjusted * odds ratio | Ref. | 1.31 (1.14–1.52) | 1.80 (1.43–2.27) |
Ref. | 1.64 (1.25–2.17) | ||
Death within 30 days after infection | |||
Odds ratio | Ref. | 1.00 (0.63–1.59) | 6.07 (4.04–9.12) |
Ref. | 6.07 (3.27–11.25) | ||
Adjusted * odds ratio | Ref. | 0.89 (0.55–1.43) | 2.34 (1.53–3.57) |
Ref. | 3.24 (1.70–6.18) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, J.; Kim, K.M.; Lim, D.-J.; Song, K.; Seo, G.H. Pituitary Diseases and COVID-19 Outcomes in South Korea: A Nationwide Cohort Study. J. Clin. Med. 2023, 12, 4799. https://doi.org/10.3390/jcm12144799
Ha J, Kim KM, Lim D-J, Song K, Seo GH. Pituitary Diseases and COVID-19 Outcomes in South Korea: A Nationwide Cohort Study. Journal of Clinical Medicine. 2023; 12(14):4799. https://doi.org/10.3390/jcm12144799
Chicago/Turabian StyleHa, Jeonghoon, Kyoung Min Kim, Dong-Jun Lim, Keeho Song, and Gi Hyeon Seo. 2023. "Pituitary Diseases and COVID-19 Outcomes in South Korea: A Nationwide Cohort Study" Journal of Clinical Medicine 12, no. 14: 4799. https://doi.org/10.3390/jcm12144799