Perioperative Management of Patients Undergoing Total Pancreatectomy with/without Islet Cell Autotransplantation: A Single Center Experience
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
4.1. Glycemic Control
4.2. Management of Thrombosis and Bleeding
4.3. Management of Cardiac Function
4.4. Respiratory Function
4.5. Neurologic and Pain Management
4.6. Management of Nutrition
4.7. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Desai, C.S.; Williams, B.M.; Baldwin, X.; Vonderau, J.S.; Kumar, A.; Hyslop, W.B.; Jones, M.S.; Hanson, M.; Baron, T.H. Selection of parenchymal preserving or total pancreatectomy with/without islet cell autotransplantation surgery for patients with chronic pancreatitis. Pancreatology 2022, 22, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Chinnakotla, S.; Radosevich, D.M.; Dunn, T.B.; Bellin, M.D.; Freeman, M.L.; Schwarzenberg, S.J.; Balamurugan, A.N.; Josh, W.; Barbara, B.; Selwyn, V.; et al. Long-term outcomes of total pancreatectomy and islet auto transplantation for hereditary/genetic pancreatitis. J. Am. Coll. Surg. 2014, 218, 530–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellin, M.D.; Abu-El-Haija, M.; Morgan, K.; Adams, D.; Beilman, G.J.; Chinnakotla, S.; Conwell, D.L.; Dunn, T.B.; Freeman, M.L.; Gardner, T.; et al. A multicenter study of total pancreatectomy with islet autotransplantation (TPIAT): POST (Prospective Observational Study of TPIAT). Pancreatology 2018, 18, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Colling, K.; Dunn, T.B.; Beilman, G.J. Chapter 9: Postoperative care and prevention and treatment of complications following total pancreatectomy with islet cell autotransplantation. In Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas; Academic Press: London, UK, 2020; Volume 2, pp. 141–148. [Google Scholar] [CrossRef]
- Verma, N.; Rajab, A.; Buss, J.; Lara, L.; Porter, K.; Hart, P.; Conwell, D.; Washburn, W.K.; Black, S.; Kuntz, K.; et al. Immediate postoperative insulin requirements may predict metabolic outcomes after total pancreatectomy and islet autotransplantation. J. Diabetes Res. 2020, 2020, 9282310. [Google Scholar] [CrossRef]
- Komatsu, H.; Kandeel, F.; Mullen, Y. Impact of oxygen on pancreatic islet survival. Pancreas 2018, 47, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Casey, J.J.; Lakey, J.R.; Ryan, E.A.; Paty Breay, W.; Owen, R.; O’Kelly, K.; Nanji, S.; Rajotte, R.V.; Korbutt, G.S.; Bigam, D.; et al. Portal venous pressure changes after sequential clinical islet transplantation. Transplantation 2002, 74, 913–915. [Google Scholar] [CrossRef]
- Desai, C.S.; Szempruch, K.R.; Vonderau, J.S.; Chetboun, M.; Pattou, F.; Coates, T.; De Paep, D.L.; Hawthorne, W.J.; Khan, K.M.; de Koning, E.J.P.; et al. Anticoagulation practices in total pancreatectomy with autologous islet cell transplant patients: An international survey of clinical programs. Transpl. Int. 2021, 34, 593–595. [Google Scholar] [CrossRef]
- Vonderau, J.S.; Desai, C.S. Type 3c: Understanding pancreatogenic diabetes. Am. Acad. PAs, 2022; online ahead of print. [Google Scholar] [CrossRef]
- Sutherland, D.E.R.; Radosevich, D.M.; Bellin, M.D. Total pancreatectomy and islet autotransplantation for chronic pancreatitis. J. Am. Coll. Surg. 2012, 214, 409–424. [Google Scholar] [CrossRef] [Green Version]
- NICE-SUGAR Investigators. Intensive versus conventional glucose control in critically ill patients. N. Engl. J. Med. 2009, 360, 1283–1297. [Google Scholar] [CrossRef] [Green Version]
- Bohé, J.; Abidi, H.; Brunot, V.; Klich, A.; Klouche, K.; Sedillot, N.; Tchenio, X.; Quenot, J.-P.; Roudaut, J.-B.; Mottard, N.; et al. Individualized versus conventional glucose control in critically-ill patients: The CONTROLING study—A randomized clinical trial. Intensive Care Med. 2021, 47, 1271–1283. [Google Scholar] [CrossRef]
- Sandler, S.; Jansson, L. Blood flow measurements in autotransplanted pancreatic islets of the rat. Impairment of the blood perfusion of the graft during hyperglycemia. J. Clin. Investig. 1987, 80, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.K.; Faiman, C.; Walsh, R.M.; Stevens, T.; Bottino, R.; Hatipoglu, B.A. Spontaneous hypoglycemia after islet autotransplantation for chronic pancreatitis. J. Clin. Endocrinol. Metab. 2016, 101, 3669–3675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellin, M.D.; Parazzoli, S.; Oseid, E.; Bogachus, L.D.; Schuetz, C.; Patti, M.E.; Dunn, T.; Pruett, T.; Balamurugan, A.N.; Hering, B.; et al. Defective glucagon secretion during hypoglycemia after intrahepatic but not nonhepatic islet autotransplantation. Am. J. Transpl. 2014, 14, 1880–1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manciu, N.; Beebe, D.S.; Tran, P.; Gruessner, R.; Sutherland, D.E.; Belani, K.G. Total pancreatectomy with islet cell autotransplantation: Anesthetic implications. J. Clin. Anesth. 1999, 11, 576–582. [Google Scholar] [CrossRef]
- Williams, B.M.; Baldwin, X.; Vonderau, J.S.; Hyslop, W.B.; Desai, C.S. Portal flow dynamics after total pancreatectomy and autologous islet cell transplantation. Clin. Transpl. 2020, 34, e14112. [Google Scholar] [CrossRef] [PubMed]
- Koh, A.; Senior, P.; Salam, A.; Kin, T.; Imes, S.; Dinyari, P.; Malcolm, A.; Toso, C.; Nilsson, B.; Korsgren, O.; et al. Insulin-heparin infusions peritransplant substantially improve single-donor clinical islet transplant success. Transplantation 2010, 89, 465–471. [Google Scholar] [CrossRef]
- Wang, P.; Tait, S.M.; Chaudry, I.H. Sustained elevation of norepinephrine depresses hepatocellular function. Biochim. Biophys. Acta 2000, 1535, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, B.G.; Abboud, F.M.; Eckstein, J.W. Comparison of the effects of sympathomimetic amines upon venous and total vascular resistance in the foreleg of the dog. J. Pharmacol. Exp. Ther. 1963, 139, 290–295. [Google Scholar] [CrossRef]
- Nilsson, B.; Ekdahl, K.N.; Korsgren, O. Control of instant blood-mediated inflammatory reaction to improve islets of Langerhans engraftment. Curr. Opin. Organ. Transpl. 2011, 16, 620–626. [Google Scholar] [CrossRef]
- Szempruch, K.R.; Walter, K.; Ebert, N.; Bridgens, K.; Desai, C.S. Pharmacological management of patients undergoing total pancreatectomy with auto-islet transplantation. Pancreatology 2022, 22, 656–664. [Google Scholar] [CrossRef]
- John, G.K.; Singh, V.K.; Moran, R.A.; Warren, D.; Sun, Z.; Desai, N.; Walsh, C.; Kalyani, R.R.; Hall, E.; Hirose, K.; et al. Chronic gastrointestinal dysmotility and pain following total pancreatectomy with islet autotransplantation for chronic pancreatitis. J. Gastrointest. Surg. 2017, 21, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Shahbazov, R.; Naziruddin, B.; Yadav, K.; Saracino, G.; Yoshimatsu, G.; Kanak, M.A.; Beecherl, E.; Kim, P.T.; Levy, M.F. Risk factors for early readmission after total pancreatectomy and islet auto transplantation. HPB 2018, 20, 166–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
POD 0 | Remain intubated Stat labs then every 6 h (ABG, CBC, CMP, PT/INR) Heparin drip for aPTT goal 40–50 Insulin drip with glucose checks every 1 h for glucose goal 80–120 mg/dL If glucose < 80 start D5 0.45% NS at the maintenance rate × 1 h If glucose > 80, start 0.9% NS at the maintenance rate NGT Low constant wall suction JP drain × 2: 1 in splenectomy bed, 1 in pancreatectomy bed Vancomycin, piperacillin/tazobactam, and micafungin ×7 days, or until OR and lab cultures result Metoproclamide, pantoprazole, SCDs Anakinra and etanercept for islet engraftment |
POD 1 | US liver Doppler Chronic pain team consult prior to extubation Extubate if appropriate Incentive spirometry every 1–2 h while awake As needed, psychiatry consult following extubation Out of bed towards the evening, PT/OT consults |
POD 2 | US liver Doppler Labs decreased to twice daily NGT removal or to gravity Remove Foley catheter If glucose is consistently 80–120 without insulin, then every 2 h on check |
POD 3 | Labs decreased to daily Consider discontinuing the heparin drip with a transition to enoxaparin Enoxaparin dosing strategy (prophylaxis vs. treatment) is to be determined by the surgeon based on portal pressure Anti-Xa 4 h following THIRD dose of enoxaparin Assess gastrointestinal function—remove NGT if still in place and consider starting clear fluids (sugar-free) |
POD 4 | Advance diet to carbohydrate-controlled (<30 g with meals, <15 g with snacks) with a dietitian consult Start pancrelipase per dietitian recommendation: generally, 72,000 units with meals and 24,000–48,000 units with snacks Transition insulin drip to subcutaneous insulin regimen per endocrinology with sliding scale every 6 h Decrease glucose checks to every 2–6 h (or preferably before meals, if not performed previously) If patient not requiring insulin, may decrease glucose checks to before meals and at bedtime (ACHS) Pain management per pain team: wean off PCA if possible |
POD 5 | US liver Doppler Adjust glucose checks to ACHS Convert all medications to PO, including intravenous pain medications |
All Patients n = 31 | TPIAT n = 26 | TP n = 5 | p-Value | |
---|---|---|---|---|
Age (median +/− IQR) | 40 (28–48) | 39.5 (28–48) | 46 (30–46) | 1.00 |
Sex n (% male) | 13 (42%) | 10(38%) | 3(60%) | 0.63 |
Pancreatitis Etiology n (%) | 0.94 | |||
Idiopathic/unknown | 6 (19%) | 5 (19%) | 1 (20%) | |
Alcoholic | 9 (29%) | 7 (27%) | 2 (40%) | |
Genetic | 8 (26%) | 7 (27%) | 1 (20%) | |
Divisum | 8 (26%) | 7 (27%) | 1 (20%) | |
Race/ethnicity n (%) | 0.03 | |||
Black | 2 (6%) | 1 (4%) | 1 (20%) | |
White | 25 (81%) | 23 (88%) | 2 (40%) | |
Hispanic | 3 (10%) | 1 (4%) | 2 (40%) | |
Asian | 1 (3%) | 1 (4%) | 0 | |
Body Mass Index (median +/− IQR) | 24.61 (22.62–29.5) | 24.20 (22.62–29.50) | 24.86 (24.84–26.66) | 0.83 |
Comorbidities n (%) | ||||
Any Renal disease | 1 (3%) | 1 (4%) | 0 | 1.00 |
Cardiac | 12 (39%) | 10 (38%) | 2 (40%) | 1.00 |
Gastrointestinal | 7 (23%) | 5 (19%) | 2 (40%) | 0.56 |
Pulmonary | 0 (0%) | 0 (0%) | 0 (0%) | NA |
Prior Abdominal Surgery | 19 (61%) | 17 (65%) | 2 (40%) | 0.30 |
Other 1 | 2 (6%) | 1 (4%) | 1 (20%) | 0.30 |
Diabetes n (%) | ||||
Hemoglobin A1c > 6.5 | 12 (39%) | 8 (31%) | 4 (80%) | 0.06 |
Pre-operative Insulin Use | 5 (16%) | 2 (8%) | 3 (60%) | 0.02 |
A1c 5.7–6.4 | 13 (42%) | 12 (46%) | 1 (20%) | 0.29 |
A1c < 5.7 | 6 (19%) | 6 (23%) | 0 | 0.37 |
Smoking Status n (%) | 0.04 | |||
Current | 11 (35%) | 9 (35%) | 2 (40%) | |
Former | 7 (23%) | 4 (15%) | 3 (60%) | |
Never | 13 (42%) | 13 (50%) | 0 | |
Use of narcotic drip >24 h n (%) | 10 (32%) | 7 (27%) | 3 (60%) | 0.30 |
Use of ketamine drip >24 h n (%) | 26 (84%) | 24 (92%) | 2 (40%) | 0.02 |
Length of time on insulin drip median hours (IQR) | 70 (20–124) | 92.5 (35–129) | 22 (20–25) | 0.06 |
Length of time intubated median hours (IQR) | 17 (14–35) | 17 (15–35) | 0 (0–14) | 0.02 |
Length of time with NGT median hours (IQR) | 66 (59–93) | 64 (59–88) | 88 (64–96) | 0.21 |
SICU Length of Stay in days median (IQR) | 5 (4–6) | 6 (5–7) | 2 (2–4) | 0.01 |
Hospital Length of Stay in days median (IQR) | 12 (9–15) | 12 (9–14) | 10 (9–21) | 0.74 |
Discharge Disposition n (%) | ||||
Home | 31 100%) | 26 (100%) | 5 (100%) | NA |
Skilled Nursing Facility or Long Term Acute Care Hospital | 0 (0%) | 0 (0%) | 0 (0%) |
All Patients n = 31 n (%) | TPIAT n = 26 n (%) | TP n = 5 n (%) | |
---|---|---|---|
Postoperative Bleeding n (%) | 2 (6%) | 2 (8%) | 0 (0%) |
Acute Blood Loss Anemia (Required Transfusion) n (%) | 5 (16%) | 4 (15%) | 1 (20%) |
Neurologic 1 n (%) | 2 (6%) | 2 (8%) | 0 (0%) |
Blood Glucose <60 n (%) | |||
Number of total events | 13 | 8 | 5 |
Number of patients with an episode <60 | 9 (29%) | 7 (27%) | 2 (40%) |
Diabetic Ketoacidosis n (%) | 0 (0%) | 0 (0%) | 0 (0%) |
Use of Pressors 2 n (%) | 2 (6%) | 2 (8%) | 0 (0%) |
Renal n (%) | |||
AKI | 1 (3%) | 1 (4%) | 0 (0%) |
CRRT | 0 (0%) | 0 (0%) | 0 (0%) |
Any Cardiac 3 n (%) | |||
Arrhythmia | 1 (3%) | 1 (4%) | 0 (0%) |
Delayed Extubation ETT >24 h n (%) | 9 (29%) | 8 (31%) | 1 (20%) |
NGT >48 h n (%) | 26 (84%) | 21 (81%) | 5 (100%) |
Reintubation n (%) | 5 (16%) | 4 (13%) | 1 (20%) |
NGT Replacement n (%) | 2 (6%) | 1 (4%) | 1 (20%) |
Infectious 4 n (%) | 0 (0%) | 0 (0%) | 0 (0%) |
Deep Tissue Injury | 0 (0%) | 0 (0%) | 0 (0%) |
Thrombosis 5 n (%) | 0 (0%) | 0 (0%) | 0 (0%) |
Other 6 n (%) | 1 (3%) | 1 (4%) | 0 (0%) |
Day 1 | Day 2 | Day 3 | Day 7 | |||||
---|---|---|---|---|---|---|---|---|
TPIAT (n = 26) | TP (n = 5) | TPIAT (n = 26) | TP (n = 5) | TPIAT (n = 26) | TP (n = 5) | TPIAT (n = 26) | TP (n = 5) | |
Glucose | 117 (108–139) | 139 (126–146) | 117 (102–128) | 181 (136–185) | 116 (102–127) | 182 (88–186) | 134 (116–164) | 151 (138–193) |
Hemoglobin | 10.3 (9.7–10.7) | 10.2 (9.2–11.1) | 9.4 (8.8–10.3) | 9.5 (8.7–11.2) | 9.1 (8.7–9.9) | 9.7 (9.4–11.1) | 9.7 (8.9–10.1) | 9.3 (9–11) |
Platelets | 183 (149–221) | 276 (157–278) | 196 (155–221) | 269 (131–281) | 227 (182–249) | 328 (162–335) | 499 (456–533) | 682 (318–696) |
Potassium | 3.8 (3.7–3.98) | 3.95 (3.75–4.1) | 3.85 (3.66–3.98) | 4.1 (3.9–4.1) | 3.7 (3.55–3.88) | 4.1 (3.6–4.2) | 3.7 (3.5–3.9) | 3.6 (3.5–3.85) |
Creatinine | 0.76 (0.54–0.89) | 0.65 (0.47–0.71) | 0.7 (0.54–0.84) | 0.59 (0.55–0.61) | 0.66 (0.53–0.8) | 0.55 (0.46–0.69) | 0.66 (0.51–0.87) | 0.54 (0.49–0.67) |
AST | 99 (80–123) | 219 (118–266) | 85 (69–106) | 184 (175–294) | 56 (48–74) | 119 (100 = 221) | 28 (23–40) | 40 (39–51) |
ALT | 70 (53–96) | 130 (41–143) | 64 (46–81) | 142 (55–149) | 53 (43–76) | 119 (52–178) | 40 (30–52) | 67 (42–86) |
Total Bilirubin | 0.73 (0.47–1.3) | 0.9 (0.7–1.5) | 0.76 (0.45–1.2) | 0.9 (0.6–0.95) | 0.78 (0.5–1.0) | 1.2 (1.1–1.2) | 0.6 (0.4–0.9) | 0.7 (0.5–0.8) |
Alkaline Phosphatase | 45 (31–54) | 52 (51–58) | 50 (40–55) | 59 (51–83) | 49 (43–57) | 74 (56–90) | 59 (48–67) | 106 (59–129) |
INR | 1.3 (1.2–1.54) | 1.26 (1.25–1.33) | 1.25 (1.11–1.39) | 1.27 (1.23–1.3) | 1.19 (1.07–1.27) | 1.15 (1.1–1.22) | 1.15 (1.08–1.31) | 1.18 (1.16–1.27) |
C-reactive peptide | 0.8 (0.3–1.2) | N/A | 0.43 (0.2–0.9) | N/A | N/A | N/A | 0.8 (0.2–1.4) | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reid, T.D.; Madduri, S.S.; Agala, C.B.; Weng, C.; McEwan, S.; Desai, C.S. Perioperative Management of Patients Undergoing Total Pancreatectomy with/without Islet Cell Autotransplantation: A Single Center Experience. J. Clin. Med. 2023, 12, 3993. https://doi.org/10.3390/jcm12123993
Reid TD, Madduri SS, Agala CB, Weng C, McEwan S, Desai CS. Perioperative Management of Patients Undergoing Total Pancreatectomy with/without Islet Cell Autotransplantation: A Single Center Experience. Journal of Clinical Medicine. 2023; 12(12):3993. https://doi.org/10.3390/jcm12123993
Chicago/Turabian StyleReid, Trista D., Supradeep S. Madduri, Chris B. Agala, Chengyu Weng, Sasha McEwan, and Chirag S. Desai. 2023. "Perioperative Management of Patients Undergoing Total Pancreatectomy with/without Islet Cell Autotransplantation: A Single Center Experience" Journal of Clinical Medicine 12, no. 12: 3993. https://doi.org/10.3390/jcm12123993
APA StyleReid, T. D., Madduri, S. S., Agala, C. B., Weng, C., McEwan, S., & Desai, C. S. (2023). Perioperative Management of Patients Undergoing Total Pancreatectomy with/without Islet Cell Autotransplantation: A Single Center Experience. Journal of Clinical Medicine, 12(12), 3993. https://doi.org/10.3390/jcm12123993