Latest Developments in Minimally Invasive Spinal Treatment in Slovakia and Its Comparison with an Open Approach for the Treatment of Lumbar Degenerative Diseases
Abstract
:1. Introduction
1.1. MIS-TLIF in Diagnostics and Treatment
1.2. The Aim of the Study
2. Materials and Methods
2.1. Study Participans
2.2. Data Collection
2.3. OTLIF Sample Selection
2.4. Ethical Clearance
2.5. Method
2.6. Statistical Analysis
Description and Interpretation of Tables
- The label, which represents the name of the study: the first author + year.
- Effect size, which was calculated as the mean difference between two groups + the 95% confidence interval.
- Standard error, which provides a measure of the precision of the effect size estimate. A smaller standard error, which indicates that the sample estimate is more precise and is more likely to be closer to the true population value.
- The p-value (Sig.), which provides the significance of the comparison of the control (OTLIF) and the treatment (our MIS-TLIF) group.
- The weight of each study, as a percentage of the total of the meta-analysis (100%).
- The overall results, which are represented by Z and p values. When p is < 0.05, the overall result is statistically significant.
- The last line written in the table indicates the heterogeneity represented by the I2 values and homogeneity represented by Q (Chi-square) and p value.
- The overall results are represented by Z and p values. When p is < 0.05, the overall result is statistically significant.
- The last line written in the table indicates the heterogeneity represented by the I2 values and homogeneity represented by Q (Chi-square) and p-value.
3. Results
3.1. Analysis of MIS-TLIF Results in the Study Sample
3.2. Blood Loss Analyses
3.3. LOS Analyses
3.4. Operative Time Analyse
3.5. ODI Change Analyses
4. Discussion
4.1. Main Findings Obtain in Study Sample
4.2. Blood Loss
4.3. LOS
4.4. Operative Time
4.5. ODI Change
4.6. A Strength of the Study
4.7. Limitation of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, W.; Tang, J.; Wu, X.; Zhang, L.; Ke, B. Minimally invasive versus open transforaminal lumbar fusion: A systematic review of complications. Intl. Orthop. 2016, 40, 1883–1890. [Google Scholar] [CrossRef] [Green Version]
- Khashab, M.A.M.; Alsofiani, B.; Algamedi, O.; Shulan, M. Open versus Minimally invasive transforaminal lumbar interbody fusion: Intermediate outcomes in overweight and obese patients. J. Musculoskelet. Surg. Res. 2020, 4, 82. [Google Scholar]
- Khashab, M.; Karami, M.; Alswat, M.; Elkhalifa, M. Marker Screw Utilization for Minimally Invasive Transforaminal Lumbar Interbody Fusion (MS-MIS TLIF): Promises and Advantages. Medicina 2023, 59, 585. [Google Scholar] [CrossRef] [PubMed]
- Cole, C.D.; McCall, T.D.; Schmidt, M.H.; Dailey, A.T. Comparison of low back fusion techniques: Transforaminal lumbar interbody fusion (TLIF) or posterior lumbar interbody fusion (PLIF) approaches. Curr. Rev. Musculoskelet. Med. 2009, 2, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mobbs, R.J.; Phan, K.; Malham, G.; Seex, K.; Rao, P.J. Lumbar interbody fusion: Techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J. Spine Surg. 2015, 1, 2–18. [Google Scholar]
- Subramanian, N.; Srikantha, U.; Sitabkhan, M.; Jagannatha, A.T.; Khanapure, K.; Varma, R.G.; Hegde, A.S. Minimally Invasive vs. Open Transforaminal Lumbar Interbody Fusion: Early Outcome Observations. JSS 2015, 2, 1. [Google Scholar] [CrossRef]
- Kasis, A.G.; Marshman, L.A.G.; Krishna, M.; Bhatia, C.K. Significantly improved outcomes with a less invasive posterior lumbar interbody fusion incorporating total facetectomy. Spine 2009, 34, 572–577. [Google Scholar] [CrossRef]
- Kim, K.T.; Lee, S.H.; Suk, K.S.; Bae, S.C. The quantitative analysis of tissue injury markers after mini-open lumbar fusion. Spine 2006, 31, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Ha, J.W. Comparison of one-level posterior lumbar interbody fusion performed with a minimally invasive approach or a traditional open approach. Spine 2007, 32, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Karikari, I.O.; Isaacs, R.E. Minimally invasive transforaminal lumbar interbody fusion: A review of techniques and outcomes. Spine 2010, 35, S294–S301. [Google Scholar] [CrossRef] [PubMed]
- Lu, V.M.; Kerezoudis, P.; Gilder, H.E.; McCutcheon, B.A.; Phan, K.; Bydon, M. Minimally invasive surgery versus open surgery spinal fusion for spondylolisthesis: A systematic review and meta-analysis. Spine 2017, 42, E177–E185. [Google Scholar] [CrossRef]
- Hammad, A.; Wirries, A.; Ardeshiri, A.; Nikiforov, O.; Geiger, F. Open versus minimally invasive TLIF: Literature review and meta-analysis. Orthop. Surg. Res. 2019, 14, 229. [Google Scholar] [CrossRef] [Green Version]
- Lener, S.; Wipplinger, C.; Hernandez, R.N.; Hussain, I.; Kirnaz, S.; Navarro-Ramirez, R.; Schmidt, F.A.; Kim, E.; Härtl, R. Defining the MIS-TLIF: A Systematic Review of Techniques and Technologies Used by Surgeons Worldwide. Glob. Spine J. 2020, 10, 151S–167S. [Google Scholar] [CrossRef]
- Dahlan, R.H.; Ompusunggu, S.E.; Yudoyono, F.; Malau, G.L. Correlation Analysis of Extensive Foraminotomy of Lumbar Foramina Stenosis Patients to Improvement of Visual Analogue Scale (VAS) And Oswestry Disabilty Index (ODI). OAJNN 2018, 41, 60. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.H.; Yue, W.M.; Yeo, W.; Sohearno, H.; Tan, S.B. Clinical and radiological outcomes of open versus minimally invasive transforaminal lumbar interbody fusion. Eur. Spine J. 2012, 21, 2265–2270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhou, Y.; Zhang, Z.F.; Li, C.Q.; Zheng, W.J.; Liu, J. Comparison of the clinical outcome in overweight or obese patients after minimally invasive versus open transforaminal lumbar interbody fusion. J. Spinal Disord. Tech. 2014, 27, 202–206. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Zhang, Z.F.; Li, C.Q.; Zheng, W.J.; Liu, J. Comparison of one-level minimally invasive and open transforaminal lumbar interbody fusion in degenerative and isthmic spondylolisthesis grades 1 and 2. Eur. Spine J. 2010, 19, 1780–1784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulaiman, W.A.R.; Singh, M. Minimally Invasive Versus Open Transforaminal Lumbar Interbody Fusion for Degenerative Spondylolisthesis Grades 1–2: Patient-Reported Clinical Outcomes and Cost-Utility Analysis. Ochsner J. 2014, 14, 32–37. [Google Scholar]
- Zhang, H.; Chen, Z.X.; Sun, Z.M.; Jiang, C.; Ni, W.F.; Lin, Y.; Wu, Y.S. Comparison of the total and hidden blood loss in patients undergoing open and minimally invasive transforaminal lumbar interbody fusion. World Neurosurg. 2017, 107, 739–743. [Google Scholar] [CrossRef]
- Shunwu, F.; Xing, Z.; Fengdong, Z.; Xiangquian, F. Minimally invasive transforaminal lumbar interbody fusion for the treatment of degenerative lumbar diseases. Spine (Phila Pa 1976) 2010, 35, 1615–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, D.; Khan, A.; Terman, S.W.; Yee, T.; La Marca, F.; Park, P. Comparison of perioperative outcomes following open versus minimally invasive transforaminal lumbar interbody fusion in obese patients. Neurosurg. Focus 2013, 35, E10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, G.; Zhang, H.; Fan, G.; He, S.; Cai, X.; Shen, X.; Guan, X.; Zhou, X. Comparison of minimally invasive versus open transforaminal lumbar interbody fusion in two-level degenerative lumbar disease. Int. Orthop. 2014, 28, 817–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Zhang, L.; Liu, B.; Pang, M.; Xie, P.; Chen, Z.; Wu, W.; Feng, F.; Rong, F. Hidden and overall haemorrhage following minimally invasive and open transforaminal lumbar interbody fusion. J. Orthop. Traumatol. 2017, 18, 395–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.S.; Park, P.; Le, H.; Reisner, R.; Chou, D.; Mummaneni, P.V. Short-term and long-term outcomes of minimally invasive and open transforaminal lumbar interbody fusions: Is there a difference? Neurosurg. Focus 2013, 35, E6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tschugg, A.; Hartmann, S.; Lener, S.; Rietzler, A.; Neururer, S.; Thome, C. Minimally invasive spine surgery in lumbar spondylodiscitis: A retrospective single-center analysis of 67 cases. Eur. Spine J. 2017, 26, 3141–3146. [Google Scholar] [CrossRef] [Green Version]
- Seng, C.; Mashfiqul, S.A.; Kenneth, W.P.L.; Zhang, K.; Yeo, W.; Tan, S.B.; Yue, W.M. Five-Year Outcomes of Minimally Invasive Versus Open Transforaminal Lumbar Interbody Fusion A Matched-Pair Comparison Study. Spine J. 2013, 38, 2049–2055. [Google Scholar] [CrossRef]
- Singh, K.; Sreeharsha, V.N.; Marquez-Lara, A.; Isayeva, D.; Jegier, B.J.; Phillips, F.M. A perioperative cost analysis comparing single-level minimally invasive and open transforaminal lumbar interbody fusion. Spine J. 2014, 14, 1694–1701. [Google Scholar] [CrossRef]
- Villavicen, A.T.; Burneikiene, S.; Roeca, C.M.; Nelson, E.L.; Mason, A. Minimally invasive versus open transforaminal lumbar interbody fusion. Surg. Neurol. Int. 2010, 1, 12. [Google Scholar]
- Adogwa, O.; Johnson, K.; Min, E.T.; Issar, N.; Carr, K.R.; Huang, K.; Cheng, J. Extent of intraoperative muscle dissection does not affect longterm outcomes after minimally invasive surgery versus opentransforaminal lumbar interbody fusion surgery: A prospective longitudinal cohort study. Surg. Neurol. Int. 2012, 3, S355–S361. [Google Scholar] [CrossRef]
- Pelton, M.A.; Frank, P.M.; Kern, S.A. Comparison of Perioperative Costs and Outcomes in Patients with and without Workers’ Compensation Claims Treated with Minimally Invasive or Open Transforaminal Lumbar Interbody Fusion. Spine 2012, 37, 1914–1919. [Google Scholar] [CrossRef]
- Kulkarni, A.G.; Bohra, H.; Dhruv, A.; Sarraf, A.; Bassi, A.; Patil, V.M. Minimal invasive transforaminal lumbar interbody fusion versus open transforaminal lumbar interbody fusion. Indian J. Orthop. 2016, 50, 464–472. [Google Scholar] [CrossRef]
- Brodano, G.B.; Martikos, K.; Lolli, F.; Gasbarrini, A.; Cioni, A.; Bandiera, S.; Silvestre, M.D.; Boriani, S.; Greggi, T. Transforaminal Lumbar Interbody Fusion in Degenerative Disk Disease and Spondylolisthesis Grade I: Minimally Invasive Versus Open Surgery. J Spinal Disord. Tech. 2015, 28, E559–E564. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Vela, J.; Lobo-Escolar, A.; Joven, E.; Munoz-Marín, J.; Herrera, A.; Vellila, J. Clinical outcomes of minimally invasive versus open approach for one-level transforaminal lumbar interbody fusion at the 3- to 4- year follow-up. Eur. Spine J. 2013, 22, 2857–2863. [Google Scholar] [CrossRef] [Green Version]
- Adogwa, O.; Carr, K.; Thompson, P.; Hoang, K.; Darlington, T.; Perez, E.; Fatemi, P.; Gottfried, O.; Cheng, J.; Isaacs, R.E. A prospective, multiinstitutional comparative effectiveness study of lumbar spine surgery in morbidly obese patients: Does minimally invasive transforaminal lumbar interbody fusion result in superior outcomes? World Neurosurg. 2015, 83, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.L.; Adogwa, O.; Bydon, A.; Cheng, J.; McGirt, M.J. Cost-effectiveness of minimally invasive versus open transforaminal lumbar interbody fusion for degenerative spondylolisthesis associated low-back and leg pain over two years. World Neurosurg. 2012, 78, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Adogwa, O.; Parker, S.L.; Bydon, A.; Cheng, J.; McGirt, M.J. Comparative effectiveness of minimally invasive versus open transforaminal lumbar interbody fusion: 2-year assessment of narcotic use, return to work, disability, and quality of life. J. Spinal Disord. Tech. 2011, 24, 479–484. [Google Scholar] [CrossRef]
- Parker, S.L.; Mendenhall, S.K.; Shau, D.N.; Zuckerman, S.L.; Godil, S.S.; Cheng, J.S.; McGirt, M.J. Minimally invasive versus open transforaminal lumbar interbody fusion for degenerative spondylolisthesis: Comparative effectiveness and cost-utility analysis. World Neurosurg. 2014, 82, 230–238. [Google Scholar] [CrossRef]
- Peng, C.W.; Yue, W.; Poh, S.Y.; Yeo, W.; Tan, S.B. Clinical and radiological outcomes of minimally invasive versus open transforaminal lumbar interbody fusion. Spine 2009, 34, 1385–1389. [Google Scholar] [CrossRef]
- Park, J.; Ham, D.W.; Kwon, B.T.; Park, S.M.; Kim, H.J.; Yeom, J.S. Minimally Invasive Spine Surgery: Techniques, Technologies, and Indications. Asian Spine J. 2020, 14, 694–701. [Google Scholar] [CrossRef]
- Arif, S.; Bradya, Z.; Encheva, Y.; Peevc, N.; Encheva, E. Minimising radiation exposure to the surgeon in minimally invasive spine surgeries: A systematic review of 15 studies. Orthop. Traumatol. Surg. Res. 2021, 107, 102795. [Google Scholar] [CrossRef]
- Tarnanen, S.; Neva, M.H.; Kautiainen, H.; Ylinen, J.; Pekkanen, L.; Kaistila, T.; Vuorenmaa, M.; Häkkinen, A. The early changes in trunk muscle strength and disability following lumbar spine fusion. Disabil. Rehabil. 2013, 35, 134–139. [Google Scholar] [CrossRef]
- Oestergaard, L.G.; Nielsen, C.V.; Bünger, C.E.; Sogaard, R.; Fruensgaard, S.; Helmig, P.; Christensen, F.B. The effect of early initiation of rehabilitation after lumbar spinal fusion: A randomized clinical study. Spine 2012, 37, 1803–1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madera, M.; Brady, J.; Deily, S.; McGinty, T.; Moroz, L.; Singh, D.; Tipton, G.; Truumees, E. for the Seton Spine Rehabilitation Study Group. The role of physical therapy and rehabilitation after lumbar fusion surgery for degenerative disease: A systematic review. J. Neurosurg. Spine 2017, 26, 694–704. [Google Scholar] [PubMed] [Green Version]
- Archavlis, E.; Carvi y Nievas, M. Comparison of minimally invasive fusion and instrumentation versus open surgery for severe stenotic spondylolisthesis with high-grade facet joint osteoarthritis. Eur. Spine J. 2013, 22, 1731–1740. [Google Scholar] [CrossRef] [Green Version]
- Mobbs, R.J.; Sivabalan, P.; Li, J. Minimally invasive surgery compared to open spinal fusion for the treatment of degenerative lumbar spine pathologies. J. Clin. Neurosci. 2012, 19, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.; Lee, J.G.; Han, S.J.; Lu, D.C.; Chou, D. Complications and perioperative factors associated with learning the technique of minimally invasive transforaminal lumbar interbody fusion (TLIF). J. Clin. Neurosci. 2011, 18, 624–627. [Google Scholar] [CrossRef]
- Wang, H.L.; Lü, F.Z.; Jiang, J.Y.; Ma, X.; Xia, X.L.; Wang, L.X. Minimally invasive lumbar interbody fusion via MAST quadrant retractor versus open surgery: A prospective randomized clinical trial. Chin. Med. J. 2011, 124, 3868–3874. [Google Scholar]
- Schizas, C.; Tzinieris, N.; Tsiridis, E.; Kosmopoulos, V. Minimally invasive versus open transforaminal lumbar interbody fusion: Evaluating initial experience. Int. Orthop. 2009, 33, 1683–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, D.H.; Stekas, N.D.; Varlotta, C.G.; Fischer, C.R.; Petrizzo, A.; Protopsaltis, T.S.; Passias, P.G.; Errico, T.J.; Buckland, A.J. Comparative Analysis of Two Transforaminal Lumbar Interbody Fusion Techniques: Open TLIF Versus Wiltse MIS TLIF. Spine 2019, 44, E555–E560. [Google Scholar] [CrossRef]
- Terman, S.W.; Yee, T.J.; Lau, D.; Khan, A.A.; La Marca, F.; Park, P. Minimally invasive versus open transforaminal lumbar interbody fusion: Comparison of clinical outcomes among obese patients. J. Neurosurg. Spine 2014, 20, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.H.; Easley, K.; Lee, J.S.; Hong, J.Y.; Virk, M.; Hsieh, P.C.; Yoon, S.T. Comparison of Minimally Invasive Versus Open Transforaminal Interbody Lumbar Fusion. Global Spine J. 2020, 10, 143S–150S. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, S.; Lang, A.; Lener, S.; Abramovic, A.; Grassner, L.; Thomé, C. Minimally invasive versus open transforaminal lumbar interbody fusion: A prospective, controlled observational study of short-term outcome. Neurosurg. Rev. 2022, 45, 3417–3426. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Chen, J.; Chen, J.; Wu, Y.; Chen, X.; Liu, Y.; Chu, Z.; Sheng, L.; Qin, R.; Chen, M. Three-year postoperative outcomes between MIS and conventional TLIF in1-segment lumbar disc herniation. Minim. Invasive Ther. Allied Technol. 2017, 13, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.W.; Park, Y.; Lee, B.H.; Yoon, S.R.; Ha, J.W.; Kim, H.; Suk, K.S.; Moon, S.H.; Kim, H.S.; Lee, H.M. Ten-Year Outcomes of Minimally Invasive versus Open Transforaminal Lumbar Interbody Fusion in Patients with Single-Level Lumbar Spondylolisthesis. Spine 2022, 47, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Gerhart, K.A.; Bergstrom, E.; Charlifue, S.W.; Menter, R.R.; Whiteneck, G.G. Long-term spinal cord injury: Functional changes over time. Arch. Phys. Med. Rehabil. 1993, 74, 1030–1034. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria | ||
---|---|---|---|
a. | adult patients | a. | hip or knee alloplastic or injuries at the time of post-operative data collection |
b. | 3 to 12 months after MIS-TLIF | b. | musculoskeletal pain at the time of post-operative data collection |
c. | indication for surgery—LDD | c. | unwillingness to participate in the study |
d. | consent to participation in the study |
N | % | Mean | SD | p | |
---|---|---|---|---|---|
M/F | 109/141 | 43.6/56.4 | - | - | - |
MIS-TLIF in L4/5/S1 | 91 | 36.4 | - | - | - |
MIS-TLIF in L3/4/5 | 27 | 10.8 | - | - | - |
MIS-TLIF in L2/3/4 | 4 | 1.6 | - | - | - |
MIS-TLIF in L5/S1 | 61 | 24.4 | - | - | - |
MIS-TLIF in L4/5 | 53 | 21.2 | - | - | - |
MIS-TLIF in L3/4 | 9 | 3.6 | - | - | - |
MIS-TLIF in L2/3 | 4 | 1.6 | - | - | - |
MIS-TLIF in L1/2 | 1 | 0.4 | - | - | - |
Blood loss | - | - | 265.8 | 104.8 | - |
LOS | - | - | 4.84 | 0.81 | - |
Operative time | - | - | 107.8 | 29.23 | - |
Pre- and post- operative ODI [%] post-operative | - | - | 33.44 | 23.749 | <0.001 |
Satisfaction with MIS-TLIF | 212 | 84.8 | - | - | - |
Underwent rehabilitation | 179 | 71.6 | - | - | - |
Underwent spa | 78 | 31.2 | - | - | - |
Study | MIS-TLIF Mean ± SD (n = 250) | OTLIF Mean ± SD (n) | Effect Size | Mean Diff, 95% CI | Sig. (2-Tailed) | Weight (%) |
---|---|---|---|---|---|---|
Lee et al., 2012 [15] | 265.8 ± 104.8 | 976.3 ± 760.8 (n = 72) | −710.5. | (−886.71; −534.29) | <0.001 | 5.2 |
Wang et al., 2012 [16] | 265.8 ± 104.8 | 835.0 ± 247.0 (n = 39) | −569.2 | (−647.80; −490.60) | 0.000 | 6 |
Wang et al., 2010 [17] | 265.8 ± 104.8 | 831.0 ± 210.0 (n = 43) | −565.2 | (−629.30; −501.10) | 0.000 | 6.1 |
Wang et al., 2010 [17] | 265.8 ± 104.8 | 799.0 ± 208.0 (n = 27) | −533.2 | (−612.73; − 453.68) | 0.000 | 6 |
Sulaiman et al., 2014 [18] | 265.8 ± 104.8 | 786.0 ± 107.0 (n = 11) | −520.2 | (−584.75; −455.65) | 0.000 | 6.1 |
Zhang et al., 2017 [19] | 265.8 ± 104.8 | 742.0 ± 272.0 (n = 59) | −476.2 | (−546.81; −405.59) | 0.000 | 6 |
Shunwu et al., 2009 [20] | 265.8 ± 104.8 | 711.4 ± 157.3 (n = 30) | −445.6 | (−503.37; −387.83) | 0.000 | 6.1 |
Lau et al., 2013 [21] | 265.8 ± 104.8 | 661.0 ± 561.3 (n = 49) | −395.2 | (−552.90; −237.50) | <0.001 | 5.4 |
Gu et al., 2014 [22] | 265.8 ± 104.8 | 576.3 ± 176.2 (n = 38) | −310.5 | (−368.01; −252.99) | 0.000 | 6.1 |
Yang et al., 2017 [23] | 265.8 ± 104.8 | 538.6 ± 129.5 (n = 20) | −272.8 | (−331.02; −214.58) | 0.000 | 6.1 |
Cheng et al., 2013 [24] | 265.8 ± 104.8 | 535.5 ± 324.0 (n = 25) | −269.7 | (−397.37; −142.03) | <0.001 | 5.7 |
Tschugg et al., 2017 [25] | 265.8 ± 104.8 | 472.3 ± 555.0 (n = 48) | −206.5 | (−364.04; −48.96) | 0.01 | 5.4 |
Seng et al., 2013 [26] | 265.8 ± 104.8 | 405.0 ± 80.0 (n = 40) | −139.2 | (−167.19; −111.21) | 0.000 | 6.2 |
Singh et al. 2014 [27] | 265.8 ± 104.8 | 380.3 ± 191.2 (n = 33) | −114.5 | (−181.02; −47.98) | <0.001 | 6.1 |
Villavicen et al., 2010 [28] | 265.8 ± 104.8 | 366.8 ± 298.2 (n = 63) | −101 | (−175.77; −26.23) | 0.008 | 6 |
Adogwa et al., 2012 [29] | 265.8 ± 104.8 | 280.0 ± 219.7 (n = 7) | −14.2 | (−177.43; 149.03) | 0.865 | 5.4 |
Pelton et al., 2012 [30] | 265.8 ± 104.8 | 271.0 ± 84.9 (n = 33) | −5.2 | (−36.95; 26.55) | 0.748 | 6.2 |
Overall results | −331.23 | (−432.01; −230.45) | <0.001 * | −6.442 * | ||
Heterogeneity: I2 = 97.07% | ||||||
Homogeneity: Q = 714.992 p-value = 0.000 |
Study | MIS-TLIF Mean ± SD (n = 250) | OTLIF Mean ± SD (n) | Effect Size | Mean Diff, 95% CI | Sig. (2-Tailed) | Weight (%) |
---|---|---|---|---|---|---|
Lee et al., 2012 [15] | 4.84 ± 0.81 | 6.80 ± 3.40 (n = 72) | −1.956 | (−2.75; −1.16) | <0.001 | 7.2 |
Wang et al., 2010 [17] | 4.84 ± 0.81 | 14.60 ± 3.80 (n = 43) | −9.756 | (−10.9; −8.62) | 0.000 | 7.1 |
Sulaiman et al., 2014 [18] | 4.84 ± 0.81 | 0.20 ± 0.20 (n = 11) | 4.644 | (4.49; 4.8) | 0.000 | 7.2 |
Zhang et al., 2017 [19] | 4.84 ± 0.81 | 10.10 ± 3.20 (n = 59) | −5.256 | (−6.08; −4.43) | 0.000 | 7.2 |
Shunwu et al., 2009 [20] | 4.84 ± 0.81 | 12.50 ± 1.80 (n = 30) | −7.656 | (−8.31; −7.00) | 0.000 | 7.2 |
Lau et al., 2013 [21] | 4.84 ± 0.81 | 4.70 ± 2.10 (n = 49) | 0.144 | (−0.45; 0.74) | 0.636 | 7.2 |
Gu et al., 2014 [22] | 4.84 ± 0.81 | 12.10 ± 3.60 (n = 38) | −7.256 | (−8.41; −6.11) | 0.000 | 7.1 |
Cheng et al., 2013 [24] | 4.84 ± 0.81 | 6.05 ± 1.80 (n = 25) | −1.206 | (−1.92; −0.49) | <0.001 | 7.2 |
Tschugg et al., 2017 [25] | 4.84 ± 0.81 | 19.10 ± 12.00 (n = 48) | −14.256 | (−17.65; −10.86) | <0.001 | 6.5 |
Seng et al., 2013 [26] | 4.84 ± 0.81 | 5.90 ± 0.40 (n = 40) | −1.056 | (−1.22; −0.9) | 0.000 | 7.2 |
Singh et al., 2014 [27] | 4.84 ± 0.81 | 2.90 ± 1.10 (n = 33) | 1.944 | (1.56; 2.33) | 0.000 | 7.2 |
Villavicen et al., 2010 [28] | 4.84 ± 0.81 | 4.20 ± 3.50 (n = 63) | 0.644 | (−0.23; 1.51) | 0.147 | 7.2 |
Pelton et al., 2012 [30] | 4.84 ± 0.81 | 3v00 ± 1.10 (n = 33) | 1.844 | (1.46; 2.23) | 0000 | 7.2 |
Kulkarni et al., 2016 [31] | 4.84 ± 0.81 | 5.84 ± 2.25 (n = 25) | −0.996 | (−1.88; −0.11) | 0.028 | 7.2 |
Overall results | −2.78 | (−5.45; −0.1) | 0.042 * | −2.036 * | ||
Heterogeneity: I2 = 99.08% | ||||||
Homogeneity: Q = 4420.336 p = 0.000 |
Study | MIS-TLIF Mean ± SD (n = 250) | OTLIF Mean ± SD (n) | Effect Size | Mean Diff, 95% CI | Sig. (2-Tailed) | Weight (%) |
---|---|---|---|---|---|---|
Lee et al., 2012 [15] | 107.68 ± 29.23 | 181.80 ± 45.40 (n = 72) | −74.12 | (−82.9; −65.34) | 0.000 | 6 |
Wang et al., 2012 [16] | 107.68 ± 29.23 | 168.00 ± 37.00 (n = 39) | −60.32 | (−70.57; −50.07) | 0.000 | 5.9 |
Wang et al., 2010 [17] | 107.68 ± 29.23 | 145.00 ± 27.00 (n = 43) | −37.32 | (−46.68; −27.96) | <0.001 | 6 |
Wang et al., 2010 [17] | 107.68 ± 29.23 | 143.00 ± 35.00 (n = 27) | −35.32 | (−47.16; −23.48) | <0.001 | 5.9 |
Sulaiman et al., 2014 [18] | 107.68 ± 29.23 | 161.00 ± 7.60 (n = 11) | −53.32 | (−70.65; −35.99) | <0.001 | 5.7 |
Zhang et al., 2017 [19] | 107.68 ± 29.23 | 136.00 ± 25.00 (n = 59) | −28.32 | (−36.4; −20.24) | <0.001 | 6 |
Shunwu et al., 2009 [20] | 107.68 ± 29.23 | 142.80 ± 22.50 (n = 30) | −35.12 | (−45.95; −24.29) | <0.001 | 5.9 |
Gu et al., 2014 [22] | 107.68 ± 29.23 | 186.60 ± 23.40 (n = 38) | −78.92 | (−88.66; −69.18) | 0.000 | 5.9 |
Yang et al., 2017 [23] | 107.68 ± 29.23 | 141.80 ± 18.80 (n = 20) | −34.12 | (−47.16; −21.09) | <0.001 | 5.9 |
Cheng et al., 2013 [24] | 107.68 ± 29.23 | 278.80 ± 14.50 (n = 25) | −171.12 | (−182.73; −159.51) | 0.000 | 5.9 |
Tschugg et al., 2017 [25] | 107.68 ± 29.23 | 208.80 ± 86.00 (n = 48) | −101.12 | (−114.56; −87.68) | 0.000 | 5.8 |
Seng et al., 2013 [26] | 107.68 ± 29.23 | 166.00 ± 7.00 (n = 40) | −58.32 | (−67.43; −49.21) | 0.000 | 6 |
Singh et al., 2014 [27] | 107.68 ± 29.23 | 186.00 ± 31.00 (n = 33) | −78.32 | (−89.01; −67.63) | 0.000 | 5.9 |
Villavicen et al., 2010 [28] | 107.68 ± 29.23 | 214.90 ± 60.00 (n = 63) | −107.22 | (−117.57; −96.88) | 0.000 | 5.9 |
Adogwa et al., 2012 [29] | 107.68 ± 29.23 | 211.00 ± 43.23 (n = 7) | −103.32 | (−125.58; −81.06) | 0.000 | 5.5 |
Pelton et al., 2012 [30] | 107.68 ± 29.23 | 184.50 ± 33.94 (n = 33) | −76.82 | (−87.64; −66) | 0.000 | 5.9 |
Kulkarni et al., 2016 [31] | 107.68 ± 29.23 | 177.60 ± 34.20 (n = 25) | −69.92 | (−82.13; −57.71) | 0.000 | 5.9 |
Overall results | −70.27 | (−87.61; −52.93) | <0.001 * | −7.943 * | ||
Heterogeneity: I2 = 97.6% | ||||||
Homogeneity: Q = 673.156 p = 0.000 |
Study | MIS-TLIF Mean ± SD (n = 250) | OTLIF Mean ± SD (n) | Effect Size | Mean Diff, 95% CI | Sig. (2-Tailed) | Weight (%) |
---|---|---|---|---|---|---|
Lee et al., 2012 [15] | 33.23 ± 23.94 | 23.70 ± 17.38 (n = 72) | 9.528 | (4.54; 14.52) | <0.001 | 7 |
Wang et al., 2010 [17] | 33.23 ± 23.94 | 26.30 ± 6.42 (n = 43) | 6.928 | (3.39; 10.46) | <0.001 | 7.5 |
Wang et al., 2010 [17] | 33.23 ± 23.94 | 26.40 ± 6.95 (n = 27) | 6.828 | (2.87; 10.79) | <0.001 | 7.4 |
Shunwu et al., 2009 [20] | 33.23 ± 23.94 | 24.80 ± 10.57 (n = 30) | 8.428 | (3.62; 13.24) | <0.001 | 7.1 |
Gu et al., 2014 [22] | 33.23 ± 23.94 | 28.40 ± 4.72 (n = 38) | 4.828 | (1.5; 8.16) | 0.004 | 7.6 |
Yang et al., 2017 [23] | 33.23 ± 23.94 | 30.70 ± 11.32 (n = 20) | 2.528 | (−3.25; 8.31) | 0.391 | 6.7 |
Seng et al., 2013 [26] | 33.23 ± 23.94 | 29.80 ± 11.85 (n = 40) | 3.428 | (−1.29; 8.15) | 0.155 | 7.1 |
Brodano et al., 2015 [32] | 33.23 ± 23.94 | 34.00 ± 7.07 (n = 34) | −0.772 | (−4.57; 3.03) | 0.691 | 7.4 |
Rodriguez-Vela et al., 2013 [33] | 33.23 ± 23.94 | 9.09 ± 10.51 (n = 20) | 24.138 | (18.66; 29.62) | 0.000 | 6.9 |
Adogwa et al., 2015 [34] | 33.23 ± 23.94 | 14.88 ± 19.01 (n = 108) | 18.348 | (13.7; 23) | <0.001 | 7.1 |
Parker et al., 2012 [35] | 33.23 ± 23.94 | 17.20 ± 1.58 (n = 15) | 16.028 | (9.91; 22.15) | <0.001 | 6.6 |
Adogwa et al., 2010 [36] | 33.23 ± 23.94 | 17.20 ± 10.58 (n = 15) | 16.028 | (9.91; 22.15) | <0.001 | 6.6 |
Parker et al., 2013 [37] | 33.23 ± 23.94 | 18.70 ± 9.39 (n = 50) | 14.528 | (10.58; 18.48) | <0.001 | 7.4 |
Peng et al., 2009 [38] | 33.23 ± 23.94 | 30.20 ± 4.45 (n = 29) | 3.028 | (−0.35; 6.41) | 0.079 | 7,5 |
Overall results | 9.4 | (5.68; 13.12) | <0.001 * | 4.950 * | ||
Heterogeneity: I2 = 99.08% | ||||||
Homogeneity: Q=116.364 p = 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potašová, M.; Filipp, P.; Rusnák, R.; Moraučíková, E.; Repová, K.; Kutiš, P. Latest Developments in Minimally Invasive Spinal Treatment in Slovakia and Its Comparison with an Open Approach for the Treatment of Lumbar Degenerative Diseases. J. Clin. Med. 2023, 12, 4755. https://doi.org/10.3390/jcm12144755
Potašová M, Filipp P, Rusnák R, Moraučíková E, Repová K, Kutiš P. Latest Developments in Minimally Invasive Spinal Treatment in Slovakia and Its Comparison with an Open Approach for the Treatment of Lumbar Degenerative Diseases. Journal of Clinical Medicine. 2023; 12(14):4755. https://doi.org/10.3390/jcm12144755
Chicago/Turabian StylePotašová, Marina, Peter Filipp, Róbert Rusnák, Eva Moraučíková, Katarína Repová, and Peter Kutiš. 2023. "Latest Developments in Minimally Invasive Spinal Treatment in Slovakia and Its Comparison with an Open Approach for the Treatment of Lumbar Degenerative Diseases" Journal of Clinical Medicine 12, no. 14: 4755. https://doi.org/10.3390/jcm12144755
APA StylePotašová, M., Filipp, P., Rusnák, R., Moraučíková, E., Repová, K., & Kutiš, P. (2023). Latest Developments in Minimally Invasive Spinal Treatment in Slovakia and Its Comparison with an Open Approach for the Treatment of Lumbar Degenerative Diseases. Journal of Clinical Medicine, 12(14), 4755. https://doi.org/10.3390/jcm12144755