The Effect of COVID-19 Severity, Associated Serum Autoantibodies and Time Interval after the Disease on the Outcomes of Fresh Oocyte ART Cycles in Non-Vaccinated Patients
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agostinis, C.; Toffoli, M.; Spazzapan, M.; Balduit, A.; Zito, G.; Mangogna, A.; Zupin, L.; Salviato, T.; Maiocchi, S.; Romano, F.; et al. SARS-CoV-2 Modulates Virus Receptor Expression in Placenta and Can Induce Trophoblast Fusion, Inflammation and Endothelial Permeability. Front. Immunol. 2022, 13, 957224. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Hardenbrook, N.J.; Zhang, P. A Structural View of the SARS-CoV-2 Virus and Its Assembly. Curr. Opin. Virol. 2022, 52, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 Entry into Cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef]
- Li, M.-Y.; Li, L.; Zhang, Y.; Wang, X.-S. Expression of the SARS-CoV-2 Cell Receptor Gene ACE2 in a Wide Variety of Human Tissues. Infect. Dis. Poverty 2020, 9, 45. [Google Scholar] [CrossRef]
- Qi, J.; Zhou, Y.; Hua, J.; Zhang, L.; Bian, J.; Liu, B.; Zhao, Z.; Jin, S. The ScRNA-Seq Expression Profiling of the Receptor ACE2 and the Cellular Protease TMPRSS2 Reveals Human Organs Susceptible to SARS-CoV-2 Infection. Int. J. Environ. Res. Public Health 2021, 18, 284. [Google Scholar] [CrossRef]
- Montano, M.; Victor, A.R.; Griffin, D.K.; Duong, T.; Bolduc, N.; Farmer, A.; Garg, V.; Hadjantonakis, A.-K.; Coates, A.; Barnes, F.L.; et al. SARS-CoV-2 Can Infect Human Embryos. Sci. Rep. 2022, 12, 15451. [Google Scholar] [CrossRef]
- Jing, Y.; Run-Qian, L.; Hao-Ran, W.; Hao-Ran, C.; Ya-Bin, L.; Yang, G.; Fei, C. Potential Influence of COVID-19/ACE2 on the Female Reproductive System. Mol. Hum. Reprod. 2020, 26, 367–373. [Google Scholar] [CrossRef]
- Lanza, K.; Perez, L.G.; Costa, L.B.; Cordeiro, T.M.; Palmeira, V.A.; Ribeiro, V.T.; Simões E Silva, A.C. COVID-19: The Renin-Angiotensin System Imbalance Hypothesis. Clin. Sci. 2020, 134, 1259–1264. [Google Scholar] [CrossRef]
- Li, K.; Chen, G.; Hou, H.; Liao, Q.; Chen, J.; Bai, H.; Lee, S.; Wang, C.; Li, H.; Cheng, L.; et al. Analysis of Sex Hormones and Menstruation in COVID-19 Women of Child-Bearing Age. Reprod. Biomed. Online 2021, 42, 260–267. [Google Scholar] [CrossRef]
- Phelan, N.; Behan, L.A.; Owens, L. The Impact of the COVID-19 Pandemic on Women’s Reproductive Health. Front. Endocrinol. 2021, 12, 642755. [Google Scholar] [CrossRef] [PubMed]
- Madaan, S.; Jaiswal, A.; Kumar, S.; Talwar, D.; Halani, D. Premature Ovarian Failure—A Long COVID Sequelae. Med. Sci. 2021, 25, 1286–1290. [Google Scholar]
- Maher, M.; Owens, L. SARS-CoV-2 Infection and Female Reproductive Health: A Narrative Review. Best Pract. Res. Clin. Endocrinol. Metab. 2023, 101760. [Google Scholar] [CrossRef]
- Ata, B.; Vermeulen, N.; Mocanu, E.; Gianaroli, L.; Lundin, K.; Rautakallio-Hokkanen, S.; Tapanainen, J.S.; Veiga, A. SARS-CoV-2, Fertility and Assisted Reproduction. Hum. Reprod. Update 2023, 29, 177–196. [Google Scholar] [CrossRef] [PubMed]
- Balachandren, N.; Davies, M.C.; Hall, J.A.; Stephenson, J.M.; David, A.L.; Barrett, G.; O’Neill, H.C.; Ploubidis, G.B.; Yasmin, E.; Mavrelos, D. SARS-CoV-2 Infection in the First Trimester and the Risk of Early Miscarriage: A UK Population-Based Prospective Cohort Study of 3041 Pregnancies Conceived during the Pandemic. Hum. Reprod. 2022, 37, 1126–1133. [Google Scholar] [CrossRef]
- Shams, T.; Alhashemi, H.; Madkhali, A.; Noorelahi, A.; Allarakia, S.; Faden, Y.; Alhasani, A.; Alzahrani, K.; Alrefai, A.; Al Ghilan, N.; et al. Comparing Pregnancy Outcomes between Symptomatic and Asymptomatic COVID-19 Positive Unvaccinated Women: Multicenter Study in Saudi Arabia. J. Infect. Public Health 2022, 15, 845–852. [Google Scholar] [CrossRef]
- Orvieto, R.; Segev-Zahav, A.; Aizer, A. Does COVID-19 Infection Influence Patients’ Performance during IVF-ET Cycle?: An Observational Study. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2021, 37, 895–897. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Q.; Ren, X.; Hu, J.; Li, Z.; Long, R.; Xi, Q.; Zhu, L.; Jin, L. Investigating the Impact of Asymptomatic or Mild SARS-CoV-2 Infection on Female Fertility and in Vitro Fertilization Outcomes: A Retrospective Cohort Study. EClinicalMedicine 2021, 38, 101013. [Google Scholar] [CrossRef]
- Prasad, S.; Tiwari, M.; Pandey, A.N.; Shrivastav, T.G.; Chaube, S.K. Impact of Stress on Oocyte Quality and Reproductive Outcome. J. Biomed. Sci. 2016, 23, 36. [Google Scholar] [CrossRef]
- Youngster, M.; Avraham, S.; Yaakov, O.; Landau Rabbi, M.; Gat, I.; Yerushalmi, G.; Sverdlove, R.; Baum, M.; Maman, E.; Hourvitz, A.; et al. IVF under COVID-19: Treatment Outcomes of Fresh ART Cycles. Hum. Reprod. 2022, 37, 947–953. [Google Scholar] [CrossRef]
- Gorman, C.N.; Abdalla, T.E.; Sultan, Y.; Grabois, S.A.; Wood, E.G. Transient Premature Ovarian Insufficiency Post-COVID-19 Infection. Cureus 2023, 15, e37379. [Google Scholar] [CrossRef] [PubMed]
- Smatti, M.K.; Cyprian, F.S.; Nasrallah, G.K.; Al Thani, A.A.; Almishal, R.O.; Yassine, H.M. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses 2019, 11, 762. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.S.; Caricchio, R.; Casanova, J.-L.; Combes, A.J.; Diamond, B.; Fox, S.E.; Hanauer, D.A.; James, J.A.; Kanthi, Y.; Ladd, V.; et al. The Intersection of COVID-19 and Autoimmunity. J. Clin. Investig. 2021, 131, e154886. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.H.; Zhang, S.; Porritt, R.A.; Noval Rivas, M.; Paschold, L.; Willscher, E.; Binder, M.; Arditi, M.; Bahar, I. Superantigenic Character of an Insert Unique to SARS-CoV-2 Spike Supported by Skewed TCR Repertoire in Patients with Hyperinflammation. Proc. Natl. Acad. Sci. USA 2020, 117, 25254–25262. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, M.C.; Ramonell, R.P.; Nguyen, D.C.; Cashman, K.S.; Saini, A.S.; Haddad, N.S.; Ley, A.M.; Kyu, S.; Howell, J.C.; Ozturk, T.; et al. Extrafollicular B Cell Responses Correlate with Neutralizing Antibodies and Morbidity in COVID-19. Nat. Immunol. 2020, 21, 1506–1516. [Google Scholar] [CrossRef]
- Mobasheri, L.; Nasirpour, M.H.; Masoumi, E.; Azarnaminy, A.F.; Jafari, M.; Esmaeili, S.-A. SARS-CoV-2 Triggering Autoimmune Diseases. Cytokine 2022, 154, 155873. [Google Scholar] [CrossRef]
- Gardner, D.K.; Schoolcraft, W.B. Culture and Transfer of Human Blastocysts. Curr. Opin. Obstet. Gynecol. 1999, 11, 307–311. [Google Scholar] [CrossRef]
- Ding, T.; Wang, T.; Zhang, J.; Cui, P.; Chen, Z.; Zhou, S.; Yuan, S.; Ma, W.; Zhang, M.; Rong, Y.; et al. Analysis of Ovarian Injury Associated with COVID-19 Disease in Reproductive-Aged Women in Wuhan, China: An Observational Study. Front. Med. 2021, 8, 286. [Google Scholar] [CrossRef]
- Kolanska, K.; Hours, A.; Jonquière, L.; Mathieu d’Argent, E.; Dabi, Y.; Dupont, C.; Touboul, C.; Antoine, J.-M.; Chabbert-Buffet, N.; Daraï, E. Mild COVID-19 Infection Does Not Alter the Ovarian Reserve in Women Treated with ART. Reprod. Biomed. Online 2021, 43, 1117–1121. [Google Scholar] [CrossRef]
- Herrero, Y.; Pascuali, N.; Velázquez, C.; Oubiña, G.; Hauk, V.; de Zúñiga, I.; Peña, M.G.; Martínez, G.; Lavolpe, M.; Veiga, F.; et al. SARS-CoV-2 Infection Negatively Affects Ovarian Function in ART Patients. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166295. [Google Scholar] [CrossRef]
- Caso, F.; Costa, L.; Ruscitti, P.; Navarini, L.; Del Puente, A.; Giacomelli, R.; Scarpa, R. Could Sars-Coronavirus-2 Trigger Autoimmune and/or Autoinflammatory Mechanisms in Genetically Predisposed Subjects? Autoimmun. Rev. 2020, 19, 102524. [Google Scholar] [CrossRef] [PubMed]
- Gougeon, A. Human Ovarian Follicular Development: From Activation of Resting Follicles to Preovulatory Maturation. Ann. Endocrinol. 2010, 71, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Ehrenfeld, M.; Tincani, A.; Andreoli, L.; Cattalini, M.; Greenbaum, A.; Kanduc, D.; Alijotas-Reig, J.; Zinserling, V.; Semenova, N.; Amital, H.; et al. COVID-19 and Autoimmunity. Autoimmun. Rev. 2020, 19, 102597. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, M.C.; Tamiazzo, S.; Stobbione, P.; Agatea, L.; De Gaspari, P.; Stecca, A.; Lauritano, E.C.; Roveta, A.; Tozzoli, R.; Guaschino, R.; et al. SARS-CoV-2 Infection as a Trigger of Autoimmune Response. Clin. Transl. Sci. 2021, 14, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Dolgushina, N.V.; Menzhinskaya, I.V.; Beznoshchenko, O.S.; Mullabaeva, S.M.; Gorodnova, E.A.; Krechetova, L.V. The Profile of Antiphospholipid Antibodies and Complement System in COVID-19 Patients of Different Severity. Med. Immunol. 2022, 2, 355–370. [Google Scholar] [CrossRef]
- Foret, T.; Dufrost, V.; Salomon Du Mont, L.; Costa, P.; Lefevre, B.; Lacolley, P.; Regnault, V.; Zuily, S.; Wahl, D. Systematic Review of Antiphospholipid Antibodies in COVID-19 Patients: Culprits or Bystanders? Curr. Rheumatol. Rep. 2021, 23, 65. [Google Scholar] [CrossRef] [PubMed]
- Cristiano, A.; Fortunati, V.; Cherubini, F.; Bernardini, S.; Nuccetelli, M. Anti-Phospholipids Antibodies and Immune Complexes in COVID-19 Patients: A Putative Role in Disease Course for Anti-Annexin-V Antibodies. Clin. Rheumatol. 2021, 40, 2939–2945. [Google Scholar] [CrossRef]
- Vance, J.E. Historical Perspective: Phosphatidylserine and Phosphatidylethanolamine from the 1800s to the Present. J. Lipid Res. 2018, 59, 923–944. [Google Scholar] [CrossRef]
- Žarković, N.; Orehovec, B.; Baršić, B.; Tarle, M.; Kmet, M.; Lukšić, I.; Tatzber, F.; Wonisch, W.; Skrzydlewska, E.; Łuczaj, W. Lipidomics Revealed Plasma Phospholipid Profile Differences between Deceased and Recovered COVID-19 Patients. Biomolecules 2022, 12, 1488. [Google Scholar] [CrossRef]
- Matsubayashi, H.; Sugi, T.; Arai, T.; Shida, M.; Kondo, A.; Suzuki, T.; Izumi, S.; McIntyre, J.A. IgG-Antiphospholipid Antibodies in Follicular Fluid of IVF-ET Patients Are Related to Low Fertilization Rate of Their Oocytes. Am. J. Reprod. Immunol. 2006, 55, 341–348. [Google Scholar] [CrossRef]
- Sato, Y.; Sugi, T.; Sakai, R. Autoantibodies to Factor XII and Kininogen-Dependent Antiphosphatidylethanolamine Antibodies in Patients with Recurrent Pregnancy Loss Augment Platelet Aggregation. Am. J. Reprod. Immunol. 2015, 74, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Bećarević, M. The IgG and IgM Isotypes of Anti-Annexin A5 Antibodies: Relevance for Primary Antiphospholipid Syndrome. J. Thromb. Thrombolysis 2016, 42, 552–557. [Google Scholar] [CrossRef]
- Gao, R.; Zeng, R.; Qing, P.; Meng, C.; Cheng, K.; Zhang, S.; Chen, H.; Jin, X.; Qin, L.; Li, T. Antiphospholipid Antibodies and Pregnancy Outcome of Assisted Reproductive Treatment: A Systematic Review and Meta-Analysis. Am. J. Reprod. Immunol. 2021, 86, e13470. [Google Scholar] [CrossRef] [PubMed]
- Simopoulou, M.; Sfakianoudis, K.; Maziotis, E.; Grigoriadis, S.; Giannelou, P.; Rapani, A.; Tsioulou, P.; Pantou, A.; Kalampokas, T.; Vlahos, N.; et al. The Impact of Autoantibodies on IVF Treatment and Outcome: A Systematic Review. Int. J. Mol. Sci. 2019, 20, 892. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Wen, P.; Duan, J. Association of Antinuclear Antibody with Clinical Outcome of Patients Undergoing in Vitro Fertilization/Intracytoplasmic Sperm Injection Treatment: A Meta-Analysis. Am. J. Reprod. Immunol. 2019, 82, e13158. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, L.; Liu, X.; Jiang, Y.; Teng, Y. Antinuclear Antibodies in Follicular Fluid May Be a Risk Factor in Vitro Fertilization and Embryo Transfer. Am. J. Reprod. Immunol. 2022, 88, e13560. [Google Scholar] [CrossRef]
- Fan, J.; Zhong, Y.; Chen, C. Impacts of Anti-DsDNA Antibody on In Vitro Fertilization-Embryo Transfer and Frozen-Thawed Embryo Transfer. J. Immunol. Res. 2017, 2017, 8596181. [Google Scholar] [CrossRef] [PubMed]
- Lui, D.T.W.; Lee, C.H.; Chow, W.S.; Lee, A.C.H.; Tam, A.R.; Fong, C.H.Y.; Law, C.Y.; Leung, E.K.H.; To, K.K.W.; Tan, K.C.B.; et al. Thyroid Dysfunction in Relation to Immune Profile, Disease Status, and Outcome in 191 Patients with COVID-19. J. Clin. Endocrinol. Metab. 2021, 106, e926–e935. [Google Scholar] [CrossRef]
- Busnelli, A.; Paffoni, A.; Fedele, L.; Somigliana, E. The Impact of Thyroid Autoimmunity on IVF/ICSI Outcome: A Systematic Review and Meta-Analysis. Hum. Reprod. Update 2016, 22, 775–790. [Google Scholar] [CrossRef]
- Toulis, K.A.; Goulis, D.G.; Venetis, C.A.; Kolibianakis, E.M.; Tarlatzis, B.C.; Papadimas, I. Thyroid Autoimmunity and Miscarriages: The Corpus Luteum Hypothesis. Med. Hypotheses 2009, 73, 1060–1062. [Google Scholar] [CrossRef]
Parameter | Non-COVID-19 (Group 1, n = 105) | COVID-19 (Group 2, n = 135) | p-Value | |
---|---|---|---|---|
Mild (Subgroup 2a, n = 85) | Moderate (Subgroup 2b, n = 50) | |||
Patient age, years | 34 (30–36) | 34 (31–37) | 0.396 * | |
35 (32–37) | 33 (30–36) | 0.088 * | ||
Patient age > 35 years | 31 (29.5%) | 48(35.6%) | 0.320 ** | |
33 (38.8%) | 15 (30.0%) | 0.298 ** | ||
BMI, kg/m2 | 21.9 (20.0–24.5) | 22.9 (20.4–25.5) | 0.009 * | |
22.4 (20.1–25.3) | 23.4 (21.2–26.4) | 0.003 * | ||
IgG to the SARS-CoV-2 spike protein, PI | 0.13 (0.12–0.96) | 6.08 (2.80–10.79) | <0.0001 * | |
6.06 (2.88–10.53) | 6.39 (2.80–11.43) | <0.0001 * | ||
Gravidity | 0 (0–6) | 0 (0–5) | 0.752 *** | |
0 (0–5) | 0 (0–5) | 0.656 *** | ||
Parity | 0 (0–2) | 0 (0–3) | 0.992 ** | |
0 (0–3) | 0 (0–3) | 0.988 ** | ||
Recurrent abortion | 3 (2.8%) | 10 (7.4%) | 0.122 ** | |
8 (9.4%) | 2 (4%) | 0.123 ** | ||
Endometriosis | 25 (23.8%) | 38 (28.1%) | 0.448 ** | |
27 (31.7%) | 11 (22%) | 0.345 ** | ||
Adenomyosis | 14 (13.3%) | 6 (4.4%) | 0.013 ** | |
3 (3.5%) | 3 (6%) | 0.041 ** | ||
Uterine fibroids | 21 (20%) | 33 (24.4%) | 0.413 ** | |
25 (29.4%) | 8 (16%) | 0.141 ** | ||
Chronic endometritis | 11 (10.5%) | 8 (5.6%) | 0.195 ** | |
5 (5.9%) | 3 (6%) | 0.432 ** | ||
Chronic salpingoophoritis | 13 (12.4%) | 15 (11.1%) | 0.761 ** | |
8 (9.4%) | 7 (14%) | 0.692 ** | ||
Primary infertility | 61 (58.1%) | 79 (58.5%) | 0.947 ** | |
49 (57.6%) | 30 (60%) | 0.962 ** | ||
Secondary infertility | 44 (41.9%) | 56 (41.5%) | 0.95 ** | |
36 (42.4%) | 20 (40%) | 0.963 ** | ||
Duration of infertility, years | 4 (3–6.5) | 5 (3–6) | 0.631** | |
5 (3–6) | 5 (2–6) | 0.839 ** | ||
Number of ART cycles | 1 (1–5) | 1 (1–8) | 0.370 *** | |
1 (1–8) | 1 (1–4) | 0.429 *** | ||
ENT diseases | 9 (8.6%) | 24 (17.8%) | 0.039 ** | |
15 (17.6%) | 9 (18%) | 0.120 ** | ||
Endocrine diseases | 31 (29.5%) | 27 (20%) | 0.087 ** | |
17 (20%) | 10 (20%) | 0.231 ** | ||
Allergic diseases | 9 (8.6%) | 23 (17%) | 0.055 ** | |
11 (12.9%) | 12 (24%) | 0.030 ** |
Parameter | Non-COVID-19 (Group 1, n = 105) | COVID-19 (Group 2, n = 135) | p-Value | |
---|---|---|---|---|
Mild (Subgroup 2a, n = 85) | Moderate (Subgroup 2b, n = 50) | |||
Total oocytes * | 10 (6–13) | 9 (6–14) | 0.366 | |
8 (5–14) | 10 (6–16) | 0.334 | ||
MII stage oocytes * | 8 (5–11) | 7 (4–11) | 0.262 | |
7 (4–10) | 7 (5–12) | 0.367 | ||
MII stage oocytes/total oocytes ** | 83 (70–100)% | 82 (70–95)% | 0.518 | |
82 (71–100)% | 80 (70–87)% | 0.265 | ||
Fertilization * | 6 (4–9) | 6 (4–10) | 0.375 | |
6 (4–9) | 6 (4–10) | 0.443 | ||
Fertilization rate ** | 90 (75–100)% | 92 (80–100)% | 0.391 | |
90 (80–100)% | 100 (83–100)% | 0.501 | ||
Total blastocysts * | 3 (1–5) | 3 (1–5) | 0.324 | |
3 (1–5) | 3 (1–6) | 0.513 | ||
Blastulation rate ** | 50 (33–66)% | 50 (25–71)% | 0.980 | |
50 (25–75)% | 54 (30–66)% | 0.948 | ||
Blastocyst grade ** | ||||
A | 72 (68.6%) | 85 (63%) | 0.37 | |
53 (62.4%) | 32 (64%) | 0.651 | ||
B | 10 (9.5%) | 10 (7.4%) | 0.56 | |
8 (9.4%) | 2 (4%) | 0.46 | ||
C | 11 (10.5%) | 18 (13.3%) | 0.51 | |
11 (12.9%) | 7 (14%) | 0.784 | ||
Grade A blastocysts * | 1 (0–3) | 1 (0–2) | 0.188 | |
1 (0–2) | 1 (0–2) | 0.235 | ||
Grade A blastocysts/total blastocysts ** | 40 (0–67)% | 33 (0–67)% | 0.336 | |
33 (0–67)% | 33 (0–67)% | 0.572 | ||
Grade C blastocysts * | 1 (0–2) | 1 (0–2) | 0.994 | |
1 (0–2) | 1 (0–2) | 0.999 | ||
Grade C blastocysts/total blastocysts ** | 33 (0–50)% | 33 (0–67)% | 0.468 | |
33 (0–67)% | 29 (0–55)% | 0.530 |
Parameter | Time Interval ≤180 Days (n = 85) | Time Interval >180 Days (n = 50) | p-Value |
---|---|---|---|
Total oocytes * | 8 (6–15) | 9.5 (6–11) | 0.749 |
MII stage oocytes * | 7 (5–11) | 6.5 (4–9) | 0.338 |
MII stage oocytes/total oocytes ** | 83 (71–92)% | 75 (60–100)% | 0.249 |
Fertilization rate ** | 100 (80–100)% | 90 (77–100)% | 0.349 |
Total blastocysts * | 3 (1–5) | 3 (1–5) | 0.456 |
Blastulation rate ** | 54 (30–71)% | 50 (25–68)% | 0.655 |
Grade A blastocysts * | 1 (0–2) | 1 (0–2) | 0.665 |
Grade A blastocysts/total blastocysts ** | 33 (0–60)% | 32 (0–66)% | 0.998 |
Grade C blastocysts * | 1 (1–2) | 1 (0–2) | 0.075 |
Grade C blastocysts/total blastocysts ** | 37 (14–71)% | 18 (0–40)% | 0.006 |
Parameter | Non-COVID-19 (Group 1, n = 105) | COVID-19 (Group 2, n = 135) | p-Value | |
---|---|---|---|---|
Mild (Subgroup 2a, n = 85) | Moderate (Subgroup 2b, n = 50) | |||
Biochemical pregnancy | 32 (30.5%) | 39 (28.9%) | 0.789 | |
22 (25.8%) | 17 (34%) | 0.586 | ||
Clinical pregnancy | 30 (28.6%) | 39 (28.9%) | 0.957 | |
22 (25.8%) | 17 (34%) | 0.602 | ||
Twin pregnancy | 0 | 4 (2.9%) | 0.134 | |
2 (2.3%) | 2 (4%) | 0.158 | ||
Childbirth | 27 (25.7%) | 30 (22.2%) | 0.528 | |
19 (22.3%) | 11 (22%) | 0.217 | ||
Spontaneous miscarriage | 3 (2.9%) | 9 (6.7%) | 0.179 | |
3 (3.5%) | 6 (12%) | 0.037 0.792 (1 vs. 2) 0.024 (1 vs. 3) 0.056 (2 vs. 3) | ||
Miscarriages/clinical pregnancies | 10% | 23.1% | 0.18 | |
13.6% | 35.3% | 0.038 |
Parameter | Reference Values | Non-COVID-19 (Group 1, n = 105) | COVID-19 (Group 2, n = 135) | p-Value | |
---|---|---|---|---|---|
Mild (Subgroup 2a, n = 85) | Moderate (Subgroup 2b, n = 50) | ||||
anti-CL IgM | <7 MPL-U/mL | 3 (2.9%) | 4 (2.9%) | 0.96 | |
3 (5.2%) | 1 (2.0%) | 0.877 | |||
anti-CL IgG | <10 GPL-U/mL | 0 (0.0%) | 0 (0.0%) | - | |
0 (0.0%) | 0 (0.0%) | - | |||
anti-β2-GP-I IgM | <8 U/mL | 1 (0.95%) | 2 (1.5%) | 0.75 | |
1 (1.2%) | 1 (2.0%) | 0.858 | |||
anti-β2-GP-I IgG | <8 U/mL | 1 (0.95%) | 2 (1.5%) | 0.75 | |
1 (1.2%) | 1 (2.0%) | 0.858 | |||
anti-AnV IgM | <8 U/mL | 4 (3.8%) | 2 (1.5%) | 0.259 | |
1 (1.2%) | 1 (2.0%) | 0.496 | |||
anti-AnV IgG | <8 U/mL | 2 (1.9%) | 11 (8.1%) | 0.035 | |
6 (7.1%) | 5 (10%) | 0.081 | |||
anti-PE IgM | <18 U/mL | 21 (20%) | 25 (18.5%) | 0.55 | |
13 (15.3%) | 12 (24%) | 0.444 | |||
anti-PE IgG | <18 U/mL | 1 (0.95%) | 9 (6.7%) | 0.028 | |
5 (5.9%) | 4 (8%) | 0.075 | |||
anti-PS/PT IgM | <18 U/mL | 3 (2.9%) | 2 (1.5%) | 0.455 | |
2 (2.4%) | 0 (0.0%) | 0.496 | |||
anti-PS/PT IgG | <18 U/mL | 4 (3.8%) | 4 (2.9%) | 0.699 | |
4 (4.7%) | 0 (0.0%) | 0.317 | |||
ANA (IgG) | <1.2 PI | 3 (2.9%) | 0 (0.0%) | 0.047 | |
0 (0.0%) | 0 (0.0%) | 0.142 | |||
anti-dsDNA IgG | <20 IU/mL | 8 (7.6%) | 7 (5.2%) | 0.441 | |
3 (5.2%) | 4 (8%) | 0.434 | |||
anti-TPO IgG | <50 IU/mL | 5 (4.7%) | 10 (7.4%) | 0.401 | |
6 (7.1%) | 4 (8%) | 0.686 | |||
anti-TSHr IgG | <1.5 IU/mL | 2 (1.9%) | 11 (8.2%) | 0.033 | |
9 (10.6%) | 2 (4%) | 0.028 | |||
anti-TG IgG | <100 IU/mL | 4 (3.8%) | 8 (5.9%) | 0.455 | |
5 (5.9%) | 3 (6%) | 0.757 |
Parameter | Reference Values | Non-COVID-19 (Group 1, n = 105) | COVID-19 (Group 2, n = 135) | p-Value | |
---|---|---|---|---|---|
Mild (Subgroup 2a, n = 85) | Moderate (Subgroup 2b, n = 50) | ||||
anti-CL IgM | <7 MPL-U/mL | 3.03 (1.94–4.05) | 2.52 (1.59–3.91) | 0.137 * | |
2.43 (1.59–1.04) | 3.04 (1.50–3.8) | 0.303 ** | |||
anti-CL IgG | <10 GPL-U/mL | 1.87 (1.41–2.56) | 2.10 (1.59–3.01) | 0.063 | |
2.01 (1.50–2.86) | 2.14 (1.68–3.31) | 0.083 | |||
anti-β2-GP-I IgM | <8 U/mL | 1.51 (0.81–2.43) | 1.41 (0.98–2.17) | 0.871 | |
1.41 (0.95–2.38) | 1.42 (1.06–2.07) | 0.957 | |||
anti-β2-GP-I IgG | <8 U/mL | 2.98 (2.12–3.59) | 2.37 (1.21–3.26) | 0.001 | |
2.09 (0.94–2.30) | 2.52 (1.94–3.54) | 0.0004 | |||
anti-AnV IgM | <8 U/mL | 2.52 (1.76–3.52) | 2.22 (1.23–3.22) | 0.030 | |
2.22 (1.26–3.18) | 2.25 (1.45–3.35) | 0.068 | |||
anti-AnV IgG | <8 U/mL | 2.91 (2.27–3.94) | 3.34 (2.13–4.60) | 0.238 | |
3.37 (2.20–4.95) | 3.23 (2.00–4.58) | 0.253 | |||
anti-PE IgM | <18 U/mL | 12.23 (8.70–16.98) | 11.85 (8.67–15.58) | 0.544 | |
11.93 (7.78–15.2) | 11.61 (9.09–7.89) | 0.513 | |||
anti-PE IgG | <18 U/mL | 6.57 (5.78–7.77) | 7.82 (6.25–9.74) | 0.0002 | |
7.39 (6.20–8.89) | 8.20 (6.74–10.93) | 0.0027 | |||
anti-PS/PT IgM | <18 U/mL | 1.72 (1.10–3.28) | 2.39 (1.47–3.58) | 0.009 | |
2.39 (1.53–3.73) | 2.33 (1.28–3.55) | 0.027 | |||
anti-PS/PT IgG | <18 U/mL | 4.24 (3.00–5.36) | 3.38 (2.28–5.31) | 0.027 | |
3.43 (2.32–5.48) | 3.02 (2.24–5.11) | 0.057 | |||
ANA (IgG) | <1.2 PI | 0.30 (0.30–0.40) | 0.30 (0.30–0.40) | 0.505 | |
0.40 (0.30–0.40) | 0.30 (0.30–0.40) | 0.626 | |||
anti-dsDNA IgG | <20 IU/mL | 13.65 (10.24–16.77) | 13.34 (10.34–6.23) | 0.531 | |
12.33 (10.30–15.75) | 14.06 (10.42–17.23) | 0.467 | |||
anti-TPO IgG | <50 IU/mL | 12.04 (5.31–16.44) | 14.35 (5.91–20.07) | 0.064 | |
14.35 (6.58–20.54) | 14.51 (5.26–19.26) | 0.162 | |||
anti-TSHr IgG | <1.5 IU/mL | 0.49 (0.28–0.96) | 0.76 (0.41–1.16) | 0.002 | |
0.83 (0.43–1.21) | 0.68 (0.37–1.02) | 0.004 | |||
anti-TG IgG | <100 IU/mL | 9.13 (4.13–27.22) | 18.18 (6.84–36.98) | 0.008 | |
20.6 (6.29–35.81) | 17.85 (7.97–37.67) | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolgushina, N.V.; Menzhinskaya, I.V.; Ermakova, D.M.; Frankevich, N.A.; Vtorushina, V.V.; Sukhikh, G.T. The Effect of COVID-19 Severity, Associated Serum Autoantibodies and Time Interval after the Disease on the Outcomes of Fresh Oocyte ART Cycles in Non-Vaccinated Patients. J. Clin. Med. 2023, 12, 4370. https://doi.org/10.3390/jcm12134370
Dolgushina NV, Menzhinskaya IV, Ermakova DM, Frankevich NA, Vtorushina VV, Sukhikh GT. The Effect of COVID-19 Severity, Associated Serum Autoantibodies and Time Interval after the Disease on the Outcomes of Fresh Oocyte ART Cycles in Non-Vaccinated Patients. Journal of Clinical Medicine. 2023; 12(13):4370. https://doi.org/10.3390/jcm12134370
Chicago/Turabian StyleDolgushina, Nataliya V., Irina V. Menzhinskaya, Daria M. Ermakova, Natalia A. Frankevich, Valentina V. Vtorushina, and Gennady T. Sukhikh. 2023. "The Effect of COVID-19 Severity, Associated Serum Autoantibodies and Time Interval after the Disease on the Outcomes of Fresh Oocyte ART Cycles in Non-Vaccinated Patients" Journal of Clinical Medicine 12, no. 13: 4370. https://doi.org/10.3390/jcm12134370
APA StyleDolgushina, N. V., Menzhinskaya, I. V., Ermakova, D. M., Frankevich, N. A., Vtorushina, V. V., & Sukhikh, G. T. (2023). The Effect of COVID-19 Severity, Associated Serum Autoantibodies and Time Interval after the Disease on the Outcomes of Fresh Oocyte ART Cycles in Non-Vaccinated Patients. Journal of Clinical Medicine, 12(13), 4370. https://doi.org/10.3390/jcm12134370