Effect of COVID-19 on Musculoskeletal Performance in Gait and the Timed-Up and Go Test
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Experimental Protocol and Setup
2.3. Data Analysis
- Pelvic tilt: anterior (positive) or posterior (negative) movement of the pelvis in the sagittal plane;
- Hip flexion/extension: positive (flexion) or negative (extension) movement of the femur in the sagittal plane;
- Knee flexion/extension: positive (flexion) or negative (extension) movement of the femur in the sagittal plane;
- Ankle dorsiflexion/plantarflexion: positive (dorsi) or negative (plantar) movement of the foot in relation to the tibia in the sagittal plane.
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Repercussions of COVID-19 on Aerobic Performance and Lung Function
4.2. Repercussions of COVID-19 on Muscle Strength and Fatigue
4.3. Study Limitation
4.4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease (COVID-19) Pandemic. Available online: www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 12 May 2023).
- Daher, A.; Balfanz, P.; Cornelissen, C.; Müller, A.; Bergs, I.; Marx, N.; Müller-Wieland, D.; Hartmann, B.; Dreher, M.; Müller, T. Follow up of patients with severe coronavirus disease 2019 (COVID-19): Pulmonary and extrapulmonary disease sequelae. Respir. Med. 2020, 174, 106197. [Google Scholar] [CrossRef]
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.; et al. Attributes and predictors of long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef]
- Fernández-De-Las-Peñas, C.; Palacios-Ceña, D.; Gómez-Mayordomo, V.; Florencio, L.L.; Cuadrado, M.L.; Plaza-Manzano, G.; Navarro-Santana, M. Prevalence of post-COVID-19 symptoms in hospitalized and non-hospitalized COVID-19 survivors: A systematic review and meta-analysis. Eur. J. Intern. Med. 2021, 92, 55–70. [Google Scholar] [CrossRef]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V. Definition WHOCC. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022, 22, E102–E107. [Google Scholar] [CrossRef]
- Aiyegbusi, O.L.; Hughes, S.E.; Turner, G.; Rivera, S.C.; McMullan, C.; Chandan, J.S.; Haroon, S.; Price, G.; Davies, E.H.; Nirantharakumar, K.; et al. Symptoms, complications and management of long COVID: A review. J. R. Soc. Med. 2021, 114, 428–442. [Google Scholar] [CrossRef]
- Barker-Davies, R.M.; O’Sullivan, O.; Senaratne, K.P.P.; Baker, P.; Cranley, M.; Dharm-Datta, S.; Ellis, H.; Goodall, D.; Gough, M.; Lewis, S.; et al. The Stanford Hall consensus statement for post-COVID-19 rehabilitation. Br. J. Sport. Med. 2020, 54, 949–959. [Google Scholar] [CrossRef]
- Ramani, S.L.; Samet, J.; Franz, C.K.; Hsieh, C.; Nguyen, C.V.; Horbinski, C.; Deshmukh, S. Musculoskeletal involvement of COVID-19: Review of imaging. Skelet. Radiol. 2021, 50, 1763–1773. [Google Scholar] [CrossRef]
- Kucudiaeresi, A. Management of musculoskeletal consequences in persons with post-COVID-19 syndrome. Aging Clin. Exp. Res. 2022, 34 (Suppl. S1), S93. [Google Scholar]
- Disser, N.P.; De Micheli, A.J.; Schonk, M.M.; Konnaris, M.A.; Piacentini, A.N.; Edon, D.L.; Toresdahl, B.G.; Rodeo, S.A.; Casey, E.K.; Mendias, C.L. Musculoskeletal Consequences of COVID-19. J. Bone Jt. Surg. -Am. Vol. 2020, 102, 1197–1204. [Google Scholar] [CrossRef]
- Rosa, K.Y.A.; Padua, K.L.C.; Maldaner, V.Z.; de Oliveira, L.V.F.; de Melo, F.X.; Santos, D.B. Musculoskeletal Consequences from COVID-19 and the Importance of Pulmonary Rehabilitation Program. Respiration 2021, 100, 1038–1040. [Google Scholar] [CrossRef]
- Song, W.-J.; Hui, C.K.M.; Hull, J.H.; Birring, S.S.; McGarvey, L.; Mazzone, S.B.; Chung, K.F. Confronting COVID-19-associated cough and the post-COVID syndrome: Role of viral neurotropism, neuroinflammation, and neuroimmune responses. Lancet Respir. Med. 2021, 9, 533–544. [Google Scholar] [CrossRef]
- Long COVID: Understanding the neurological effects. Lancet Neurol. 2021, 20, 247. [CrossRef] [PubMed]
- Heneka, M.T.; Golenbock, D.; Latz, E.; Morgan, D.; Brown, R. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res. Ther. 2020, 12, 69. [Google Scholar] [CrossRef] [PubMed]
- Paneroni, M.; Vogiatzis, I.; Bertacchini, L.; Simonelli, C.; Vitacca, M. Predictors of Low Physical Function in Patients With COVID-19 With Acute Respiratory Failure Admitted to a Subacute Unit. Arch. Phys. Med. Rehabil. 2021, 102, 1228–1231. [Google Scholar] [CrossRef]
- Halpin, S.J.; McIvor, C.; Whyatt, G.; Adams, A.; Harvey, O.; McLean, L.; Walshaw, C.; Kemp, S.; Corrado, J.; Singh, R.; et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation. J. Med. Virol. 2021, 93, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Carfi, A.; Bernabei, R.; Landi, F.; Gemelli Against, C.-P.A. Persistent Symptoms in Patients After Acute COVID-19. Jama J. Am. Med. Assoc. 2020, 324, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Jafarnezhadgero, A.A.; Hamlabadi, M.P.; Sajedi, H.; Granacher, U. Recreational runners who recovered from COVID-19 show different running kinetics and muscle activities compared with healthy controls. Gait Posture 2022, 91, 260–265. [Google Scholar] [CrossRef]
- Keklicek, H.; Selcuk, H.; Kurt, I.; Ulukaya, S.; Ozturk, G. Individuals with a COVID-19 history exhibit asymmetric gait patterns despite full recovery. J. Biomech. 2022, 137, 111098. [Google Scholar] [CrossRef]
- Pistoia, F.; Ornello, R.; Sucapane, P.; Marini, C.; Sacco, S. Symptoms of gait and coordination impairment in a patient with COVID-19 interstitial pneumonia. Neurol. Sci. 2021, 42, 3083–3086. [Google Scholar] [CrossRef]
- Jamari, J.; Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; Permana, M.S.; Winarni, T.I.; van der Heide, E. Adopted walking condition for computational simulation approach on bearing of hip joint prosthesis: Review over the past 30 years. Heliyon 2022, 8, e12050. [Google Scholar] [CrossRef]
- Fraser, J.J.; VanDehy, J.; Bodell, D.M.; Gottshall, K.R.; Sessoms, P.H. Head and Body Dyskinesia During Gait in Tactical Athletes With Vestibular Deficit Following Concussion. Front. Sport. Act. Living 2021, 3, 703982. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Villarreal, D.J.; Meuret, A.E. Walking on the bright side: Associations between affect, depression, and gait. PLoS ONE 2021, 16, e0260893. [Google Scholar] [CrossRef]
- Thomas, P.; Baldwin, C.; Bissett, B.; Boden, I.; Gosselink, R.; Granger, C.L.; Hodgson, C.; Jones, A.Y.; E Kho, M.; Moses, R.; et al. Physiotherapy management for COVID-19 in the acute hospital setting: Clinical practice recommendations. J. Physiother. 2020, 66, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Yoon, S. Validity Evaluation of an Inertial Measurement Unit (IMU) in Gait Analysis Using Statistical Parametric Mapping (SPM). Sensors 2021, 21, 3667. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chen, J.; Hu, C.; Ma, Y.; Wu, Z.; Wan, W.; Huang, Y.; Jia, F.; Gong, C.; Wan, S.; et al. Automatic Timed Up-and-Go Sub-Task Segmentation for Parkinson’s Disease Patients Using Video-Based Activity Classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 2189–2199. [Google Scholar] [CrossRef]
- Wisniowska-Szurlej, A.; Cwirlej-Sozanska, A.; Woloszyn, N.; Sozanski, B.; Wilmowska-Pietruszynska, A.; Washburn, R. Cultural adaptation and validation of the Polish version of the physical activity scale for older people living in a community: A cross-sectional study. Eur. Rev. Aging Phys. Act. 2020, 17, 19. [Google Scholar] [CrossRef]
- Schenkman, M.; Berger, R.A.; Riley, P.O.; Mann, R.W.; Hodge, W.A. Whole-Body Movements during Rising to Standing from Sitting. Phys. Ther. 1990, 70, 638–648. [Google Scholar] [CrossRef]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.D.; Cristofolini, L.; Witte, H.; et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion-part 1: Ankle, hip, and spine. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef]
- Wu, G.; van der Helm, F.C.T.; Veeger, H.E.J.; Makhsous, M.; Van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A.R.; McQuade, K.; Wang, X.; et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion-Part II: Shoulder, elbow, wrist and hand. J. Biomech. 2005, 38, 981–992. [Google Scholar] [CrossRef]
- Kontaxis, A.; Cutti, A.G.; Johnson, G.R.; Veeger, H.E.J. A framework for the definition of standardized protocols for measuring upper-extremity kinematics. Clin. Biomech. 2009, 24, 246–253. [Google Scholar] [CrossRef]
- Bankosz, Z.; Winiarski, S. The Application of Statistical Parametric Mapping to Evaluate Differences in Topspin Backhand between Chinese and Polish Female Table Tennis Players. Appl. Bionics Biomech. 2021, 2021, 5555874. [Google Scholar] [CrossRef]
- Bankosz, Z.; Winiarski, S. Statistical Parametric Mapping Reveals Subtle Gender Differences in Angular Movements in Table Tennis Topspin Backhand. Int. J. Environ. Res. Public Health 2020, 17, 6996. [Google Scholar] [CrossRef]
- Saito, Y.; Ishida, T.; Kataoka, Y.; Takeda, R.; Tadano, S.; Suzuki, T.; Nakamura, K.; Nakata, A.; Osuka, S.; Yamada, S.; et al. Evaluation of gait characteristics in subjects with locomotive syndrome using wearable gait sensors. BMC Musculoskelet. Disord. 2022, 23, 457. [Google Scholar] [CrossRef]
- Mundt, M.; Thomsen, W.; David, S.; Dupré, T.; Bamer, F.; Potthast, W.; Markert, B. Assessment of the measurement accuracy of inertial sensors during different tasks of daily living. J. Biomech. 2019, 84, 81–86. [Google Scholar] [CrossRef]
- Bankosz, Z.; Winiarski, S.; Lanzoni, I.M. Gender Differences in Kinematic Parameters of Topspin Forehand and Backhand in Table Tennis. Int. J. Environ. Res. Public Health 2020, 17, 5742. [Google Scholar] [CrossRef]
- Pietraszewski, B.; Winiarski, S.; Jaroszczuk, S. Three-dimensional human gait pattern-reference data for normal men. Acta Bioeng. Biomech./Wroc. Univ. Technol. 2012, 14, 9–16. [Google Scholar]
- Winiarski, S.; Pietraszewska, J.; Pietraszewski, B. Three-Dimensional Human Gait Pattern: Reference Data for Young, Active Women Walking with Low, Preferred, and High Speeds. Biomed Res. Int. 2019, 2019, 9232430. [Google Scholar] [CrossRef]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys. Ther. 2000, 80, 896–903. [Google Scholar]
- Kompaniyets, L.; Goodman, A.B.; Belay, B.; Freedman, D.S.; Sucosky, M.S.; Lange, S.J.; Gundlapalli, A.V.; Boehmer, T.K.; Blanck, H.M. Body Mass Index and Risk for COVID-19-Related Hospitalization, Intensive Care Unit Admission, Invasive Mechanical Ventilation, and Death-United States, March-December 2020. Mmwr-Morb. Mortal. Wkly. Rep. 2021, 70, 355–361. [Google Scholar] [CrossRef]
- Kollias, A.; Kyriakoulis, K.G.; Syrigos, K. Obesity and Mortality Among Patients Diagnosed With COVID-19. Ann. Intern. Med. 2021, 174, 886–887. [Google Scholar] [CrossRef]
- Jimeno-Almazán, A.; Martínez-Cava, A.; Buendía-Romero, Á.; Franco-López, F.; Sánchez-Agar, J.A.; Sánchez-Alcaraz, B.J.; Tufano, J.J.; Pallarés, J.G.; Courel-Ibáñez, J. Relationship between the severity of persistent symptoms, physical fitness, and cardiopulmonary function in post-COVID-19 condition. A population-based analysis. Intern. Emerg. Med. 2022, 17, 2199–2208. [Google Scholar] [CrossRef]
- Anastasio, F.; LA Macchia, T.; Rossi, G.; D’abbondanza, M.; Curcio, R.; Vaudo, G.; Pucci, G. Mid-term impact of mild-moderate COVID-19 on cardiorespiratory fitness in elite athletes. J. Sport. Med. Phys. Fit. 2022, 62, 1383–1390. [Google Scholar] [CrossRef]
- Jamari, J.; Ammarullah, M.I.; Saad, A.P.M.; Syahrom, A.; Uddin, M.; van der Heide, E.; Basri, H. The Effect of Bottom Profile Dimples on the Femoral Head on Wear in Metal-on-Metal Total Hip Arthroplasty. J. Funct. Biomater. 2021, 12, 38. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Hartono, R.; Supriyono, T.; Santoso, G.; Sugiharto, S.; Permana, M.S. Polycrystalline Diamond as a Potential Material for the Hard-on-Hard Bearing of Total Hip Prosthesis: Von Mises Stress Analysis. Biomedicines 2023, 11, 951. [Google Scholar] [CrossRef]
- Grove, K.; Edgar, D.W.; Chih, H.; Harrold, M.; Natarajan, V.; Mohd, S.; Hurn, E.; Cavalheri, V. Greater In-Hospital Care and Early Rehabilitation Needs in People with COVID-19 Compared with Those without COVID-19. J. Clin. Med. 2022, 11, 3602. [Google Scholar] [CrossRef]
- Soares, M.N.; Eggelbusch, M.; Naddaf, E.; Gerrits, K.H.L.; van der Schaaf, M.; van den Borst, B.; Wiersinga, J.; van Vugt, M.; Weijs, P.J.M.; Murray, A.J.; et al. Skeletal muscle alterations in patients with acute COVID-19 and post-acute sequelae of COVID-19. J. Cachexia Sarcopenia Muscle 2022, 13, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Paneroni, M.; Simonelli, C.; Saleri, M.; Bertacchini, L.; Venturelli, M.; Troosters, T.; Ambrosino, N.; Vitacca, M. Muscle Strength and Physical Performance in Patients Without Previous Disabilities Recovering From COVID-19 Pneumonia. Am. J. Phys. Med. Rehabil. 2021, 100, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Floreani, M.; Rejc, E.; Taboga, P.; Ganzini, A.; Pišot, R.; Šimunič, B.; Biolo, G.; Reggiani, C.; Passaro, A.; Narici, M.; et al. Effects of 14 days of bed rest and following physical training on metabolic cost, mechanical work, and efficiency during walking in older and young healthy males. PLoS ONE 2018, 13, e0194291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; Kurdi, O.; Tauviqirrahman, M.; Winarni, T.I.; Jamari, J. Tresca stress study of CoCrMo-on-CoCrMo bearings based on body mass index using 2D computational model. J. Tribol. 2022, 33, 31–38. [Google Scholar]
Characteristics | Infected by COVID-19 (n = 15) | Not-Infected by COVID-19 (n = 15) |
---|---|---|
Age [years] | 37.6 ± 6.1 | 32.3 ± 4.0 |
Male/female | 12/3 | 10/5 |
Height [cm] | 177.2 ± 0.1 | 177.4 ± 10.0 |
BMI [kg/m2] | 28.5 ± 4.2 | 25.57 ± 2.1 |
COVID-19-associated pneumonia in imaging tests | 15 | N/A |
Oxygen therapy during hospitalization | 11 | N/A |
Comorbidities | 2 (hypothyroidism-1, insulin resistance-1) | N/A |
Number of days of hospitalisation | (4–12) | N/A |
Time interval between end of hospitalisation and conduct of the study in weeks | (8–25) | N/A |
Symptoms reported by patients in relation to COVID-19 | - | N/A |
- fatigue | 5 | |
- muscle pain | 3 | |
- joint pain | 5 |
Region | Inertial Meter Positions |
---|---|
Head | The sensor is attached to a headband on the center of the forehead. |
Sternum | The sensor is placed on the chest, usually at the level of the sternum or breastbone. |
Mid-spine | This sensor is placed around the mid-point of the spine, typically around the level of the thoracic vertebrae. |
Lower spine | A sensor is affixed at the lumbar region of the spine. |
Left/Right shoulder | One sensor is placed on each shoulder, typically on the acromion—the bony prominence at the top of the shoulder. |
Left/Right upper arm | Sensors are attached on the lateral side of each upper arm, usually midway between the shoulder and the elbow. |
Left/Right forearm | Sensors are positioned on the lateral side of each forearm, typically halfway between the elbow and the wrist. |
Left/Right hand | A sensor is placed on the dorsum (back) of each hand, usually near the wrist. |
Left/Right thigh | Sensors are attached to each thigh, typically midway between the hip and knee, on the lateral side. |
Left/Right shank | Sensors are placed on the lateral side of each shank, usually midway between the knee and the ankle. |
Infected by COVID-19 | Not-Infected by COVID-19 | p-Value (t-Test/U-Test) | |
---|---|---|---|
TUG Time [s] | 16.5 ± 0.9 | 11.3 ± 0.7 | <0.01 |
Sit-to-Stand Time [s] | 2.1 ± 0.7 | 1.6 ± 0.5 | <0.01 U |
Walking Cycle Time [s] | 5.7 ± 0.8 | 4.5 ± 0.7 | <0.01 U |
Mean Speed [m/s] | 0.18 ± 0.05 | 0.31 ± 0.01 | <0.01 U |
Mean Walking Speed [m/s] | 0.26 ± 0.07 | 0.48 ± 0.09 | <0.01 U |
Walking Cadence [steps/min] | 21.2 ± 1.2 | 32.8 ± 1.5 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowal, M.; Morgiel, E.; Winiarski, S.; Gieysztor, E.; Madej, M.; Sebastian, A.; Madziarski, M.; Wedel, N.; Proc, K.; Madziarska, K.; et al. Effect of COVID-19 on Musculoskeletal Performance in Gait and the Timed-Up and Go Test. J. Clin. Med. 2023, 12, 4184. https://doi.org/10.3390/jcm12134184
Kowal M, Morgiel E, Winiarski S, Gieysztor E, Madej M, Sebastian A, Madziarski M, Wedel N, Proc K, Madziarska K, et al. Effect of COVID-19 on Musculoskeletal Performance in Gait and the Timed-Up and Go Test. Journal of Clinical Medicine. 2023; 12(13):4184. https://doi.org/10.3390/jcm12134184
Chicago/Turabian StyleKowal, Mateusz, Ewa Morgiel, Sławomir Winiarski, Ewa Gieysztor, Marta Madej, Agata Sebastian, Marcin Madziarski, Nicole Wedel, Krzysztof Proc, Katarzyna Madziarska, and et al. 2023. "Effect of COVID-19 on Musculoskeletal Performance in Gait and the Timed-Up and Go Test" Journal of Clinical Medicine 12, no. 13: 4184. https://doi.org/10.3390/jcm12134184
APA StyleKowal, M., Morgiel, E., Winiarski, S., Gieysztor, E., Madej, M., Sebastian, A., Madziarski, M., Wedel, N., Proc, K., Madziarska, K., Wiland, P., & Paprocka-Borowicz, M. (2023). Effect of COVID-19 on Musculoskeletal Performance in Gait and the Timed-Up and Go Test. Journal of Clinical Medicine, 12(13), 4184. https://doi.org/10.3390/jcm12134184