Maternal Serum Angiogenic Profile and Its Correlations with Ultrasound Parameters and Perinatal Results in Normotensive and Preeclamptic Pregnancies Complicated by Fetal Growth Restriction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Methods
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwiatkowski, S.; Torbe, A.; Borowski, D.; Breborowicz, G.; Czajkowski, K.; Huras, H.; Kajdy, A.; Kalinka, J.; Kosinska-Kaczynska, K.; Leszczynska-Gorzelak, B.; et al. Polish Society of Gynecologists and Obstetricians Recommendations on Diagnosis and Management of Fetal Growth Restriction. Ginekol. Pol. 2020, 91, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Gordijn, S.J.; Beune, I.M.; Thilaganathan, B.; Papageorghiou, A.; Baschat, A.A.; Baker, P.N.; Silver, R.M.; Wynia, K.; Ganzevoort, W. Consensus Definition of Fetal Growth Restriction: A Delphi Procedure. Ultrasound Obstet. Gynecol. 2016, 48, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Melamed, N.; Baschat, A.; Yinon, Y.; Athanasiadis, A.; Mecacci, F.; Figueras, F.; Berghella, V.; Nazareth, A.; Tahlak, M.; McIntyre, H.D.; et al. FIGO (International Federation of Gynecology and Obstetrics) Initiative on Fetal Growth: Best Practice Advice for Screening, Diagnosis, and Management of Fetal Growth Restriction. Int. J. Gynaecol. Obstet. 2021, 152 (Suppl. S1), 3–57. [Google Scholar] [CrossRef]
- Milner, J.; Arezina, J. The Accuracy of Ultrasound Estimation of Fetal Weight in Comparison to Birth Weight: A Systematic Review. Ultrasound 2018, 26, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Melamed, N.; Yogev, Y.; Meizner, I.; Mashiach, R.; Bardin, R.; Ben-Haroush, A. Sonographic Fetal Weight Estimation: Which Model Should Be Used? J. Ultrasound Med. 2009, 28, 617–629. [Google Scholar] [CrossRef]
- Mastrolia, S.A.; Cetin, I. The “Great Obstetrical Syndromes”. In Female Reproductive Dysfunction; Petraglia, F., Fauser, B.C., Eds.; Endocrinology; Springer International Publishing: Cham, Switzerland, 2020; pp. 411–430. ISBN 978-3-030-14781-5. [Google Scholar]
- Brosens, I.; Puttemans, P.; Benagiano, G. Placental Bed Research: I. The Placental Bed: From Spiral Arteries Remodeling to the Great Obstetrical Syndromes. Am. J. Obstet. Gynecol. 2019, 221, 437–456. [Google Scholar] [CrossRef]
- Crovetto, F.; Crispi, F.; Scazzocchio, E.; Mercade, I.; Meler, E.; Figueras, F.; Gratacos, E. First-Trimester Screening for Early and Late Small-for-Gestational-Age Neonates Using Maternal Serum Biochemistry, Blood Pressure and Uterine Artery Doppler. Ultrasound Obstet. Gynecol. 2014, 43, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Lees, C.C.; Marlow, N.; van Wassenaer-Leemhuis, A.; Arabin, B.; Bilardo, C.M.; Brezinka, C.; Calvert, S.; Derks, J.B.; Diemert, A.; Duvekot, J.J.; et al. 2 Year Neurodevelopmental and Intermediate Perinatal Outcomes in Infants with Very Preterm Fetal Growth Restriction (TRUFFLE): A Randomised Trial. Lancet 2015, 385, 2162–2172. [Google Scholar] [CrossRef]
- Lees, C.; Visser, G.H.A.; Hecher, K.; Gandhi, R.; Marlow, N. Fetal Growth Restriction and Neonatal Outcomes. In Placental-Fetal Growth Restriction; Cambridge University Press: London, UK, 2018; pp. 237–245. [Google Scholar]
- Roberge, S.; Bujold, E.; Nicolaides, K.H. Aspirin for the Prevention of Preterm and Term Preeclampsia: Systematic Review and Metaanalysis. Am. J. Obstet. Gynecol. 2018, 218, 287–293.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tranquilli, A.L.; Brown, M.A.; Zeeman, G.G.; Dekker, G.; Sibai, B.M. The Definition of Severe and Early-Onset Preeclampsia. Statements from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Pregnancy Hypertens. 2013, 3, 44–47. [Google Scholar] [CrossRef] [PubMed]
- Groenhof, T.K.J.; Zoet, G.A.; Franx, A.; Gansevoort, R.T.; Bots, M.L.; Groen, H.; Lely, A.T. PREVEND Group Trajectory of Cardiovascular Risk Factors After Hypertensive Disorders of Pregnancy. Hypertension 2019, 73, 171–178. [Google Scholar] [CrossRef] [PubMed]
- von Dadelszen, P.; Magee, L.A.; Roberts, J.M. Subclassification of Preeclampsia. Hypertens. Pregnancy 2003, 22, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Kappeler, L.; Clemessy, M.; Saget, S.; Decourtye, L.; Le Bouc, Y. Regulation of Growth: Epigenetic Mechanisms? Ann. Endocrinol. 2017, 78, 92–95. [Google Scholar] [CrossRef] [Green Version]
- Colella, M.; Frérot, A.; Novais, A.R.B.; Baud, O. Neonatal and Long-Term Consequences of Fetal Growth Restriction. Curr. Pediatr. Rev. 2018, 14, 212–218. [Google Scholar] [CrossRef] [PubMed]
- McCowan, L.M.; Figueras, F.; Anderson, N.H. Evidence-Based National Guidelines for the Management of Suspected Fetal Growth Restriction: Comparison, Consensus, and Controversy. Am. J. Obstet. Gynecol. 2018, 218, S855–S868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCowan, L.M.; North, R.A.; Harding, J.E. Abnormal Uterine Artery Doppler in Small-for-Gestational-Age Pregnancies Is Associated with Later Hypertension. Aust. N. Z. J. Obstet. Gynaecol. 2001, 41, 56–60. [Google Scholar] [CrossRef]
- Lees, C.; Marlow, N.; Arabin, B.; Bilardo, C.M.; Brezinka, C.; Derks, J.B.; Duvekot, J.; Frusca, T.; Diemert, A.; Ferrazzi, E.; et al. Perinatal Morbidity and Mortality in Early-Onset Fetal Growth Restriction: Cohort Outcomes of the Trial of Randomized Umbilical and Fetal Flow in Europe (TRUFFLE). Ultrasound Obstet. Gynecol. 2013, 42, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Stepan, H.; Herraiz, I.; Schlembach, D.; Verlohren, S.; Brennecke, S.; Chantraine, F.; Klein, E.; Lapaire, O.; Llurba, E.; Ramoni, A.; et al. Implementation of the SFlt-1/PlGF Ratio for Prediction and Diagnosis of Pre-Eclampsia in Singleton Pregnancy: Implications for Clinical Practice. Ultrasound Obstet. Gynecol. 2015, 45, 241–246. [Google Scholar] [CrossRef]
- Herraiz, I.; Llurba, E.; Verlohren, S.; Galindo, A. Spanish Group for the Study of Angiogenic Markers in Preeclampsia. Update on the Diagnosis and Prognosis of Preeclampsia with the Aid of the SFlt-1/PlGF Ratio in Singleton Pregnancies. Fetal Diagn. Ther. 2018, 43, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Ananth, C.V. Ischemic Placental Disease: A Unifying Concept for Preeclampsia, Intrauterine Growth Restriction, and Placental Abruption. Semin. Perinatol. 2014, 38, 131–132. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Kwiatkowska, E.; Rzepka, R.; Torbe, A.; Dolegowska, B. Ischemic Placental Syndrome—Prediction and New Disease Monitoring. J. Matern.-Fet. Neonatal Med. 2015, 29, 2033–2039. [Google Scholar] [CrossRef]
- Zeisler, H.; Llurba, E.; Chantraine, F.; Vatish, M.; Staff, A.C.; Sennström, M.; Olovsson, M.; Brennecke, S.P.; Stepan, H.; Allegranza, D.; et al. Predictive Value of the SFlt-1:PlGF Ratio in Women with Suspected Preeclampsia. N. Engl. J. Med. 2016, 374, 13–22. [Google Scholar] [CrossRef]
- Benton, S.J.; McCowan, L.M.; Heazell, A.E.P.; Grynspan, D.; Hutcheon, J.A.; Senger, C.; Burke, O.; Chan, Y.; Harding, J.E.; Yockell-Lelièvre, J.; et al. Placental Growth Factor as a Marker of Fetal Growth Restriction Caused by Placental Dysfunction. Placenta 2016, 42, 1–8. [Google Scholar] [CrossRef]
- Sharp, A.; Chappell, L.C.; Dekker, G.; Pelletier, S.; Garnier, Y.; Zeren, O.; Hillerer, K.M.; Fischer, T.; Seed, P.T.; Turner, M.; et al. Placental Growth Factor Informed Management of Suspected Pre-Eclampsia or Fetal Growth Restriction: The MAPPLE Cohort Study. Pregnancy Hypertens. 2018, 14, 228–233. [Google Scholar] [CrossRef]
- Papastefanou, I.; Wright, D.; Lolos, M.; Anampousi, K.; Mamalis, M.; Nicolaides, K.H. Competing-risks Model for Prediction of Small-for-gestational-age Neonate from Maternal Characteristics, Serum Pregnancy-associated Plasma protein-A and Placental Growth Factor at 11–13 Weeks’ Gestation. Ultrasound Obstet. Gynecol. 2021, 57, 392–400. [Google Scholar] [CrossRef]
- Andrikos, A.; Andrikos, D.; Schmidt, B.; Birdir, C.; Kimmig, R.; Gellhaus, A.; Köninger, A. Course of the SFlt-1/PlGF Ratio in Fetal Growth Restriction and Correlation with Biometric Measurements, Feto-Maternal Doppler Parameters and Time to Delivery. Arch. Gynecol. Obstet. 2022, 305, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Gaccioli, F.; Sovio, U.; Cook, E.; Hund, M.; Charnock-Jones, D.S.; Smith, G.C.S. Screening for Fetal Growth Restriction Using Ultrasound and the SFLT1/PlGF Ratio in Nulliparous Women: A Prospective Cohort Study. Lancet Child Adolesc. Health 2018, 2, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Sovio, U.; Goulding, N.; McBride, N.; Cook, E.; Gaccioli, F.; Charnock-Jones, D.S.; Lawlor, D.A.; Smith, G.C.S. A Maternal Serum Metabolite Ratio Predicts Fetal Growth Restriction at Term. Nat. Med. 2020, 26, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Graupner, O.; Lobmaier, S.M.; Ortiz, J.U.; Karge, A.; Kuschel, B. SFlt-1/PlGF Ratio for the Prediction of the Time of Delivery. Arch. Gynecol. Obstet. 2018, 298, 567–577. [Google Scholar] [CrossRef]
- Triunfo, S.; Parra-Saavedra, M.; Rodriguez-Sureda, V.; Crovetto, F.; Dominguez, C.; Gratacós, E.; Figueras, F. Angiogenic Factors and Doppler Evaluation in Normally Growing Fetuses at Routine Third-Trimester Scan: Prediction of Subsequent Low Birth Weight. Fetal Diagn. Ther. 2016, 40, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S.; et al. Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension 2018, 72, 24–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadlock, F.P.; Harrist, R.B.; Sharman, R.S.; Deter, R.L.; Park, S.K. Estimation of Fetal Weight with the Use of Head, Body, and Femur Measurements—A Prospective Study. Am. J. Obstet. Gynecol. 1985, 151, 333–337. [Google Scholar] [CrossRef]
- Gómez, O.; Figueras, F.; Fernández, S.; Bennasar, M.; Martínez, J.M.; Puerto, B.; Gratacós, E. Reference Ranges for Uterine Artery Mean Pulsatility Index at 11–41 Weeks of Gestation. Ultrasound Obstet. Gynecol. 2008, 32, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Ciobanu, A.; Wright, A.; Syngelaki, A.; Wright, D.; Akolekar, R.; Nicolaides, K.H. Fetal Medicine Foundation Reference Ranges for Umbilical Artery and Middle Cerebral Artery Pulsatility Index and Cerebroplacental Ratio. Ultrasound Obstet. Gynecol. 2019, 53, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Figueras, F.; Gratacós, E. Update on the Diagnosis and Classification of Fetal Growth Restriction and Proposal of a Stage-Based Management Protocol. Fetal Diagn. Ther. 2014, 36, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Harman, C.R.; Baschat, A.A. Comprehensive Assessment of Fetal Wellbeing: Which Doppler Tests Should Be Performed? Curr. Opin. Obstet. Gynecol. 2003, 15, 147–157. [Google Scholar] [CrossRef]
- Figueras, F.; Gratacos, E. An Integrated Approach to Fetal Growth Restriction. Best Pract. Res. Clin. Obstet. Gynaecol. 2017, 38, 48–58. [Google Scholar] [CrossRef]
- Figueras, F.; Gratacos, E. Stage-Based Approach to the Management of Fetal Growth Restriction: Update on FGR. Prenat. Diagn. 2014, 34, 655–659. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Bednarek-Jędrzejek, M.; Ksel, J.; Tousty, P.; Kwiatkowska, E.; Cymbaluk, A.; Rzepka, R.; Chudecka-Głaz, A.; Dołęgowska, B.; Torbè, A. SFlt-1/PlGF and Doppler Ultrasound Parameters in SGA Pregnancies with Confirmed Neonatal Birth Weight below 10th Percentile. Pregnancy Hypertens. 2018, 14, 79–85. [Google Scholar] [CrossRef]
- Bower, S.; Vyas, S.; Campbell, S.; Nicolaides, K.H. Color Doppler Imaging of the Uterine Artery in Pregnancy. Ultrasound Obstet. Gynecol. 1992, 2, 375. [Google Scholar] [CrossRef]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; da Silva Costa, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) Initiative on Pre-Eclampsia: A Pragmatic Guide for First-Trimester Screening and Prevention. Int. J. Gynaecol. Obstet. 2019, 145 (Suppl. S1), 1–33. [Google Scholar] [CrossRef] [Green Version]
- Pietryga, M.; Gąsiorowska-Szczot, A.; Wolski, H.; Brązert, J. Badanie Dopplerowskie Tętnicy Macicznej w Medycynie Perinatalnej. In Praktyczna Ultrasonografia w Położnictwie i Ginekologii; Wydawnictwo Exemplum: Poznań, Poland, 2012; pp. 527–552. [Google Scholar]
- Figueras, F.; Gratacos, E.; Rial, M.; Gull, I.; Krofta, L.; Lubusky, M.; Cruz-Martinez, R.; Cruz-Lemini, M.; Martinez-Rodriguez, M.; Socias, P.; et al. Revealed versus Concealed Criteria for Placental Insufficiency in an Unselected Obstetric Population in Late Pregnancy (RATIO37): Randomised Controlled Trial Study Protocol. BMJ Open 2017, 7, e014835. [Google Scholar] [CrossRef] [Green Version]
- Verlohren, S.; Melchiorre, K.; Khalil, A.; Thilaganathan, B. Uterine Artery Doppler, Birth Weight and Timing of Onset of Pre-Eclampsia: Providing Insights into the Dual Etiology of Late-Onset Pre-Eclampsia. Ultrasound Obstet. Gynecol. 2014, 44, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Vergani, P.; Roncaglia, N.; Andreotti, C.; Arreghini, A.; Teruzzi, M.; Pezzullo, J.C.; Ghidini, A. Prognostic Value of Uterine Artery Doppler Velocimetry in Growth-Restricted Fetuses Delivered near Term. Am. J. Obstet. Gynecol. 2002, 187, 932–936. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, G.S.; Gudmundsson, S. Uterine and Umbilical Artery Doppler Are Comparable in Predicting Perinatal Outcome of Growth-Restricted Fetuses. BJOG 2009, 116, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Schlembach, D.; Wallner, W.; Sengenberger, R.; Stiegler, E.; Mörtl, M.; Beckmann, M.W.; Lang, U. Angiogenic Growth Factor Levels in Maternal and Fetal Blood: Correlation with Doppler Ultrasound Parameters in Pregnancies Complicated by Pre-Eclampsia and Intrauterine Growth Restriction. Ultrasound Obstet. Gynecol. 2007, 29, 407–413. [Google Scholar] [CrossRef]
- Kienast, C.; Moya, W.; Rodriguez, O.; Jijón, A.; Geipel, A. Predictive Value of Angiogenic Factors, Clinical Risk Factors and Uterine Artery Doppler for Pre-Eclampsia and Fetal Growth Restriction in Second and Third Trimester Pregnancies in an Ecuadorian Population. J. Matern. Fet. Neonatal Med. 2016, 29, 537–543. [Google Scholar] [CrossRef]
- Friedman, A.M.; Cleary, K.L. Prediction and Prevention of Ischemic Placental Disease. Semin. Perinatol. 2014, 38, 177–182. [Google Scholar] [CrossRef]
- Maynard, S.E.; Min, J.-Y.; Merchan, J.; Lim, K.-H.; Li, J.; Mondal, S.; Libermann, T.A.; Morgan, J.P.; Sellke, F.W.; Stillman, I.E.; et al. Excess Placental Soluble Fms-like Tyrosine Kinase 1 (SFlt1) May Contribute to Endothelial Dysfunction, Hypertension, and Proteinuria in Preeclampsia. J. Clin. Investig. 2003, 111, 649–658. [Google Scholar] [CrossRef]
- Chaiworapongsa, T.; Espinoza, J.; Gotsch, F.; Kim, Y.M.; Kim, G.J.; Goncalves, L.F.; Edwin, S.; Kusanovic, J.P.; Erez, O.; Than, N.G.; et al. The Maternal Plasma Soluble Vascular Endothelial Growth Factor Receptor-1 Concentration Is Elevated in SGA and the Magnitude of the Increase Relates to Doppler Abnormalities in the Maternal and Fetal Circulation. J. Matern. Fet. Neonatal Med. 2008, 21, 25–40. [Google Scholar] [CrossRef]
- Alfirevic, Z.; Stampalija, T.; Dowswell, T. Fetal and Umbilical Doppler Ultrasound in High-Risk Pregnancies. Cochrane Database Syst. Rev. 2017, 6, CD007529. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzi, E.; Bozzo, M.; Rigano, S.; Bellotti, M.; Morabito, A.; Pardi, G.; Battaglia, F.C.; Galan, H.L. Temporal Sequence of Abnormal Doppler Changes in the Peripheral and Central Circulatory Systems of the Severely Growth-Restricted Fetus. Ultrasound Obstet. Gynecol. 2002, 19, 140–146. [Google Scholar] [CrossRef] [PubMed]
- GRIT Study Group A Randomised Trial of Timed Delivery for the Compromised Preterm Fetus: Short Term Outcomes and Bayesian Interpretation. BJOG 2003, 110, 27–32. [CrossRef] [Green Version]
- Cruz-Lemini, M.; Crispi, F.; Van Mieghem, T.; Pedraza, D.; Cruz-Martínez, R.; Acosta-Rojas, R.; Figueras, F.; Parra-Cordero, M.; Deprest, J.; Gratacós, E. Risk of Perinatal Death in Early-Onset Intrauterine Growth Restriction According to Gestational Age and Cardiovascular Doppler Indices: A Multicenter Study. Fetal Diagn. Ther. 2012, 32, 116–122. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Bednarek-Jędrzejek, M.; Kwiatkowska, E.; Cymbaluk-Płoska, A.; Torbè, A. Diagnosis of Placental Insufficiency Independently of Clinical Presentations Using SFlt-1/PLGF Ratio, Including SGA Patients. Pregnancy Hypertens. 2021, 25, 244–248. [Google Scholar] [CrossRef]
- Conde-Agudelo, A.; Villar, J.; Kennedy, S.H.; Papageorghiou, A.T. Predictive Accuracy of Cerebroplacental Ratio for Adverse Perinatal and Neurodevelopmental Outcomes in Suspected Fetal Growth Restriction: Systematic Review and Meta-Analysis: CPR Predicts Perinatal Death in Suspected FGR. Ultrasound Obstet. Gynecol. 2018, 52, 430–441. [Google Scholar] [CrossRef]
- Demicheva, E.; Crispi, F. Long-Term Follow-up of Intrauterine Growth Restriction: Cardiovascular Disorders. Fetal Diagn. Ther. 2014, 36, 143–153. [Google Scholar] [CrossRef]
- Bednarek-Jędrzejek, M.; Kwiatkowski, S.; Ksel-Hryciów, J.; Tousty, P.; Nurek, K.; Kwiatkowska, E.; Cymbaluk-Płoska, A.; Torbé, A. The SFlt-1/PlGF Ratio Values within the <38, 38–85 and >85 Brackets as Compared to Perinatal Outcomes. J. Perinat. Med. 2019, 47, 732–740. [Google Scholar] [CrossRef]
- Zur, R.; Kingdom, J.; Parks, W.; Hobson, S. The Placental Basis of Fetal Growth Restriction. Obstet. Gynecol. Clin. N. Am. 2020, 47, 81–98. [Google Scholar] [CrossRef]
- Griffin, M.; Seed, P.T.; Duckworth, S.; North, R.; Myers, J.; Mackillop, L.; Simpson, N.; Waugh, J.; Anumba, D.; Kenny, L.C.; et al. Predicting Delivery of a Small-for-Gestational-Age Infant and Adverse Perinatal Outcome in Women with Suspected Pre-Eclampsia. Ultrasound Obstet. Gynecol. 2018, 51, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Visan, V.; Scripcariu, I.S.; Socolov, D.; Costescu, A.; Rusu, D.; Socolov, R.; Avasiloaiei, A.; Boiculese, L.; Dimitriu, C. Better Prediction for FGR (Fetal Growth Restriction) with the SFlt-1/PIGF Ratio: A Case-Control Study. Medicine 2019, 98, e16069. [Google Scholar] [CrossRef]
- Vrachnis, N.; Kalampokas, E.; Sifakis, S.; Vitoratos, N.; Kalampokas, T.; Botsis, D.; Iliodromiti, Z. Placental Growth Factor (PlGF): A Key to Optimizing Fetal Growth. J. Matern. Fet. Neonatal Med. 2013, 26, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-B.; Xu, Y.-Y.; Cheng, W.-W.; Yuan, B.; Zhao, J.-R.; Wang, Y.-L.; Zhang, H.-J. Decreased PGF May Contribute to Trophoblast Dysfunction in Fetal Growth Restriction. Reproduction 2017, 154, 319–329. [Google Scholar] [CrossRef]
- Herraiz, I.; Quezada, M.S.; Rodriguez-Calvo, J.; Gómez-Montes, E.; Villalaín, C.; Galindo, A. Longitudinal Change of SFlt-1/PlGF Ratio in Singleton Pregnancy with Early-Onset Fetal Growth Restriction. Ultrasound Obstet. Gynecol. 2018, 52, 631–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, R.; Nien, J.K.; Espinoza, J.; Todem, D.; Fu, W.; Chung, H.; Kusanovic, J.P.; Gotsch, F.; Erez, O.; Mazaki-Tovi, S.; et al. A Longitudinal Study of Angiogenic (Placental Growth Factor) and Anti-Angiogenic (Soluble Endoglin and Soluble Vascular Endothelial Growth Factor Receptor-1) Factors in Normal Pregnancy and Patients Destined to Develop Preeclampsia and Deliver a Small for Gestational Age Neonate. J. Matern. Fet. Neonatal Med. 2008, 21, 9–23. [Google Scholar] [CrossRef]
- Chaiworapongsa, T.; Romero, R.; Whitten, A.E.; Korzeniewski, S.J.; Chaemsaithong, P.; Hernandez-Andrade, E.; Yeo, L.; Hassan, S.S. The Use of Angiogenic Biomarkers in Maternal Blood to Identify Which SGA Fetuses Will Require a Preterm Delivery and Mothers Who Will Develop Pre-Eclampsia. J. Matern. Fetal Neonatal Med. 2016, 29, 1214–1228. [Google Scholar] [CrossRef] [Green Version]
- Schaarschmidt, W.; Rana, S.; Stepan, H. The Course of Angiogenic Factors in Early- vs. Late-Onset Preeclampsia and HELLP Syndrome. J. Perinat. Med. 2013, 41, 511–516. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-S.; Chen, C.-N.; Jeng, S.-F.; Su, Y.-N.; Chen, C.-Y.; Chou, H.-C.; Tsao, P.-N.; Hsieh, W.-S. The SFlt-1/PlGF Ratio as a Predictor for Poor Pregnancy and Neonatal Outcomes. Pediatr. Neonatol. 2017, 58, 529–533. [Google Scholar] [CrossRef] [Green Version]
- Schoofs, K.; Grittner, U.; Engels, T.; Pape, J.; Denk, B.; Henrich, W.; Verlohren, S. The Importance of Repeated Measurements of the SFlt-1/PlGF Ratio for the Prediction of Preeclampsia and Intrauterine Growth Restriction. J. Perinat. Med. 2014, 42, 61–68. [Google Scholar] [CrossRef]
Early FGR: GA < 32 weeks, in absence of congenital anomalies | Late FGR: GA ≥ 32 weeks, in absence of congenital anomalies |
AC/EFW < 3rd centile or UA-AEDF Or 1. AC/EFW < 10th centile combined with 2. UtA-PI > 95th centile and/or 3. UA-PI >95th centile | AC/EFW < 3rd centile Or at least two out of three of the following 1. AC/EFW < 10th centile 2. AC/EFW crossing centiles > 2 quartiles on growth centiles 3. CPR < 5th centile or UA-PI > 95th centile |
Preeclampsia |
Preeclampsia is gestational hypertension accompanied by ≥1 of the following new-onset conditions at or after 20 weeks’ gestation: |
Proteinuria |
Other maternal organ dysfunction, including: |
AKI (creatinine ≥ 90 umol/L; 1 mg/dL) |
Liver involvement (elevated transaminases, e.g., alanine aminotransferase or aspartate aminotransferase > 40 IU/L) with or without right upper quadrant or epigastric abdominal pain |
Neurological complications (examples include eclampsia, altered mental status, blindness, stroke, clonus, severe headaches, and persistent visual scotomata) |
Hematological complications (thrombocytopenia–platelet count <150,000/μL, disseminated intravascular coagulation, hemolysis) |
Uteroplacental dysfunction (such as fetal growth restriction, abnormal umbilical artery [UA] Doppler wave form analysis, or stillbirth) |
FGR + PE | iPE | iFGR | Control | |||||
---|---|---|---|---|---|---|---|---|
I | II | III | IV | |||||
Parameter | Median | Q1–Q3 | Median | Q1–Q3 | Median | Q1–Q3 | Median | Q1–Q3 |
Gravidity | 1 | 1–2 | 1 | 1–2 | 2 | 2–3 | 2 | 1.5–3 |
Parity | 1 | 1–2 | 1 | 1–2 | 2 | 1–2 | 2 | 1–2 |
Gestation (weeks) at sampling | 32 | 28–34 | 35 | 33–37 | 35 | 33–37 | 34 | 31–37 |
Age (years) | 29 | 27–35 | 30 | 27–34 | 33 | 30–37 | 29 | 28–37 |
Height (cm) | 167 | 160–170 | 164 | 160–168 | 167 | 164–171 | 165 | 164–168 |
Weight (kg) | 72 | 66–89 | 80 | 72–92 | 70 | 67–79 | 78 | 68–89 |
SBP max | 170 | 156–178 | 156 | 150–165 | 127 | 115–134 | 114 | 104–122 |
DBP max | 104 | 102–111 | 98 | 95–105 | 81.5 | 76–84 | 66 | 62–75 |
MAP | 128 | 121–131 | 117.3 | 114–127 | 95.7 | 92–98.7 | 84 | 76–89 |
Proteinuria (mg/24 h) | 1438 | 547–3483 | 668 | 295–1981 | 170 | 138–192 | 0 | 0 |
Total protein (g/dL) | 6.05 | 5.8–6.3 | 5.8 | 5.6–6.3 | 6.35 | 6–6.7 | 6.0 | 5.5–6.2 |
Fibrinogen (g/L) | 4.4 | 3.7–5 | 5.2 | 4.3–5.6 | 4.7 | 4–5.2 | 3.85 | 3.5–4.2 |
INR | 0.9 | 0.86–0.93 | 0.9 | 0.9–0.98 | 0.92 | 0.9–0.97 | 1.0 | 1–1 |
PT Index(%) | 109 | 105–114 | 106 | 100–110 | 105.3 | 102–110 | 98 | 96–100 |
PT (s) | 10 | 10.4–9.6 | 10.3 | 10.9–9.9 | 10.4 | 10.7–9.9 | 11.1 | 1.1–10.9 |
APTT (s) | 28.8 | 26.6–29.6 | 26.5 | 25.6–27.3 | 27.4 | 26.2–29.6 | 26.9 | 25.9–29.4 |
D-dimers (ng/mL) | 1277 | 1050–1800 | 1362 | 1140–1731 | 1306 | 951–1670 | 1359 | 923–2389 |
WBC (×109/L) | 10.3 | 8.8–11.4 | 9.8 | 9–12.4 | 9.4 | 7.5–11.4 | 9.05 | 8.4–10.9 |
RBC (×1012/L) | 4.16 | 3.95–4.34 | 4.0 | 3.8–4.3 | 4.2 | 4–4.3 | 4.0 | 3.7–4.2 |
Hb | 12.5 | 11.8–13.5 | 12.2 | 11.4–13.2 | 12.6 | 12–13.1 | 12.25 | 11.5–12.7 |
HCT (%) | 37 | 34.3–38.8 | 34.9 | 33.7–38.5 | 36.8 | 35.6–37.9 | 35.3 | 33.9–37.2 |
PLT (×109/L) | 192 | 147–220 | 189 | 144–213 | 207 | 178–253 | 220 | 179–263 |
ALT (U/L) | 28.5 | 21–76 | 24.5 | 18–46 | 16 | 14–28 | 17 | 12–18 |
AST (U/L) | 42 | 30–69 | 30 | 25–41 | 23 | 20–28 | 20 | 15–21 |
Creatinine (mg/dL) | 0.7 | 0.6–0.8 | 0.7 | 0.6–0.8 | 0.65 | 0.5–0.7 | 0.5 | 0.5–0.6 |
UA (mg/dL) | 7.2 | 6.7–8.2 | 6.5 | 5.5–7.2 | 5.5 | 3.95–6.6 | 4.2 | 3.2–4.6 |
Urea | 31 | 26.3–42.1 | 24.5 | 20–35 | 19 | 19–26 | 15.6 | 13.7–17 |
Groups of Studied Women | FGR + PE | iPE | iFGR | Control | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ULTRASOUND MEASUREMENTS INCLUDING DOPPLER FLOW PARAMETERS | ||||||||||
I | II | III | IV | |||||||
Parameter | Median | Q1–Q3 | Median | Q1–Q3 | Median | Q1–Q3 | Median | Q1–Q3 | p value | Differences |
UtPI mean | 1.6 | 1.4–2.0 | 1.0 | 1–1 | 1.6 | 1.3–2 | 0.7 | 0.65–0.75 | I, III > IV | |
Ut PI percentile | 100 | 99–100 | 91 | 85–96 | 100 | 100–100 | 52 | 42–62 | I, III > IV | |
UA PI | 1.3 | 1–2.42 | 1.0 | 0.9–1 | 1.2 | 1–1.7 | 0.8 | 0.65–0.87 | I, II, III > IV | |
UA PI percentile | 84 | 53–100 | 73 | 59–82 | 96 | 70–100 | 11 | 3–46 | I, II, III > IV | |
UA RI | 0.8 | 0.6–1.0 | 0.6 | 0.6–0.7 | 0.7 | 0.6–0.8 | 0.6 | 0.49–0.58 | I, III > IV | |
MCA | 1.2 | 1.1–1.7 | 1.6 | 1.5–2 | 1.3 | 1.3–1.5 | 1.6 | 1.2–1.7 | NS | - |
MCA percentile | 1 | 1–23 | 32 | 12–46 | 3 | 1–15 | 21 | 8–35 | NS | - |
CPR | 1.2 | 0.6–1.6 | 1.6 | 1.5–1.8 | 1 | 0.7–1.6 | 2.0 | 1.7–2.2 | I, III < IV | |
CPR pc | 1 | 1–16 | 19 | 6–35 | 1 | 1–13 | 51 | 30–83 | I, III < IV | |
USG—AFI | 6.5 | 3–10 | 10 | 8–14 | 10 | 7.5–11 | 11 | 9–14 | NS | - |
USG—EFW | 1326 | 708–1714 | 2760 | 2167–3173 | 1915 | 1464–2255 | 2607 | 1773–3351 | I < IV | |
EFWpercentile | 1 | 1–2 | 56 | 33–83 | 2 | 1–5 | 64 | 43–87 | I, III < IV | |
AC | 242 | 217–260 | 323 | 299–336 | 281 | 245–286 | 304 | 260–342 | I < IV | |
AC percentile | 1 | 1–5 | 58 | 48–74 | 4 | 1–7 | 57 | 40–81 | I, III < IV | |
PERINATAL OUTCOMES | ||||||||||
Gestational age at birth (weeks) | 32 | 28–34 | 35 | 33–37 | 35 | 33–37 | 38 | 37–39 | <0.00005 | I, II, III < IV |
Birth weight (g) | 1370 | 680–1700 | 2500 | 1980–2980 | 1985 | 1480–2320 | 3340 | 3170–3520 | <0.00005 | I, II, III < IV |
Birth weight percentile | 1 | 1–1 | 46 | 22–86 | 3 | 1–7 | 70 | 47–87 | <0.00005 | I, III < IV |
Apgar 1 min | 7 | 6–8 | 8 | 7–10 | 8 | 7–10 | 10 | 9–10 | <0.0005 | I, II < IV |
Apgar 5 min | 7.5 | 6–9 | 9 | 8–10 | 8 | 8–10 | 10 | 9.5–10 | <0.00005 | I < IV |
Group | Mean | Median | Q1 | Q3 | SD | p Value | |
---|---|---|---|---|---|---|---|
sEng [ng/mL] | (I) FGR + PE | 11.9 | 12.1 | 11.8 | 12.2 | 1.0 | |
(II) iPE | 10.5 | 11.5 | 10.2 | 11.9 | 2.4 | p < 0.001 | |
(III) iFGR | 9.9 | 11.7 | 9.2 | 11.9 | 3.0 | I > IV, II > IV, III > IV | |
(IV) Control | 6.4 | 5.8 | 4.1 | 8.3 | 2.9 | ||
PIGF [pg/mL] | (I) FGR + PE | 72 | 42 | 22 | 113 | 62 | |
(II) iPE | 149 | 142 | 27 | 227 | 118 | p < 0.001 | |
(III) iFGR | 216 | 154 | 117 | 221 | 261 | I < IV, II < IV, III < IV | |
(IV) Control | 851 | 769 | 444 | 1248 | 480 | ||
sFlt-1 [pg/mL] | (I) FGR + PE | 129,263 | 115,702 | 14,981 | 221,278 | 123,234 | |
(II) iPE | 87,234 | 76,345 | 8614 | 133,888 | 99,327 | p = 0.002 | |
(III) iFGR | 51,193 | 33,590 | 13,871 | 66,994 | 49,647 | I > IV, II > IV | |
(IV) Control | 9787 | 8878 | 5574 | 10,809 | 6416 | ||
RATIO sFlt-1/PlGF | (I) FGR + PE | 2577 | 1072 | 250 | 2833 | 4638 | |
(II) iPE | 1181 | 314 | 143 | 547 | 3567 | p < 0.001 | |
(III) iFGR | 408 | 219 | 81 | 846 | 438 | I > IV, II > IV, III > IV | |
(IV) Control | 18 | 10 | 5 | 24 | 17 |
Group of Studied Pregnant Women | Ultrasound Parameter | Biochemical Marker | R | p Value |
---|---|---|---|---|
CONTROL | EFW | sFlt-1 | 0.64 | 0.007 |
EFW | sFlt-1/PlGF ratio | 0.61 | 0.01 | |
AC | sFlt-1 | 0.53 | 0.04 | |
AC | sFlt-1/PlGF ratio | 0.54 | 0.04 | |
UA PI | PlGF | 0.49 | 0.04 | |
UA PI | sEng | −0.6 | 0.008 | |
UA RI | PlGF | 0.6 | 0.009 | |
UA RI | sEng | −0.64 | 0.004 | |
UA RI | sFlt-1/PlGF ratio | −0.49 | 0.04 | |
MCA PI | PlGF | 0.75 | 0.002 | |
MCA PI percentile | PlGF | 0.64 | 0.01 | |
MCA PI | sEng | −0.65 | 0.02 | |
MCA PI | sFlt-1/PlGF ratio | −0.57 | 0.03 | |
FGR + PE | UtA PI | PlGF | −0.71 | 0.01 |
UtA PI percentile | PlGF | −0.68 | 0.02 | |
UA PI | PlGF | −0.49 | 0.02 | |
UA PI percentile | PlGF | −0.52 | 0.02 | |
UA RI | PlGF | −0.49 | 0.02 | |
CPR | PlGF | 0.5 | 0.02 | |
CPR percentile | PlGF | 0.56 | 0.009 | |
EFW | PlGF | 0.5 | 0.02 | |
EFW percentile | PlGF | 0.5 | 0.02 | |
AC | PlGF | 0.6 | 0.009 | |
PE(iPE and FGR + PE) | UtA PI | PlGF | −0.55 | 0.04 |
UA PI | sEng | 0.33 | 0.03 | |
UA PI | PlGF | −0.46 | 0.003 | |
UA PI percentile | PlGF | −0.34 | 0.04 | |
UA RI | PlGF | −0.5 | 0.001 | |
MCA PI | PlGF | 0.42 | 0.01 | |
MCA PI percentile | PlGF | 0.48 | 0.003 | |
CPR | PlGF | 0.6 | 0.0001 | |
CPR percentile | PlGF | 0.61 | 0.0001 | |
EFW | PlGF | 0.43 | 0.005 | |
EFW | sEng | −0.35 | 0.03 | |
EFW | sFlt-1/PlGF ratio | −0.33 | 0.03 | |
AC | PlGF | 0.48 | 0.005 | |
iFGR | UtA PI | sFlt-1/PlGF ratio | 0.9 | 0.04 |
UA RI | sFlt-1/PlGF ratio | 0.57 | 0.05 | |
MCA PI percentile | sFlt-1 | −0.57 | 0.04 | |
CPR percentile | sFlt-1 | −0.66 | 0.01 | |
EFW | PlGF | 0.6 | 0.02 | |
EFW percentile | PlGF | 0.73 | 0.003 | |
EFW percentile | sEng | −0.58 | 0.03 |
Group | Perinatal Outcome | Biochemical Marker | R | p Value |
---|---|---|---|---|
PE(iPE and FGR + PE) | Birth weight | PlGF | 0.44 | 0.003 |
Birth weight | sFlt-1/PlGF ratio | −0.38 | 0.01 | |
Birth weight | sEng | −0.4 | 0.006 | |
Birth weight percentile | sFlt-1/PlGF ratio | −0.9 | 0.009 | |
Birth weight percentile | sEng | −0.47 | 0.001 | |
Apgar 5 min | PlGF | 0.35 | 0.02 | |
FGR + PE | Birth weight | PlGF | 0.55 | 0.008 |
iFGR | Birth weight percentile | PlGF | 0.55 | 0.04 |
Birth weight percentile | sFlt-1 | −0.49 | 0.05 | |
Birth weight percentile | sFlt-1/PlGF ratio | −0.62 | 0.02 | |
Birth weight percentile | sEng | −0.58 | 0.03 | |
Apgar 1 min | PlGF | 0.73 | 0.005 | |
Apgar 5 min | PlGF | 0.71 | 0.005 |
Group | Parameter | Biochemical Marker | R | p |
---|---|---|---|---|
iPE | APTT | PlGF | 0.44 | 0.05 |
INR | sFlt-1 | −0.54 | 0.01 | |
PT | 0.57 | 0.007 | ||
INR | sFlt-1/PlGF ratio | −0.53 | 0.01 | |
PT | 0.52 | 0.02 | ||
INR | sEng | −0.51 | 0.03 | |
PT | 0.5 | 0.03 | ||
PE together (iPE and FGR + PE) | INR | sFlt-1 | −0.37 | 0.02 |
PT | 0.42 | 0.006 | ||
INR | sFlt-1/PlGF ratio | −0.47 | 0.001 | |
PT | 0.46 | 0.002 | ||
INR | sEng | −0.43 | 0.004 | |
PT | 0.42 | 0.005 | ||
iFGR | SBP | PlGF | −0.68 | 0.008 |
MAP | −0.8 | 0.0007 | ||
INR | 0.66 | 0.009 | ||
PT | −0.65 | 0.01 | ||
PT | sEng | 0.59 | 0.03 | |
urea | 0.62 | 0.03 | ||
Uric acid | 0.68 | 0.01 | ||
Control | SBP | sFlt-1 | 0.5 | 0.03 |
MAP | 0.5 | 0.03 | ||
SBP | sFlt-1/PlGF ratio | 0.52 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dymara-Konopka, W.; Laskowska, M.; Grywalska, E.; Hymos, A.; Leszczyńska-Gorzelak, B. Maternal Serum Angiogenic Profile and Its Correlations with Ultrasound Parameters and Perinatal Results in Normotensive and Preeclamptic Pregnancies Complicated by Fetal Growth Restriction. J. Clin. Med. 2023, 12, 4281. https://doi.org/10.3390/jcm12134281
Dymara-Konopka W, Laskowska M, Grywalska E, Hymos A, Leszczyńska-Gorzelak B. Maternal Serum Angiogenic Profile and Its Correlations with Ultrasound Parameters and Perinatal Results in Normotensive and Preeclamptic Pregnancies Complicated by Fetal Growth Restriction. Journal of Clinical Medicine. 2023; 12(13):4281. https://doi.org/10.3390/jcm12134281
Chicago/Turabian StyleDymara-Konopka, Weronika, Marzena Laskowska, Ewelina Grywalska, Anna Hymos, and Bożena Leszczyńska-Gorzelak. 2023. "Maternal Serum Angiogenic Profile and Its Correlations with Ultrasound Parameters and Perinatal Results in Normotensive and Preeclamptic Pregnancies Complicated by Fetal Growth Restriction" Journal of Clinical Medicine 12, no. 13: 4281. https://doi.org/10.3390/jcm12134281
APA StyleDymara-Konopka, W., Laskowska, M., Grywalska, E., Hymos, A., & Leszczyńska-Gorzelak, B. (2023). Maternal Serum Angiogenic Profile and Its Correlations with Ultrasound Parameters and Perinatal Results in Normotensive and Preeclamptic Pregnancies Complicated by Fetal Growth Restriction. Journal of Clinical Medicine, 12(13), 4281. https://doi.org/10.3390/jcm12134281