Metabolic Flexibility and Inflexibility: Pathology Underlying Metabolism Dysfunction
Author Contributions
Conflicts of Interest
References
- Goodpaster, B.H.; Sparks, L.M. Metabolic Flexibility in Health and Disease. Cell Metab. 2017, 25, 1027–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoemaker, M.E.; Pereira, S.L.; Mustad, V.A.; Gillen, Z.M.; McKay, B.D.; Lopez-Pedrosa, J.M.; Rueda, R.; Cramer, J.T. Differences in muscle energy metabolism and metabolic flexibility between sarcopenic and nonsarcopenic older adults. J. Cachexia Sarcopenia Muscle 2022, 13, 1224–1237. [Google Scholar] [CrossRef] [PubMed]
- Prior, S.J.; Ryan, A.S.; Stevenson, T.G.; Goldberg, A.P. Metabolic inflexibility during submaximal aerobic exercise is associated with glucose intolerance in obese older adults. Obesity 2014, 22, 451–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, E.A.; Le, N.A.; Stein, A.D. Measuring Postprandial Metabolic Flexibility to Assess Metabolic Health and Disease. J. Nutr. 2021, 151, 3284–3291. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.M.; Azuma, K.; Kelley, C.; Pencek, R.; Radikova, Z.; Laymon, C.; Price, J.; Goodpaster, B.H.; Kelley, D.E. PET imaging reveals distinctive roles for different regional adipose tissue depots in systemic glucose metabolism in nonobese humans. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E1134–E1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cermak, N.M.; van Loon, L.J.C. The use of carbohydrates during exercise as an ergogenic aid. Sports Med. 2013, 43, 1139–1155. [Google Scholar] [CrossRef] [PubMed]
- Rossi, P.A.Q.; Lira, F.S.; Bezerra, V.R.; Clark, N.W.; Fukuda, D.H.; Panissa, V.L.G. Acute Response to Capsiate Supplementation at Rest and during Exercise on Energy Intake, Appetite, Metabolism, and Autonomic Function: A Randomized Trial. J. Am. Nutr. Assoc. 2022, 41, 541–550. [Google Scholar] [CrossRef] [PubMed]
- La Monica, M.B.; Fukuda, D.H.; Starling-Smith, T.M.; Clark, N.W.; Panissa, V.L.G. Alterations in energy system contribution following upper body sprint interval training. Eur. J. Appl. Physiol. 2020, 120, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Clark, N.W.; Wells, A.J.; Coker, N.A.; Goldstein, E.R.; Herring, C.H.; Starling-Smith, T.M.; Varanoske, A.N.; Panissa, V.L.G.; Stout, J.R.; Fukuda, D.H. The acute effects of thermogenic fitness drink formulas containing 140 mg and 100 mg of caffeine on energy expenditure and fat metabolism at rest and during exercise. J. Int. Soc. Sports Nutr. 2020, 17, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panissa, V.L.G.; Fukuda, D.H.; Staibano, V.; Marques, M.; Franchini, E. Magnitude and duration of excess of post-exercise oxygen consumption between high-intensity interval and moderate-intensity continuous exercise: A systematic review. Obes. Rev. 2021, 22, e13099. [Google Scholar] [CrossRef] [PubMed]
- Gillen, Z.M.; Mustad, V.A.; Shoemaker, M.E.; Mckay, B.D.; Leutzinger, T.J.; Lopez-Pedrosa, J.M.; Rueda, R.; Cramer, J.T. Impact of slow versus rapid digesting carbohydrates on substrate oxidation in pre-pubertal children: A randomized crossover trial. Clin. Nutr. 2021, 40, 3718–3728. [Google Scholar] [CrossRef] [PubMed]
- Andrade, D.C.; Flores-Opazo, M.; Peñailillo, L.; Delgado-Floody, P.; Cano-Montoya, J.; Vásquez-Gómez, J.A.; Alvarez, C. Similar Adaptations to 10 Weeks Concurrent Training on Metabolic Markers and Physical Performance in Young, Adult, and Older Adult Women. J. Clin. Med. 2021, 10, 5582. [Google Scholar] [CrossRef] [PubMed]
- Gallardo-Alfaro, L.; Bibiloni, M.d.M.; Argelich, E.; Angullo-Martinez, E.; Bouzas, C.; Tur, J.A. Metabolic Syndrome and Functional Fitness Abilities. J. Clin. Med. 2021, 10, 5840. [Google Scholar] [CrossRef] [PubMed]
- Methenitis, S.; Feidantsis, K.; Kaprara, A.; Hatzitolios, A.; Skepastianos, P.; Papadopoulou, S.K.; Panayiotou, G. Body Composition, Fasting Blood Glucose and Lipidemic Indices Are Not Primarily Determined by the Nutritional Intake of Middle-Aged Endurance Trained Men-Another “Athletes’ Paradox”? J. Clin. Med. 2022, 11, 6057. [Google Scholar] [CrossRef] [PubMed]
- Talar, K.; Hernández-Belmonte, A.; Vetrovsky, T.; Steffl, M.; Kałamacka, E.; Courel-Ibáñez, J. Benefits of Resistance Training in Early and Late Stages of Frailty and Sarcopenia: A Systematic Review and Meta-Analysis of Randomized Controlled Studies. J. Clin. Med. 2021, 10, 1630. [Google Scholar] [CrossRef] [PubMed]
- Schwaab, B.; Windmöller, M.; König, I.R.; Schütt, M. Evaluation of Aerobic Exercise Intensity in Patients with Coronary Artery Disease and Type 2 Diabetes Mellitus. J. Clin. Med. 2020, 9, 2773. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.H.; Choi, S.; Lee, G.; Son, J.S.; Kim, K.H.; Park, S.M. Changes in Body Composition Are Associated with Metabolic Changes and the Risk of Metabolic Syndrome. J. Clin. Med. 2021, 10, 745. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Park, S. An Inverse Relation between Hyperglycemia and Skeletal Muscle Mass Predicted by Using a Machine Learning Approach in Middle-Aged and Older Adults in Large Cohorts. J. Clin. Med. 2021, 10, 2133. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoemaker, M.E.; Gillen, Z.M.; Fukuda, D.H.; Cramer, J.T. Metabolic Flexibility and Inflexibility: Pathology Underlying Metabolism Dysfunction. J. Clin. Med. 2023, 12, 4453. https://doi.org/10.3390/jcm12134453
Shoemaker ME, Gillen ZM, Fukuda DH, Cramer JT. Metabolic Flexibility and Inflexibility: Pathology Underlying Metabolism Dysfunction. Journal of Clinical Medicine. 2023; 12(13):4453. https://doi.org/10.3390/jcm12134453
Chicago/Turabian StyleShoemaker, Marni E., Zachary M. Gillen, David H. Fukuda, and Joel T. Cramer. 2023. "Metabolic Flexibility and Inflexibility: Pathology Underlying Metabolism Dysfunction" Journal of Clinical Medicine 12, no. 13: 4453. https://doi.org/10.3390/jcm12134453
APA StyleShoemaker, M. E., Gillen, Z. M., Fukuda, D. H., & Cramer, J. T. (2023). Metabolic Flexibility and Inflexibility: Pathology Underlying Metabolism Dysfunction. Journal of Clinical Medicine, 12(13), 4453. https://doi.org/10.3390/jcm12134453