Metabolomics in Acute Kidney Injury: The Clinical Perspective
Abstract
:1. Introduction
2. Methods
3. Metabolic Profiling
3.1. Definition
3.2. Methodical Considerations
4. Acute Kidney Injury
4.1. Definition and Epidemiology
4.2. Biomarkers in AKI Diagnosis and Risk Prediction
4.3. Metabolomics in AKI Diagnosis
4.4. Metabolomics in AKI Risk Prediction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoste, E.A.J.; Kellum, J.A.; Selby, N.M.; Zarbock, A.; Palevsky, P.M.; Bagshaw, S.M.; Goldstein, S.L.; Cerdá, J.; Chawla, L.S. Global Epidemiology and Outcomes of Acute Kidney Injury. Nat. Rev. Nephrol. 2018, 14, 607–625. [Google Scholar] [CrossRef] [PubMed]
- Susantitaphong, P.; Cruz, D.N.; Cerda, J.; Abulfaraj, M.; Alqahtani, F.; Koulouridis, I.; Jaber, B.L. For the Acute Kidney Injury Advisory Group of the American Society of Nephrology. World Incidence of AKI: A Meta-Analysis. Clin. J. Am. Soc. Nephrol. 2013, 8, 1482–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatraju, P.K.; Zelnick, L.R.; Chinchilli, V.M.; Moledina, D.G.; Coca, S.G.; Parikh, C.R.; Garg, A.X.; Hsu, C.-Y.; Go, A.S.; Liu, K.D.; et al. Association Between Early Recovery of Kidney Function After Acute Kidney Injury and Long-Term Clinical Outcomes. JAMA Netw. Open 2020, 3, e202682. [Google Scholar] [CrossRef]
- Xu, J.; Xu, X.; Shen, B.; Zhuang, Y.; Liu, L.; Wang, Y.; Fang, Y.; Luo, Z.; Teng, J.; Wang, C.; et al. Evaluation of Five Different Renal Recovery Definitions for Estimation of Long-Term Outcomes of Cardiac Surgery Associated Acute Kidney Injury. BMC Nephrol. 2019, 20, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forni, L.G.; Darmon, M.; Ostermann, M.; Oudemans-van Straaten, H.M.; Pettila, V.; Prowle, J.R.; Schetz, M.; Joannidis, M. Renal Recovery after Acute Kidney Injury. Intensive Care Med. 2017, 43, 855–866. [Google Scholar] [CrossRef]
- Coca, S.G.; Singanamala, S.; Parikh, C.R. Chronic Kidney Disease after Acute Kidney Injury: A Systematic Review and Meta-Analysis. Kidney Int. 2012, 81, 442–448. [Google Scholar] [CrossRef] [Green Version]
- Chawla, L.S.; Bellomo, R.; Bihorac, A.; Goldstein, S.L.; Siew, E.D.; Bagshaw, S.M.; Bittleman, D.; Cruz, D.; Endre, Z.; Fitzgerald, R.L.; et al. Acute Kidney Disease and Renal Recovery: Consensus Report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat. Rev. Nephrol. 2017, 13, 241–257. [Google Scholar] [CrossRef] [Green Version]
- Rewa, O.; Bagshaw, S.M. Acute Kidney Injury-Epidemiology, Outcomes and Economics. Nat. Rev. Nephrol. 2014, 10, 193–207. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron. Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Ostermann, M.; Zarbock, A.; Goldstein, S.; Kashani, K.; Macedo, E.; Murugan, R.; Bell, M.; Forni, L.; Guzzi, L.; Joannidis, M.; et al. Recommendations on Acute Kidney Injury Biomarkers from the Acute Disease Quality Initiative Consensus Conference: A Consensus Statement. JAMA Netw. Open 2020, 3, e2019209. [Google Scholar] [CrossRef]
- Kellum, J.A.; Romagnani, P.; Ashuntantang, G.; Ronco, C.; Zarbock, A.; Anders, H.-J. Acute Kidney Injury. Nat. Rev. Dis. Primer 2021, 7, 52. [Google Scholar] [CrossRef]
- Dai, X.; Shen, L. Advances and Trends in Omics Technology Development. Front. Med. 2022, 9, 911861. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, I.; Verma, S.; Kumar, S.; Jere, A.; Anamika, K. Multi-Omics Data Integration, Interpretation, and Its Application. Bioinforma. Biol. Insights 2020, 14, 1177932219899051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass Spectrometry-Based Metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.; Kirby, H. Paper Chromatography Using Capillary Ascent. Science 1948, 107, 481–483. [Google Scholar] [CrossRef] [PubMed]
- Jurowski, K.; Kochan, K.; Walczak, J.; Barańska, M.; Piekoszewski, W.; Buszewski, B. Analytical Techniques in Lipidomics: State of the Art. Crit. Rev. Anal. Chem. 2017, 47, 418–437. [Google Scholar] [CrossRef]
- Jurczak, E.; Mazurek, A.H.; Szeleszczuk, Ł.; Pisklak, D.M.; Zielińska-Pisklak, M. Pharmaceutical Hydrates Analysis-Overview of Methods and Recent Advances. Pharmaceutics 2020, 12, E959. [Google Scholar] [CrossRef]
- Eberhardt, K.; Stiebing, C.; Matthäus, C.; Schmitt, M.; Popp, J. Advantages and Limitations of Raman Spectroscopy for Molecular Diagnostics: An Update. Expert Rev. Mol. Diagn. 2015, 15, 773–787. [Google Scholar] [CrossRef]
- Eom, J.S.; Kim, E.T.; Kim, H.S.; Choi, Y.Y.; Lee, S.J.; Lee, S.S.; Kim, S.H.; Lee, S.S. Metabolomics Comparison of Rumen Fluid and Milk in Dairy Cattle Using Proton Nuclear Magnetic Resonance Spectroscopy. Anim. Biosci. 2021, 34, 213–222. [Google Scholar] [CrossRef]
- Sun, J.; Cao, Z.; Schnackenberg, L.; Pence, L.; Yu, L.-R.; Choudhury, D.; Palevsky, P.M.; Portilla, D.; Beger, R.D. Serum Metabolite Profiles Predict Outcomes in Critically Ill Patients Receiving Renal Replacement Therapy. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2021, 1187, 123024. [Google Scholar] [CrossRef]
- Kim, S.J.; Song, H.E.; Lee, H.Y.; Yoo, H.J. Mass Spectrometry-Based Metabolomics in Translational Research. Adv. Exp. Med. Biol. 2021, 1310, 509–531. [Google Scholar] [CrossRef] [PubMed]
- Ympa, Y.P.; Sakr, Y.; Reinhart, K.; Vincent, J.-L. Has Mortality from Acute Renal Failure Decreased? A Systematic Review of the Literature. Am. J. Med. 2005, 118, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Drubel, K.; Marahrens, B.; Ritter, O.; Patschan, D. Kidney-Related Outcome in Cardiorenal Syndrome Type 3. Int. J. Nephrol. 2022, 2022, 4895434. [Google Scholar] [CrossRef] [PubMed]
- Heeg, M.; Mertens, A.; Ellenberger, D.; Müller, G.A.; Patschan, D. Prognosis of AKI in Malignant Diseases with and without Sepsis. BMC Anesthesiol. 2013, 13, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagshaw, S.M.; George, C.; Bellomo, R. A Comparison of the RIFLE and AKIN Criteria for Acute Kidney Injury in Critically Ill Patients. Nephrol. Dial. Transpl. 2008, 23, 1569–1574. [Google Scholar] [CrossRef] [Green Version]
- Ronco, C.; Kellum, J.A.; Haase, M. Subclinical AKI Is Still AKI. Crit. Care 2012, 16, 313. [Google Scholar] [CrossRef] [Green Version]
- Ostermann, M.; Schneider, A.; Rimmele, T.; Bobek, I.; van Dam, M.; Darmon, M.; Forni, L.; Joannes-Boyau, O.; Joannidis, M.; Legrand, M.; et al. Report of the First AKI Round Table Meeting: An Initiative of the ESICM AKI Section. Intensive Care Med. Exp. 2019, 7, 69. [Google Scholar] [CrossRef] [Green Version]
- Bökenkamp, A.; Domanetzki, M.; Zinck, R.; Schumann, G.; Byrd, D.; Brodehl, J. Cystatin C—A New Marker of Glomerular Filtration Rate in Children Independent of Age and Height. Pediatrics 1998, 101, 875–881. [Google Scholar] [CrossRef]
- Hollinger, A.; Wittebole, X.; François, B.; Pickkers, P.; Antonelli, M.; Gayat, E.; Chousterman, B.G.; Lascarrou, J.-B.; Dugernier, T.; Di Somma, S.; et al. Proenkephalin A 119-159 (Penkid) Is an Early Biomarker of Septic Acute Kidney Injury: The Kidney in Sepsis and Septic Shock (Kid-SSS) Study. Kidney Int. Rep. 2018, 3, 1424–1433. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Hu, J.; Chen, Y.; Shen, W.; Ke, B. Dickkopf-3: Current Knowledge in Kidney Diseases. Front. Physiol. 2020, 11, 533344. [Google Scholar] [CrossRef]
- Koyner, J.L.; Shaw, A.D.; Chawla, L.S.; Hoste, E.A.J.; Bihorac, A.; Kashani, K.; Haase, M.; Shi, J.; Kellum, J.A. Sapphire Investigators Tissue Inhibitor Metalloproteinase-2 (TIMP-2) IGF-Binding Protein-7 (IGFBP7) Levels Are Associated with Adverse Long-Term Outcomes in Patients with AKI. J. Am. Soc. Nephrol. 2015, 26, 1747–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nalesso, F.; Cattarin, L.; Gobbi, L.; Fragasso, A.; Garzotto, F.; Calo, L.A. Evaluating Nephrocheck((R)) as a Predictive Tool for Acute Kidney Injury. Int. J. Nephrol. Renov. Dis. 2020, 13, 85–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrezenmeier, E.V.; Barasch, J.; Budde, K.; Westhoff, T.; Schmidt-Ott, K.M. Biomarkers in Acute Kidney Injury—Pathophysiological Basis and Clinical Performance. Acta Physiol. 2016, 219, 556–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nickolas, T.L.; Schmidt-Ott, K.M.; Canetta, P.; Forster, C.; Singer, E.; Sise, M.; Elger, A.; Maarouf, O.; Sola-Del Valle, D.A.; O’Rourke, M.; et al. Diagnostic and Prognostic Stratification in the Emergency Department Using Urinary Biomarkers of Nephron Damage: A Multicenter Prospective Cohort Study. J. Am. Coll. Cardiol. 2012, 59, 246–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, W.; Li, C.; Yao, X.; Chen, Y.; Zhang, Y.; Hu, H. Prognostic Value of Fibrinogen to Albumin Ratios among Critically Ill Patients with Acute Kidney Injury. Intern. Emerg. Med. 2021, 17, 1023–1031. [Google Scholar] [CrossRef]
- Erfurt, S.; Hoffmeister, M.; Oess, S.; Asmus, K.; Patschan, S.; Ritter, O.; Patschan, D. Soluble IL-33 Receptor Predicts Survival in Acute Kidney Injury. J. Circ. Biomark. 2022, 11, 28–35. [Google Scholar] [CrossRef]
- Elmariah, S.; Farrell, L.A.; Daher, M.; Shi, X.; Keyes, M.J.; Cain, C.H.; Pomerantsev, E.; Vlahakes, G.J.; Inglessis, I.; Passeri, J.J.; et al. Metabolite Profiles Predict Acute Kidney Injury and Mortality in Patients Undergoing Transcatheter Aortic Valve Replacement. J. Am. Heart Assoc. 2016, 5, e002712. [Google Scholar] [CrossRef] [Green Version]
- Kappetein, A.P.; Head, S.J.; Généreux, P.; Piazza, N.; van Mieghem, N.M.; Blackstone, E.H.; Brott, T.G.; Cohen, D.J.; Cutlip, D.E.; van Es, G.-A.; et al. Updated Standardized Endpoint Definitions for Transcatheter Aortic Valve Implantation: The Valve Academic Research Consortium-2 Consensus Document (VARC-2). Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 2012, 42, S45–S60. [Google Scholar] [CrossRef]
- Inker, L.A.; Astor, B.C.; Fox, C.H.; Isakova, T.; Lash, J.P.; Peralta, C.A.; Kurella Tamura, M.; Feldman, H.I. KDOQI US Commentary on the 2012 KDIGO Clinical Practice Guideline for the Evaluation and Management of CKD. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2014, 63, 713–735. [Google Scholar] [CrossRef] [Green Version]
- Dawber, T.R.; Meadors, G.F.; Moore, F.E. Epidemiological Approaches to Heart Disease: The Framingham Study. Am. J. Public Health Nations Health 1951, 41, 279–281. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Q.; Xia, T.; Fu, S.; Tao, X.; Wen, Y.; Chan, S.; Gao, S.; Xiong, X.; Chen, W. Diagnostic Value of Plasma Tryptophan and Symmetric Dimethylarginine Levels for Acute Kidney Injury among Tacrolimus-Treated Kidney Transplant Patients by Targeted Metabolomics Analysis. Sci. Rep. 2018, 8, 14688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Zhang, P.; Bao, G.; Fang, Y.; Chen, W. Discovery of Potential Biomarkers in Acute Kidney Injury by Ultra-High-Performance Liquid Chromatography-Tandem Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q/TOF-MS). Int. Urol. Nephrol. 2021, 53, 2635–2643. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Kim, S.-M.; Jang, J.-H.; Park, H.-D.; Lee, S.-Y. Serum 5-Hydroxyindoleacetic Acid and Ratio of 5-Hydroxyindoleacetic Acid to Serotonin as Metabolomics Indicators for Acute Oxidative Stress and Inflammation in Vancomycin-Associated Acute Kidney Injury. Antioxidants 2021, 10, 895. [Google Scholar] [CrossRef] [PubMed]
- Woo, H.-I.; Chun, M.-R.; Yang, J.-S.; Lim, S.-W.; Kim, M.-J.; Kim, S.-W.; Myung, W.-J.; Kim, D.-K.; Lee, S.-Y. Plasma Amino Acid Profiling in Major Depressive Disorder Treated with Selective Serotonin Reuptake Inhibitors. CNS Neurosci. Ther. 2015, 21, 417–424. [Google Scholar] [CrossRef]
- Du, C.-K.; Zhan, D.-Y.; Akiyama, T.; Inagaki, T.; Shishido, T.; Shirai, M.; Pearson, J.T. Myocardial Interstitial Levels of Serotonin and Its Major Metabolite 5-Hydroxyindole Acetic Acid during Ischemia-Reperfusion. Am. J. Physiol.-Heart Circ. Physiol. 2017, 312, H60–H67. [Google Scholar] [CrossRef] [Green Version]
- Bamgbola, O. Review of Vancomycin-Induced Renal Toxicity: An Update. Ther. Adv. Endocrinol. Metab. 2016, 7, 136–147. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; Liu, X.; Chen, L.; Hu, S.; Zheng, Z.; Wang, L.; Wang, X.; Gao, H.; Sun, W. Urine Metabolites for Preoperative Prediction of Acute Kidney Injury after Coronary Artery Bypass Graft Surgery. J. Thorac. Cardiovasc. Surg. 2021, 165, 1165–1175.e3. [Google Scholar] [CrossRef]
- Franiek, A.; Sharma, A.; Cockovski, V.; Wishart, D.S.; Zappitelli, M.; Blydt-Hansen, T.D. Urinary Metabolomics to Develop Predictors for Pediatric Acute Kidney Injury. Pediatr. Nephrol. 2022, 37, 2079–2090. [Google Scholar] [CrossRef]
- Lagos-Arevalo, P.; Palijan, A.; Vertullo, L.; Devarajan, P.; Bennett, M.R.; Sabbisetti, V.; Bonventre, J.V.; Ma, Q.; Gottesman, R.D.; Zappitelli, M. Cystatin C in Acute Kidney Injury Diagnosis: Early Biomarker or Alternative to Serum Creatinine? Pediatr. Nephrol. 2015, 30, 665–676. [Google Scholar] [CrossRef]
- Palermo, J.; Dart, A.B.; De Mello, A.; Devarajan, P.; Gottesman, R.; Garcia Guerra, G.; Hansen, G.; Joffe, A.R.; Mammen, C.; Majesic, N.; et al. Biomarkers for Early Acute Kidney Injury Diagnosis and Severity Prediction: A Pilot Multicenter Canadian Study of Children Admitted to the ICU. Pediatr. Crit. Care Med. 2017, 18, e235–e244. [Google Scholar] [CrossRef]
- Hoste, E.; Bihorac, A.; Al-Khafaji, A.; Ortega, L.M.; Ostermann, M.; Haase, M.; Zacharowski, K.; Wunderink, R.; Heung, M.; Lissauer, M.; et al. Identification and Validation of Biomarkers of Persistent Acute Kidney Injury: The RUBY Study. Intensive Care Med. 2020, 46, 943–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaidya, V.S.; Waikar, S.S.; Ferguson, M.A.; Collings, F.B.; Sunderland, K.; Gioules, C.; Bradwin, G.; Matsouaka, R.; Betensky, R.A.; Curhan, G.C.; et al. Urinary Biomarkers for Sensitive and Specific Detection of Acute Kidney Injury in Humans. Clin. Transl. Sci. 2008, 1, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Gisewhite, S.; Stewart, I.J.; Beilman, G.; Lusczek, E. Urinary Metabolites Predict Mortality or Need for Renal Replacement Therapy after Combat Injury. Crit. Care 2021, 25, 119. [Google Scholar] [CrossRef] [PubMed]
- Stewart, I.J.; Glass, K.R.; Howard, J.T.; Morrow, B.D.; Sosnov, J.A.; Siew, E.D.; Wickersham, N.; Latack, W.; Kwan, H.K.; Heegard, K.D.; et al. The Potential Utility of Urinary Biomarkers for Risk Prediction in Combat Casualties: A Prospective Observational Cohort Study. Crit. Care 2015, 19, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palevsky, P.M.; Zhang, J.H.; O’Connor, T.Z.; Chertow, G.M.; Crowley, S.T.; Choudhury, D.; Finkel, K.; Kellum, J.A.; Paganini, E.; Schein, R.M.; et al. Intensity of Renal Support in Critically Ill Patients with Acute Kidney Injury. N. Engl. J. Med. 2008, 359, 7–20. [Google Scholar] [CrossRef] [PubMed]
Reference/Year | Design | Findings |
---|---|---|
AKI diagnosis | ||
Elmariah et al., 2016 [37] | prospective, observational; transcatheter aortic valve replacement (TAVR) patients (n = 44) and participants of the Framingham Heart Study (n = 2164) | 5-adenosylhomocysteine AKI predictive, even after adjustment for baseline creatinine |
Zhang et al., 2018 [41] | kidney transplant recipients, living donors; n = 42 (AKI in n = 30), 24 healthy subjects as controls | tryptophan lower in transplant patients than in controls and lower in AKI than in non-AKI patients; AKI prediction through tryptophan and symmetric dimethylarginine (SDMA) in combination (AUC 0.9) |
Chen et al., 2021 [42] | 30 AKI subjects and 20 healthy controls, gender- and age-matched | glutathione acetate, 5-l-Glutamyl-taurine, and l-Phosphoarginine higher in AKI, positive correlation with serum creatinine |
Lee et al., 2021 [43] | four groups: vancomycin-associated AKI, vancomycin treatment without AKI, CKD, and healthy controls | identification of the 5-hydroxyindoleacetic acid/5-hydroxytryptamin-ratio as surrogate marker of vancomycin-associated AKI |
Tian et al., 2021 [47] | patients that receive (on-pump) coronary artery bypass surgery; post-surgery AKI in n = 55, stable kidney function in n = 104 | identification of 5 AKI predictive urine metabolites |
Franiek et al., 2022 [48] | urine samples from children with either pre-AKI (n = 15), established AKI (n = 22), and controls (n = 30) | 20 metabolites discriminated between pre-AKI and established AKI, 13 metabolites predicted AKI up to 3 days in advance |
AKI risk prediction | ||
Gisewhite et al., 2021 [53] | urine analysis from 82 individuals with combat injury, injury occurred not later than 48 h before inclusion | increased 1-methylnicotinamide was associated with mortality, KRT, and higher AKI stages |
Sun et al., 2021 [20] | 202 AKI individuals from the ATN study cohort [55] | 4/11 serum metabolites death predictive for days 8/28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patschan, D.; Patschan, S.; Matyukhin, I.; Ritter, O.; Dammermann, W. Metabolomics in Acute Kidney Injury: The Clinical Perspective. J. Clin. Med. 2023, 12, 4083. https://doi.org/10.3390/jcm12124083
Patschan D, Patschan S, Matyukhin I, Ritter O, Dammermann W. Metabolomics in Acute Kidney Injury: The Clinical Perspective. Journal of Clinical Medicine. 2023; 12(12):4083. https://doi.org/10.3390/jcm12124083
Chicago/Turabian StylePatschan, Daniel, Susann Patschan, Igor Matyukhin, Oliver Ritter, and Werner Dammermann. 2023. "Metabolomics in Acute Kidney Injury: The Clinical Perspective" Journal of Clinical Medicine 12, no. 12: 4083. https://doi.org/10.3390/jcm12124083
APA StylePatschan, D., Patschan, S., Matyukhin, I., Ritter, O., & Dammermann, W. (2023). Metabolomics in Acute Kidney Injury: The Clinical Perspective. Journal of Clinical Medicine, 12(12), 4083. https://doi.org/10.3390/jcm12124083