How to Preserve Steatotic Liver Grafts for Transplantation
Abstract
:1. Introduction
2. Why Are Steatotic Livers More Susceptible to Ischemia-Reperfusion Injury?
3. Impact of Different Preservation Solutions
Author, Year | Intervention | Experimental Model | Findings |
---|---|---|---|
Ben Mosbah et al., 2006 [64] | IGL-1 (vs. UW) | 24 h SCS followed by 2 h normothermic reperfusion in Zucker rat livers | Lower perfusate transaminase, MDA, and GLDH levels; improved bile production; lower vascular resistance. Inhibition of NO production suppressed IGL-1 effects. |
Ben Mosbah et al., 2007 [78] | UW (+trimetazidine +aminoimidazole-4-carboxamide ribonucleoside) | 24 h SCS followed by 2 h normothermic reperfusion in Zucker rat livers | Lower perfusate transaminase, MDA, and GLDH levels; improved bile production; lower vascular resistance. Increased AMPK activation. Inhibition of AMPK suppressed the protective effects. |
Ben Mosbah et al., 2010 [79] | UW (+carvedilol) | 24 h SCS followed by 2 h normothermic reperfusion in Zucker rat livers | Lower perfusate transaminase, MDA, and GLDH levels; improved bile production; lower vascular resistance; increased ATP. Increased AMPK activation. |
Zaouali et al., 2010 [67] | IGL-1 (+trimetazidine) | 24 h SCS followed by 2 h normothermic reperfusion in Zucker rat livers | Lower perfusate transaminase, MDA, and GLDH levels; improved bile production; lower vascular resistance. Increased levels of HIF-1α and downstream genes. Better results and HIF-1α induction after addition of trimetazidine. Inhibition of NO production suppressed the protective effects. |
Zaouali et al., 2010 [66] | IGL-1 (+IGF-1) | 24 h SCS followed by 2 h normothermic reperfusion in Zucker rat livers | Compared to IGL-1 alone: increased NO production, lower perfusate transaminase, MDA, and GLDH levels; improved bile production; lower vascular resistance, reduced oxidative stress. |
Zaouali et al., 2010 [65] | IGL-1 (+EGF) | 24 h SCS followed by 2 h normothermic reperfusion in Zucker rat livers | Compared to IGL-1 alone: increased NO production, lower perfusate transaminase, MDA, and GLDH levels; improved bile production; lower vascular resistance, reduced oxidative stress; increased ATP. |
Eipel et al., 2012 [82] | HTK (+erythropoietin) | 24 h SCS followed by 2 h normothermic reperfusion in ob/ob mice livers | Compared to HTK alone: lower perfusate AST; improved endothelial integrity; higher oxygen consumption. |
Bejaoui et al., 2014 [70] | IGL-1 (+bortezomib) | 24 h SCS followed by 2 h normothermic reperfusion in Zucker rat livers | Compared to IGL-1 alone: activation of AMPK signaling, lower perfusate transaminase; improved bile production; lower vascular resistance, apoptosis inhibition. Inhibition of AMPK expression reduced IGL-1 protective effects. |
Zaouali et al., 2013 [80] | UW (+bortezomib) | 24 h SCS followed by 2 h normothermic reperfusion in Zucker rat livers | Lower perfusate transaminase, MDA, and GLDH levels; improved bile production; lower vascular resistance. Increased AMPK activation. |
Bejaoui et al., 2015 [71] | IGL-1 (+carbonic anhydrase II) | 24 h SCS followed by 2 h normothermic reperfusion in Zucker rat livers | Compared to IGL-1 alone: activation of AMPK signaling, lower perfusate transaminase; improved bile production; increased ATP; downregulation of MAPK and UPR pathway; apoptosis inhibition. |
Bejaoui et al., 2015 [62] | PEG preconditioning | 24 h SCS followed by 2 h normothermic reperfusion in Zucker rat livers | Lower perfusate transaminase, and GLDH levels; lower vascular resistance. Increased AMPK activation. |
Tabka et al., 2015 [69] | IGL-1 (vs. Celsior) | 24 h SCS followed by 2 h normothermic reperfusion in Sprague-Dawley rats rat livers | Increased NO production, lower perfusate transaminase, MDA, and GLDH levels; improved bile production; lower vascular resistance, reduced oxidative stress, downregulation of MAPK pathway. |
Zaouali et al., 2017 [68] | IGL-1 (+trimetazidine) | 24 h SCS followed by 2 h normothermic reperfusion in Zucker rat livers | Compared to IGL-1 alone: lower perfusate transaminase and GLDH levels; increased levels of sirtuin 1 and reduced levels of HMGB1 and TNFα. |
Zaouali et al., 2017 [75] | IGL-1 (vs. UW) | 24 h SCS followed by 2 h normothermic reperfusion in Zucker rat livers | Lower perfusate transaminase and GLDH levels; increased ATP; reduced levels of HMGB1 and TNFα. Proteasome inhibition. |
Panisello-Roselló et al., 2017 [56] | IGL-1 (vs. HTK) | 24 h SCS of Zucker rat livers | Lower perfusate transaminase and GLDH levels; increased ATP; reduced levels of HMGB1 and TNFα. Proteasome inhibition. Increased AMPK activation. |
Panisello-Roselló et al., 2018 [76] | IGL-1 (vs. HTK vs. UW) | 24 h SCS of Zucker rat livers | Lower perfusate transaminase levels; increased ATP; reduced apoptosis. ALDH2 upregulation. |
Panisello-Roselló et al., 2018 [74] | IGL-1 (vs. HTK) | 24 h SCS of Zucker rat livers | Lower perfusate transaminase and GLDH levels; reduced membrane mitochondrial depolarization; reduced apoptosis; reduced levels of HMGB1; increased autophagy. |
Lopez et al., 2018 [86] | IGL-1 (vs. HTK vs. IGL-0 *) | 24 h SCS of Zucker rat livers | Lower perfusate transaminase levels, preserved glycocalyx integrity. |
Bardallo et al., 2021 [83] | IGL-2 (vs. IGL-1, vs. IGL-0 *) | 24 h SCS of Zucker rat livers | Lower perfusate transaminase and GLDH levels; increased ATP; increased autophagy; ALDH2 upregulation. |
Bardallo et al., 2022 [85] | IGL-2 (vs. IGL-1, vs. IGL-0 *) | 24 h SCS of Zucker rat livers | Increased ATP; reduced succinate accumulation; increased complex I and complex II levels: increased HO-1; increase glutathione levels; reduced oxidative stress. |
Asong-Fontem et al., 2022 [84] | IGL-2 (vs. UW) | 24 h SCS +/− 2 h HOPE followed by 2 h normothermic reperfusion in Zucker rat livers | Lower perfusate AST; preserved glycocalyx integrity; reduced levels of HMGB1; increased weight loss (surrogate of edema formation). |
4. Ischemic Preconditioning
Author, Year | Animal | Model | Protocol | Ischemia | Findings |
---|---|---|---|---|---|
Serafin et al., 2002 [102] | Rat | Partial IRI | 5 min + 10 min 10 min + 10 min 10 min + 15 min | 60 min, warm | 5 + 10 min IP protocol produced better results. Increased survival; reduced ALT; reduced necrosis; lower MDA; increased GSH; increased blood flow. Inhibition of NO production suppressed the protective effects. |
Selzner et al., 2003 [113] | Mouse | Partial IRI | 10 min + 10 min | 75 min, warm | Reduced AST; reduced necrosis and apoptosis; increased ATP. |
Serafin et al., 2004 [103] | Rat | Partial IRI | 5 min + 10 min | 60 min, warm | Increased survival; reduced ALT; reduced necrosis; lower MDA; reduced IL-1b and increased IL-10 Inhibition of NO production suppressed the protective effects. |
Fernandez et al., 2004 [115] | Rat | LT | 5 min + 10 min | 6 h, cold | Reduced AST and ALT; reduced necrosis; reduced MPO; modulation of ROS-generating system and lipid peroxidation. Inhibition of NO production suppressed the protective effects. |
Carrasco-Chaumel et al., 2005 [72] | Rat | LT | 5 min + 10 min | 6 h, cold | Reduced AST and ALT; reduced necrosis, increased NO production; activation of AMPK signaling. Inhibition of NO production suppressed the protective effects. |
Niemann et al., 2005 [117] | Rat | LT | 10 min + 10 min | 4 h, cold | Increased survival; increased ATP; lower lactate |
Koti et al., 2005 [108] | Rat | Partial IRI | 5 min + 10 min | 45 min, warm | Reduced AST and ALT; increased ATP; increased oxygenation and microcirculation |
Massip-Salcedo et al., 2006 [109] | Rat | Partial IRI | 5 min + 10 min | 60 min, warm | Reduced AST and ALT; reduced necrosis; increased HO-1; downregulation of MAPK pathway. Inhibition of NO production and/or HO-1 suppressed the protective effects. |
Saidi et al., 2007 [112] | Rat | Partial IRI | 10 min + 15 min | 75 min, warm | Reduced AST; reduced IL-6; reduced necrosis. |
Massip-Salcedo et al., 2008 [110] | Rat | Partial IRI | 5 min + 10 min | 60 min, warm | Reduced ALT; reduced necrosis; lower MDA; reduced IL-1b; PPAR-α upregulation; adiponectin downregulation; downregulation of MAPK pathway. Inhibition of PPAR-α suppressed the protective effects. |
Casillas-Ramirez et al., 2008 [104] | Rat | Partial IRI | 5 min + 10 min | 60 min, warm | Reduced ALT; reduced IL-1, reduced necrosis; reduced angiotensin II. ACE-inhibitors produced same benefits. |
Rolo et al., 2009 [111] | Rat | Partial IRI | 5 min + 10 min | 90 min, warm | Reduced AST and ALT; reduced membrane mitochondrial depolarization; increased ATP; reduced MPT induction |
Hafez et al., 2010 [105] | Rabbit | Partial IRI | 5 min + 10 min | 60 min, warm | Reduced AST and ALT; increased oxygenation and microcirculation, improved bile quality |
Casillas-Ramirez et al., 2011 [114] | Rat | LT | 5 min + 10 min | 6 h, cold | Reduced AST and ALT; reduced necrosis. Increased AMPK activation; PPAR-γ downregulation. Inhibition of AMPK suppressed the protective effects. |
Jiang et al., 2013 [106] | Rat | Partial IRI | 5 min + 10 min 8 min + 10 min 10 min + 10 min 15 min + 10 min | 30 min, warm | 5 + 10 min and 8 + 10 min IP protocols produced better results. Reduced AST, ALT and LDH; increased NO production, reduced MPO; lower MDA; |
Pantazi et al., 2014 [107] | Rat | Partial IRI | 5 min + 10 min | 60 min, warm | Reduced AST; reduced necrosis and apoptosis; increased NO production; activation of AMPK signaling. Increased levels of sirtuin 1. Inhibition of sirtuin 1 suppressed the protective effects. |
Chu et al., 2015 [118] | Rat | SCS | 10 min + 10 min | 24 h, cold | Reduced complex I injury. Protective effects only with mild steatosis, not with moderate/severe steatosis. |
Jimenez-Castro et al., 2015 [116] | Rat | LT | 5 min + 10 min | 6 h, cold | Increased survival; reduced ALT and AST; increased NO production, reduced MPO; lower MDA; PPAR-α upregulation; PPAR-γ downregulation. Inhibition of NO production suppressed the protective effects. |
5. Hypothermic Oxygenated Machine Perfusion
6. Subnormothermic Machine Perfusion
Author, Year | n | Intervention | Findings |
---|---|---|---|
Guarrera et al., 2015 [134] | 1 | End-ischemic HMP | A patient receiving a DBD graft with 40–50% MaS developed PNF. High-portal pressure and elevated effluent transaminases were observed during HMP. |
Kron et al., 2017 [135] | 6 | End-ischemic HOPE | As compared to SCS, recipients of HOPE-treated livers (DCD, n = 5) had lower transaminase peak, lower dialysis requirement, shorter ICU stay, and better survival. |
Rayar et al., 2021 [141] | 1 | End-ischemic D-HOPE | One patient receiving a graft with 30% steatosis had good function after LT and was alive with a functioning graft at 3-month follow-up. |
Patrono et al., 2020 [155] | 5 | End-ischemic D-HOPE | Graft MaS-influenced levels of perfusate AST, ALT, LDH, glucose, lactate, and pH and predicted development of EAD after LT. Of 5 recipients of livers with MaS ≥ 30%, one required re-LT. |
Patrono et al., 2022 [137] | 12 | End-ischemic D-HOPE | Of 12 recipients of livers with ≥30% MaS 5 has AST peak > 6000, 50% developed grade 2–3 AKI, 2 (16.7%) developed EAF, and 1 (8.3%) died. |
Watson et al., 2018 [175] | 1 | End-ischemic NMP | One liver described as “very steatotic” accepted for research and not transplanted. Perfusate ALT at 2 h = 7542 IU/L; no glucose metabolism. |
Ceresa et al., 2019 [176] | 1 | End-ischemic NMP | Of three (9.7%) discarded livers, one DBD liver with 80% MaS was discarded due to insufficient lactate clearance and lack of bile production and glucose metabolism. |
Mergental et al., 2020 [177] | 2 | End-ischemic NMP | Of 9 (29%) discarded livers, 2 had moderate or severe MaS. Prevalence of medium-large droplet steatosis was higher among discarded livers (77.8% vs. 40.9%). No liver with MaS ≥ 30% was accepted for LT. |
Fodor et al., 2021 [178] | 3 | End-ischemic NMP | Of 59 included patients, 3 (5.1%) received a liver with MaS ≥ 30%. Specific outcomes were not reported. |
Patrono et al., 2022 [179] | 14 | End-ischemic NMP | Of 14 evaluated livers, 10 (71%) were transplanted but 2 (14%) developed PNF, whereas post-LT graft function was good in the remaining patients |
He et al., 2018 [180] | 1 | IFLT | A DBD liver with 85–95% MaS was procured, preserved and successfully transplanted by IFLT. |
Chen et al., 2021 [181] | 26 | IFLT | A total of 26 livers with moderate (n = 16) or severe (n = 10) MaS were included, of which 6 were treated by IFLT. IFLT was associated with reduced AST, GGT, and creatinine peak after LT, and lower EAD rate (0% versus 60%, p = 0.001). |
7. Normothermic Machine Perfusion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Todo, S.; Demetris, A.J.; Makowka, L.; Teperman, L.; Podesta, L.; Shaver, T.; Tzakis, A.; Starzl, T.E. Primary nonfunction of hepatic allografts with preexisting fatty infiltration. Transplantation 1989, 47, 903–905. [Google Scholar] [CrossRef] [Green Version]
- El-Badry, A.M.; Breitenstein, S.; Jochum, W.; Washington, K.; Paradis, V.; Rubbia-Brandt, L.; Puhan, M.A.; Slankamenac, K.; Graf, R.; Clavien, P.A. Assessment of hepatic steatosis by expert pathologists: The end of a gold standard. Ann. Surg. 2009, 250, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.R.; Dhillon, A.P.; Green, A.C.; Ferrell, L.; Crawford, J.M.; Alves, V.; Balabaud, C.; Bhathal, P.; Bioulac-Sage, P.; Guido, M.; et al. Hepatic steatosis estimated microscopically versus digital image analysis. Liver Int. 2013, 33, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Turlin, B.; Ramm, G.A.; Purdie, D.M.; Laine, F.; Perrin, M.; Deugnier, Y.; Macdonald, G.A. Assessment of hepatic steatosis: Comparison of quantitative and semiquantitative methods in 108 liver biopsies. Liver Int. 2009, 29, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.J.; Dare, A.J.; Phillips, A.R.; Bartlett, A.S. Donor Hepatic Steatosis and Outcome After Liver Transplantation: A Systematic Review. J. Gastrointest. Surg. 2015, 19, 1713–1724. [Google Scholar] [CrossRef] [PubMed]
- Croome, K.P.; Lee, D.D.; Taner, C.B. The “Skinny” on Assessment and Utilization of Steatotic Liver Grafts: A Systematic Review. Liver Transpl. 2019, 25, 488–499. [Google Scholar] [CrossRef]
- Wong, T.C.; Fung, J.Y.; Chok, K.S.; Cheung, T.T.; Chan, A.C.; Sharr, W.W.; Dai, W.C.; Chan, S.C.; Lo, C.M. Excellent outcomes of liver transplantation using severely steatotic grafts from brain-dead donors. Liver Transpl. 2016, 22, 226–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandoi, F.; Salizzoni, M.; Brunati, A.; Lupo, F.; Romagnoli, R. Excellent outcomes of liver transplantation using severely steatotic grafts from brain-dead donors. Liver Transpl. 2016, 22, 377–378. [Google Scholar] [CrossRef]
- Neil, D.A.H.; Minervini, M.; Smith, M.L.; Hubscher, S.G.; Brunt, E.M.; Demetris, A.J. Banff consensus recommendations for steatosis assessment in donor livers. Hepatology 2021, 75, 1014–1025. [Google Scholar] [CrossRef]
- Olthoff, K.M.; Kulik, L.; Samstein, B.; Kaminski, M.; Abecassis, M.; Emond, J.; Shaked, A.; Christie, J.D. Validation of a current definition of early allograft dysfunction in liver transplant recipients and analysis of risk factors. Liver Transpl. 2010, 16, 943–949. [Google Scholar] [CrossRef]
- Choi, W.T.; Jen, K.Y.; Wang, D.; Tavakol, M.; Roberts, J.P.; Gill, R.M. Donor Liver Small Droplet Macrovesicular Steatosis Is Associated With Increased Risk for Recipient Allograft Rejection. Am. J. Surg. Pathol. 2017, 41, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Croome, K.P.; Lee, D.D.; Croome, S.; Nakhleh, R.E.; Abader Sedki Senada, P.; Livingston, D.; Yataco, M.; Taner, C.B. Does Donor Allograft Microsteatosis Matter? Comparison of Outcomes in Liver Transplantation With a Propensity-Matched Cohort. Liver Transpl. 2019, 25, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, T.M.; Fiel, M.I.; Emre, S.; Cubukcu, O.; Guy, S.R.; Schwartz, M.E.; Miller, C.M.; Sheiner, P.A. Use of livers with microvesicular fat safely expands the donor pool. Transplantation 1997, 64, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Dutkowski, P.; Schlegel, A.; Slankamenac, K.; Oberkofler, C.E.; Adam, R.; Burroughs, A.K.; Schadde, E.; Mullhaupt, B.; Clavien, P.A. The use of fatty liver grafts in modern allocation systems: Risk assessment by the balance of risk (BAR) score. Ann. Surg. 2012, 256, 861–869. [Google Scholar] [CrossRef]
- Steggerda, J.A.; Borja-Cacho, D.; Brennan, T.V.; Todo, T.; Nissen, N.N.; Bloom, M.B.; Klein, A.S.; Kim, I.K. A Clinical Tool to Guide Selection and Utilization of Marginal Donor Livers With Graft Steatosis in Liver Transplantation. Transplant. Direct 2022, 8, e1280. [Google Scholar] [CrossRef]
- Briceno, J.; Padillo, J.; Rufian, S.; Solorzano, G.; Pera, C. Assignment of steatotic livers by the Mayo model for end-stage liver disease. Transpl. Int. 2005, 18, 577–583. [Google Scholar] [CrossRef]
- de Graaf, E.L.; Kench, J.; Dilworth, P.; Shackel, N.A.; Strasser, S.I.; Joseph, D.; Pleass, H.; Crawford, M.; McCaughan, G.W.; Verran, D.J. Grade of deceased donor liver macrovesicular steatosis impacts graft and recipient outcomes more than the Donor Risk Index. J. Gastroenterol. Hepatol. 2012, 27, 540–546. [Google Scholar] [CrossRef]
- Deroose, J.P.; Kazemier, G.; Zondervan, P.; Ijzermans, J.N.; Metselaar, H.J.; Alwayn, I.P. Hepatic steatosis is not always a contraindication for cadaveric liver transplantation. HPB 2011, 13, 417–425. [Google Scholar] [CrossRef] [Green Version]
- McCormack, L.; Petrowsky, H.; Jochum, W.; Mullhaupt, B.; Weber, M.; Clavien, P.A. Use of severely steatotic grafts in liver transplantation: A matched case-control study. Ann. Surg. 2007, 246, 940–948. [Google Scholar] [CrossRef]
- Kwong, A.J.; Kim, W.R.; Lake, J.; Stock, P.G.; Wang, C.J.; Wetmore, J.B.; Melcher, M.L.; Wey, A.; Salkowski, N.; Snyder, J.J.; et al. Impact of Donor Liver Macrovesicular Steatosis on Deceased Donor Yield and Posttransplant Outcome. Transplantation 2023, 107, 405–409. [Google Scholar] [CrossRef]
- Younossi, Z.M. Non-alcoholic fatty liver disease—A global public health perspective. J. Hepatol. 2019, 70, 531–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, Z.J.; Bleich, S.N.; Cradock, A.L.; Barrett, J.L.; Giles, C.M.; Flax, C.; Long, M.W.; Gortmaker, S.L. Projected U.S. State-Level Prevalence of Adult Obesity and Severe Obesity. N. Engl. J. Med. 2019, 381, 2440–2450. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.; Tacke, F.; Arrese, M.; Chander Sharma, B.; Mostafa, I.; Bugianesi, E.; Wai-Sun Wong, V.; Yilmaz, Y.; George, J.; Fan, J.; et al. Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Hepatology 2019, 69, 2672–2682. [Google Scholar] [CrossRef] [Green Version]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, L.A.; Ayares, G.; Arnold, J.; Idalsoaga, F.; Corsi, O.; Arrese, M.; Arab, J.P. Liver Diseases in Latin America: Current Status, Unmet Needs, and Opportunities for Improvement. Curr. Treat. Optios Gastroenterol. 2022, 20, 261–278. [Google Scholar] [CrossRef]
- Yuan, L.; Hanlon, C.L.; Terrault, N.; Alqahtani, S.; Tamim, H.; Lai, M.; Saberi, B. Portrait of Regional Trends in Liver Transplantation for Nonalcoholic Steatohepatitis in the United States. Am. J. Gastroenterol. 2022, 117, 433–444. [Google Scholar] [CrossRef]
- Younossi, Z.; Stepanova, M.; Ong, J.P.; Jacobson, I.M.; Bugianesi, E.; Duseja, A.; Eguchi, Y.; Wong, V.W.; Negro, F.; Yilmaz, Y.; et al. Nonalcoholic Steatohepatitis Is the Fastest Growing Cause of Hepatocellular Carcinoma in Liver Transplant Candidates. Clin. Gastroenterol. Hepatol. 2019, 17, 748–755.e743. [Google Scholar] [CrossRef] [Green Version]
- Salizzoni, M.; Franchello, A.; Zamboni, F.; Ricchiuti, A.; Cocchis, D.; Fop, F.; Brunati, A.; Cerutti, E. Marginal grafts: Finding the correct treatment for fatty livers. Transpl. Int. 2003, 16, 486–493. [Google Scholar] [CrossRef]
- Spitzer, A.L.; Lao, O.B.; Dick, A.A.; Bakthavatsalam, R.; Halldorson, J.B.; Yeh, M.M.; Upton, M.P.; Reyes, J.D.; Perkins, J.D. The biopsied donor liver: Incorporating macrosteatosis into high-risk donor assessment. Liver Transpl. 2010, 16, 874–884. [Google Scholar] [CrossRef]
- Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijevic, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.; Ord, E.N.J.; Smith, A.C.; et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014, 515, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Chouchani, E.T.; Pell, V.R.; James, A.M.; Work, L.M.; Saeb-Parsy, K.; Frezza, C.; Krieg, T.; Murphy, M.P. A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury. Cell Metab. 2016, 23, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Galkin, A. Brain Ischemia/Reperfusion Injury and Mitochondrial Complex I Damage. Biochemistry (Mosc.) 2019, 84, 1411–1423. [Google Scholar] [CrossRef]
- Teodoro, J.S.; Da Silva, R.T.; Machado, I.F.; Panisello-Rosello, A.; Rosello-Catafau, J.; Rolo, A.P.; Palmeira, C.M. Shaping of Hepatic Ischemia/Reperfusion Events: The Crucial Role of Mitochondria. Cells 2022, 11, 688. [Google Scholar] [CrossRef]
- Jimenez-Castro, M.B.; Cornide-Petronio, M.E.; Gracia-Sancho, J.; Peralta, C. Inflammasome-Mediated Inflammation in Liver Ischemia-Reperfusion Injury. Cells 2019, 8, 1131. [Google Scholar] [CrossRef] [Green Version]
- Tsung, A.; Sahai, R.; Tanaka, H.; Nakao, A.; Fink, M.P.; Lotze, M.T.; Yang, H.; Li, J.; Tracey, K.J.; Geller, D.A.; et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J. Exp. Med. 2005, 201, 1135–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selzner, M.; Rudiger, H.A.; Sindram, D.; Madden, J.; Clavien, P.A. Mechanisms of ischemic injury are different in the steatotic and normal rat liver. Hepatology 2000, 32, 1280–1288. [Google Scholar] [CrossRef]
- Taneja, C.; Prescott, L.; Koneru, B. Critical preservation injury in rat fatty liver is to hepatocytes, not sinusoidal lining cells. Transplantation 1998, 65, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Neri, A.A.; Dontas, I.A.; Iliopoulos, D.C.; Karatzas, T. Pathophysiological Changes During Ischemia-reperfusion Injury in Rodent Hepatic Steatosis. In Vivo 2020, 34, 953–964. [Google Scholar] [CrossRef]
- Kim, J.S.; Qian, T.; Lemasters, J.J. Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Gastroenterology 2003, 124, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Serviddio, G.; Bellanti, F.; Tamborra, R.; Rollo, T.; Capitanio, N.; Romano, A.D.; Sastre, J.; Vendemiale, G.; Altomare, E. Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and increases susceptibility of non-alcoholic steatohepatitis (NASH) liver to ischaemia-reperfusion injury. Gut 2008, 57, 957–965. [Google Scholar] [CrossRef]
- Capelletti, M.M.; Manceau, H.; Puy, H.; Peoc’h, K. Ferroptosis in Liver Diseases: An Overview. Int. J. Mol. Sci. 2020, 21, 4908. [Google Scholar] [CrossRef] [PubMed]
- Shojaie, L.; Iorga, A.; Dara, L. Cell Death in Liver Diseases: A Review. Int. J. Mol. Sci. 2020, 21, 9682. [Google Scholar] [CrossRef] [PubMed]
- Gautheron, J.; Vucur, M.; Reisinger, F.; Cardenas, D.V.; Roderburg, C.; Koppe, C.; Kreggenwinkel, K.; Schneider, A.T.; Bartneck, M.; Neumann, U.P.; et al. A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis. EMBO Mol. Med. 2014, 6, 1062–1074. [Google Scholar] [CrossRef] [PubMed]
- Kolachala, V.L.; Lopez, C.; Shen, M.; Shayakhmetov, D.; Gupta, N.A. Ischemia reperfusion injury induces pyroptosis and mediates injury in steatotic liver thorough Caspase 1 activation. Apoptosis 2021, 26, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, S.; Yang, W.; Winslet, M.C.; Seifalian, A.M. Impairment of hepatic microcirculation in fatty liver. Microcirculation 2003, 10, 447–456. [Google Scholar] [CrossRef]
- Seifalian, A.M.; Chidambaram, V.; Rolles, K.; Davidson, B.R. In vivo demonstration of impaired microcirculation in steatotic human liver grafts. Liver Transpl. Surg. 1998, 4, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Bioulac-Sage, P.; Balabaud, C.; Ferrell, L. Lipopeliosis revisited: Should we keep the term? Am. J. Surg. Pathol. 2002, 26, 134–135. [Google Scholar] [CrossRef]
- Ferrell, L.; Bass, N.; Roberts, J.; Ascher, N. Lipopeliosis: Fat induced sinusoidal dilatation in transplanted liver mimicking peliosis hepatis. J. Clin. Pathol. 1992, 45, 1109–1110. [Google Scholar] [CrossRef] [Green Version]
- Koeppel, T.A.; Mihaljevic, N.; Kraenzlin, B.; Loehr, M.; Jesenofsky, R.; Post, S.; Palma, P. Enhanced iNOS gene expression in the steatotic rat liver after normothermic ischemia. Eur. Surg. Res. 2007, 39, 303–311. [Google Scholar] [CrossRef]
- Tiriveedhi, V.; Conzen, K.D.; Liaw-Conlin, J.; Upadhya, G.; Malone, J.; Townsend, R.R.; Kerns, R.; Jia, J.; Csontos, K.; Ramachandran, S.; et al. The role of molecular chaperonins in warm ischemia and reperfusion injury in the steatotic liver: A proteomic study. BMC Biochem. 2012, 13, 17. [Google Scholar] [CrossRef] [Green Version]
- Petrenko, A.; Carnevale, M.; Somov, A.; Osorio, J.; Rodriguez, J.; Guibert, E.; Fuller, B.; Froghi, F. Organ Preservation into the 2020s: The Era of Dynamic Intervention. Transfus. Med. Hemother. 2019, 46, 151–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, P.; Williams, P.; Salinas, J.; Vengohechea, J.; Lodge, J.P.A.; Fondevila, C.; Hessheimer, A.J. Abdominal Organ Preservation Solutions in the Age of Machine Perfusion. Transplantation 2023, 107, 326–340. [Google Scholar] [CrossRef]
- Belzer, F.O.; Southard, J.H. Principles of solid-organ preservation by cold storage. Transplantation 1988, 45, 673–676. [Google Scholar] [CrossRef]
- Bretschneider, H.J.; Hubner, G.; Knoll, D.; Lohr, B.; Nordbeck, H.; Spieckermann, P.G. Myocardial resistance and tolerance to ischemia: Physiological and biochemical basis. J. Cardiovasc. Surg. 1975, 16, 241–260. [Google Scholar]
- Menasche, P.; Termignon, J.L.; Pradier, F.; Grousset, C.; Mouas, C.; Alberici, G.; Weiss, M.; Piwnica, A.; Bloch, G. Experimental evaluation of Celsior, a new heart preservation solution. Eur. J. Cardiothorac. Surg. 1994, 8, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Panisello-Rosello, A.; Verde, E.; Amine Zaouali, M.; Flores, M.; Alva, N.; Lopez, A.; Folch-Puy, E.; Carbonell, T.; Hotter, G.; Adam, R.; et al. The Relevance of the UPS in Fatty Liver Graft Preservation: A New Approach for IGL-1 and HTK Solutions. Int. J. Mol. Sci. 2017, 18, 2287. [Google Scholar] [CrossRef] [Green Version]
- Szilagyi, A.L.; Matrai, P.; Hegyi, P.; Tuboly, E.; Pecz, D.; Garami, A.; Solymar, M.; Petervari, E.; Balasko, M.; Veres, G.; et al. Compared efficacy of preservation solutions on the outcome of liver transplantation: Meta-analysis. World J. Gastroenterol. 2018, 24, 1812–1824. [Google Scholar] [CrossRef] [PubMed]
- Adam, R.; Cailliez, V.; Karam, V. Evaluation of HTK Preservation Solutions in Liver Transplantation: A Long-Term Propensity-Based Analysis of Outcome From the European Liver Transplant Registry. Am. J. Transplant. 2017, 17, 585–586. [Google Scholar] [CrossRef]
- Adam, R.; Delvart, V.; Karam, V.; Ducerf, C.; Navarro, F.; Letoublon, C.; Belghiti, J.; Pezet, D.; Castaing, D.; Le Treut, Y.P.; et al. Compared efficacy of preservation solutions in liver transplantation: A long-term graft outcome study from the European Liver Transplant Registry. Am. J. Transplant. 2015, 15, 395–406. [Google Scholar] [CrossRef] [Green Version]
- de Boer, J.D.; Strelniece, A.; van Rosmalen, M.; de Vries, E.; Ysebaert, D.; Guba, M.; Braat, A.E.; Samuel, U. The Effect of Histidine-tryptophan-ketoglutarate Solution and University of Wisconsin Solution: An Analysis of the Eurotransplant Registry. Transplantation 2018, 102, 1870–1877. [Google Scholar] [CrossRef]
- Bejaoui, M.; Pantazi, E.; Calvo, M.; Folch-Puy, E.; Serafin, A.; Pasut, G.; Panisello, A.; Adam, R.; Rosello-Catafau, J. Polyethylene Glycol Preconditioning: An Effective Strategy to Prevent Liver Ischemia Reperfusion Injury. Oxid. Med. Cell. Longev. 2016, 2016, 9096549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bejaoui, M.; Pantazi, E.; Folch-Puy, E.; Panisello, A.; Calvo, M.; Pasut, G.; Rimola, A.; Navasa, M.; Adam, R.; Rosello-Catafau, J. Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation. Biomed. Res. Int. 2015, 2015, 794287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira da Silva, R.; Machado, I.F.; Teodoro, J.S.; Panisello-Rosello, A.; Rosello-Catafau, J.; Rolo, A.P.; Palmeira, C.M. PEG35 as a Preconditioning Agent against Hypoxia/Reoxygenation Injury. Int. J. Mol. Sci. 2022, 23, 1156. [Google Scholar] [CrossRef]
- Ben Mosbah, I.; Rosello-Catafau, J.; Franco-Gou, R.; Abdennebi, H.B.; Saidane, D.; Ramella-Virieux, S.; Boillot, O.; Peralta, C. Preservation of steatotic livers in IGL-1 solution. Liver Transpl. 2006, 12, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Zaouali, M.A.; Ben Mosbah, I.; Padrissa-Altes, S.; Calvo, M.; Ben Abdennebi, H.; Saidane-Mosbahi, D.; Bjaoui, M.; Garcia-Gil, F.A.; Panisello, A.; Rosello-Catafau, J. Relevance of epidermal growth factor to improve steatotic liver preservation in IGL-1 solution. Transplant. Proc. 2010, 42, 3070–3075. [Google Scholar] [CrossRef]
- Zaouali, M.A.; Padrissa-Altes, S.; Ben Mosbah, I.; Ben Abdennebi, H.; Boillot, O.; Rimola, A.; Saidane-Mosbahi, D.; Rosello-Catafau, J. Insulin like growth factor-1 increases fatty liver preservation in IGL-1 solution. World J. Gastroenterol. 2010, 16, 5693–5700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaouali, M.A.; Ben Mosbah, I.; Boncompagni, E.; Ben Abdennebi, H.; Mitjavila, M.T.; Bartrons, R.; Freitas, I.; Rimola, A.; Rosello-Catafau, J. Hypoxia inducible factor-1alpha accumulation in steatotic liver preservation: Role of nitric oxide. World J. Gastroenterol. 2010, 16, 3499–3509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaouali, M.A.; Panisello, A.; Lopez, A.; Folch, E.; Castro-Benitez, C.; Adam, R.; Rosello-Catafau, J. Cross-Talk Between Sirtuin 1 and High-Mobility Box 1 in Steatotic Liver Graft Preservation. Transplant. Proc. 2017, 49, 765–769. [Google Scholar] [CrossRef]
- Tabka, D.; Bejaoui, M.; Javellaud, J.; Rosello-Catafau, J.; Achard, J.M.; Abdennebi, H.B. Effects of Institut Georges Lopez-1 and Celsior preservation solutions on liver graft injury. World J. Gastroenterol. 2015, 21, 4159–4168. [Google Scholar] [CrossRef] [Green Version]
- Bejaoui, M.; Zaouali, M.A.; Folch-Puy, E.; Pantazi, E.; Bardag-Gorce, F.; Carbonell, T.; Oliva, J.; Rimola, A.; Abdennebi, H.B.; Rosello-Catafau, J. Bortezomib enhances fatty liver preservation in Institut George Lopez-1 solution through adenosine monophosphate activated protein kinase and Akt/mTOR pathways. J. Pharm. Pharmacol. 2014, 66, 62–72. [Google Scholar] [CrossRef]
- Bejaoui, M.; Pantazi, E.; De Luca, V.; Panisello, A.; Folch-Puy, E.; Hotter, G.; Capasso, C.; Supuran, C.T.; Rosello-Catafau, J. Carbonic Anhydrase Protects Fatty Liver Grafts against Ischemic Reperfusion Damage. PLoS ONE 2015, 10, e0134499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrasco-Chaumel, E.; Rosello-Catafau, J.; Bartrons, R.; Franco-Gou, R.; Xaus, C.; Casillas, A.; Gelpi, E.; Rodes, J.; Peralta, C. Adenosine monophosphate-activated protein kinase and nitric oxide in rat steatotic liver transplantation. J. Hepatol. 2005, 43, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Zaouali, M.A.; Ben Abdennebi, H.; Padrissa-Altes, S.; Alfany-Fernandez, I.; Rimola, A.; Rosello-Catafau, J. How Institut Georges Lopez preservation solution protects nonsteatotic and steatotic livers against ischemia-reperfusion injury. Transplant. Proc. 2011, 43, 77–79. [Google Scholar] [CrossRef] [Green Version]
- Panisello-Rosello, A.; Verde, E.; Lopez, A.; Flores, M.; Folch-Puy, E.; Rolo, A.; Palmeira, C.; Hotter, G.; Carbonell, T.; Adam, R.; et al. Cytoprotective Mechanisms in Fatty Liver Preservation against Cold Ischemia Injury: A Comparison between IGL-1 and HTK. Int. J. Mol. Sci. 2018, 19, 348. [Google Scholar] [CrossRef] [Green Version]
- Zaouali, M.A.; Panisello-Rosello, A.; Lopez, A.; Castro Benitez, C.; Folch-Puy, E.; Garcia-Gil, A.; Carbonell, T.; Adam, R.; Rosello-Catafau, J. Relevance of proteolysis and proteasome activation in fatty liver graft preservation: An Institut Georges Lopez-1 vs. University of Wisconsin appraisal. World J. Gastroenterol. 2017, 23, 4211–4221. [Google Scholar] [CrossRef]
- Panisello-Rosello, A.; Alva, N.; Flores, M.; Lopez, A.; Castro Benitez, C.; Folch-Puy, E.; Rolo, A.; Palmeira, C.; Adam, R.; Carbonell, T.; et al. Aldehyde Dehydrogenase 2 (ALDH2) in Rat Fatty Liver Cold Ischemia Injury. Int. J. Mol. Sci. 2018, 19, 2479. [Google Scholar] [CrossRef] [Green Version]
- Panisello-Rosello, A.; Lopez, A.; Folch-Puy, E.; Carbonell, T.; Rolo, A.; Palmeira, C.; Adam, R.; Net, M.; Rosello-Catafau, J. Role of aldehyde dehydrogenase 2 in ischemia reperfusion injury: An update. World J. Gastroenterol. 2018, 24, 2984–2994. [Google Scholar] [CrossRef]
- Ben Mosbah, I.; Massip-Salcedo, M.; Fernandez-Monteiro, I.; Xaus, C.; Bartrons, R.; Boillot, O.; Rosello-Catafau, J.; Peralta, C. Addition of adenosine monophosphate-activated protein kinase activators to University of Wisconsin solution: A way of protecting rat steatotic livers. Liver Transpl. 2007, 13, 410–425. [Google Scholar] [CrossRef] [PubMed]
- Ben Mosbah, I.; Rosello-Catafau, J.; Alfany-Fernandez, I.; Rimola, A.; Parellada, P.P.; Mitjavila, M.T.; Lojek, A.; Ben Abdennebi, H.; Boillot, O.; Rodes, J.; et al. Addition of carvedilol to University Wisconsin solution improves rat steatotic and nonsteatotic liver preservation. Liver Transpl. 2010, 16, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Zaouali, M.A.; Bardag-Gorce, F.; Carbonell, T.; Oliva, J.; Pantazi, E.; Bejaoui, M.; Ben Abdennebi, H.; Rimola, A.; Rosello-Catafau, J. Proteasome inhibitors protect the steatotic and non-steatotic liver graft against cold ischemia reperfusion injury. Exp. Mol. Pathol. 2013, 94, 352–359. [Google Scholar] [CrossRef]
- Zaouali, M.A.; Boncompagni, E.; Reiter, R.J.; Bejaoui, M.; Freitas, I.; Pantazi, E.; Folch-Puy, E.; Abdennebi, H.B.; Garcia-Gil, F.A.; Rosello-Catafau, J. AMPK involvement in endoplasmic reticulum stress and autophagy modulation after fatty liver graft preservation: A role for melatonin and trimetazidine cocktail. J. Pineal Res. 2013, 55, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Eipel, C.; Hubschmann, U.; Abshagen, K.; Wagner, K.F.; Menger, M.D.; Vollmar, B. Erythropoietin as additive of HTK preservation solution in cold ischemia/reperfusion injury of steatotic livers. J. Surg. Res. 2012, 173, 171–179. [Google Scholar] [CrossRef]
- Bardallo, R.G.; da Silva, R.T.; Carbonell, T.; Folch-Puy, E.; Palmeira, C.; Rosello-Catafau, J.; Pirenne, J.; Adam, R.; Panisello-Rosello, A. Role of PEG35, Mitochondrial ALDH2, and Glutathione in Cold Fatty Liver Graft Preservation: An IGL-2 Approach. Int. J. Mol. Sci. 2021, 22, 5332. [Google Scholar] [CrossRef]
- Asong-Fontem, N.; Panisello-Rosello, A.; Sebagh, M.; Gonin, M.; Rosello-Catafau, J.; Adam, R. The Role of IGL-2 Preservation Solution on Rat Livers during SCS and HOPE. Int. J. Mol. Sci. 2022, 23, 2615. [Google Scholar] [CrossRef] [PubMed]
- Bardallo, R.G.; Company-Marin, I.; Folch-Puy, E.; Rosello-Catafau, J.; Panisello-Rosello, A.; Carbonell, T. PEG35 and Glutathione Improve Mitochondrial Function and Reduce Oxidative Stress in Cold Fatty Liver Graft Preservation. Antioxidants 2022, 11, 158. [Google Scholar] [CrossRef]
- Lopez, A.; Panisello-Rosello, A.; Castro-Benitez, C.; Adam, R. Glycocalyx Preservation and NO Production in Fatty Livers-The Protective Role of High Molecular Polyethylene Glycol in Cold Ischemia Injury. Int. J. Mol. Sci. 2018, 19, 2375. [Google Scholar] [CrossRef] [Green Version]
- Murry, C.E.; Jennings, R.B.; Reimer, K.A. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 1986, 74, 1124–1136. [Google Scholar] [CrossRef] [Green Version]
- Clavien, P.A.; Yadav, S.; Sindram, D.; Bentley, R.C. Protective effects of ischemic preconditioning for liver resection performed under inflow occlusion in humans. Ann. Surg. 2000, 232, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, B.; Friman, S.; Wallin, M.; Gustafsson, B.; Delbro, D. The liver protective effect of ischemic preconditioning may be mediated by adenosine. Transpl. Int. 2000, 13 (Suppl. 1), S558–S561. [Google Scholar] [CrossRef] [PubMed]
- Peralta, C.; Hotter, G.; Closa, D.; Gelpi, E.; Bulbena, O.; Rosello-Catafau, J. Protective effect of preconditioning on the injury associated to hepatic ischemia-reperfusion in the rat: Role of nitric oxide and adenosine. Hepatology 1997, 25, 934–937. [Google Scholar] [CrossRef]
- Massip-Salcedo, M.; Rosello-Catafau, J.; Prieto, J.; Avila, M.A.; Peralta, C. The response of the hepatocyte to ischemia. Liver Int. 2007, 27, 6–16. [Google Scholar] [CrossRef] [Green Version]
- Coffey, J.C.; Wanis, K.N.; Monbaliu, D.; Gilbo, N.; Selzner, M.; Vachharajani, N.; Levstik, M.A.; Marquez, M.; Doyle, M.B.M.; Pirenne, J.; et al. The influence of functional warm ischemia time on DCD liver transplant recipients’ outcomes. Clin. Transplant. 2017, 31, e13068. [Google Scholar] [CrossRef] [PubMed]
- Oniscu, G.C.; Mehew, J.; Butler, A.J.; Sutherland, A.; Gaurav, R.; Hogg, R.; Currie, I.; Jones, M.; Watson, C.J.E. Improved Organ Utilization and Better Transplant Outcomes With In Situ Normothermic Regional Perfusion in Controlled Donation After Circulatory Death. Transplantation 2023, 107, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Oniscu, G.C.; Randle, L.V.; Muiesan, P.; Butler, A.J.; Currie, I.S.; Perera, M.T.; Forsythe, J.L.; Watson, C.J. In situ normothermic regional perfusion for controlled donation after circulatory death--the United Kingdom experience. Am. J. Transplant. 2014, 14, 2846–2854. [Google Scholar] [CrossRef]
- Rodriguez-Sanjuan, J.C.; Ruiz, N.; Minambres, E.; Toledo, E.; Gonzalez-Noriega, M.; Fernandez-Santiago, R.; Castillo, F. Liver Transplant From Controlled Cardiac Death Donors Using Normothermic Regional Perfusion: Comparison With Liver Transplants From Brain Dead Donors. Transplant. Proc. 2019, 51, 12–19. [Google Scholar] [CrossRef]
- Savier, E.; Lim, C.; Rayar, M.; Orlando, F.; Boudjema, K.; Mohkam, K.; Lesurtel, M.; Mabrut, J.Y.; Pittau, G.; Begdadi, N.; et al. Favorable Outcomes of Liver Transplantation from Controlled Circulatory Death Donors Using Normothermic Regional Perfusion Compared to Brain Death Donors. Transplantation 2020, 104, 1943–1951. [Google Scholar] [CrossRef]
- Watson, C.J.E.; Hunt, F.; Messer, S.; Currie, I.; Large, S.; Sutherland, A.; Crick, K.; Wigmore, S.J.; Fear, C.; Cornateanu, S.; et al. In situ normothermic perfusion of livers in controlled circulatory death donation may prevent ischemic cholangiopathy and improve graft survival. Am. J. Transplant. 2019, 19, 1745–1758. [Google Scholar] [CrossRef] [Green Version]
- De Carlis, R.; Schlegel, A.; Frassoni, S.; Olivieri, T.; Ravaioli, M.; Camagni, S.; Patrono, D.; Bassi, D.; Pagano, D.; Di Sandro, S.; et al. How to Preserve Liver Grafts From Circulatory Death With Long Warm Ischemia? A Retrospective Italian Cohort Study With Normothermic Regional Perfusion and Hypothermic Oxygenated Perfusion. Transplantation 2021, 105, 2385–2396. [Google Scholar] [CrossRef]
- Hessheimer, A.J.; Coll, E.; Torres, F.; Ruiz, P.; Gastaca, M.; Rivas, J.I.; Gomez, M.; Sanchez, B.; Santoyo, J.; Ramirez, P.; et al. Normothermic regional perfusion vs. super-rapid recovery in controlled donation after circulatory death liver transplantation. J. Hepatol. 2019, 70, 658–665. [Google Scholar] [CrossRef]
- Hessheimer, A.J.; de la Rosa, G.; Gastaca, M.; Ruiz, P.; Otero, A.; Gomez, M.; Alconchel, F.; Ramirez, P.; Bosca, A.; Lopez-Andujar, R.; et al. Abdominal normothermic regional perfusion in controlled donation after circulatory determination of death liver transplantation: Outcomes and risk factors for graft loss. Am. J. Transplant. 2022, 22, 1169–1181. [Google Scholar] [CrossRef] [PubMed]
- Patrono, D.; Zanierato, M.; Vergano, M.; Magaton, C.; Diale, E.; Rizza, G.; Catalano, S.; Mirabella, S.; Cocchis, D.; Potenza, R.; et al. Normothermic Regional Perfusion and Hypothermic Oxygenated Machine Perfusion for Livers Donated After Controlled Circulatory Death With Prolonged Warm Ischemia Time: A Matched Comparison With Livers From Brain-Dead Donors. Transpl. Int. 2022, 35, 10390. [Google Scholar] [CrossRef]
- Serafin, A.; Rosello-Catafau, J.; Prats, N.; Xaus, C.; Gelpi, E.; Peralta, C. Ischemic preconditioning increases the tolerance of Fatty liver to hepatic ischemia-reperfusion injury in the rat. Am. J. Pathol. 2002, 161, 587–601. [Google Scholar] [CrossRef] [Green Version]
- Serafin, A.; Rosello-Catafau, J.; Prats, N.; Gelpi, E.; Rodes, J.; Peralta, C. Ischemic preconditioning affects interleukin release in fatty livers of rats undergoing ischemia/reperfusion. Hepatology 2004, 39, 688–698. [Google Scholar] [CrossRef]
- Casillas-Ramirez, A.; Amine-Zaouali, M.; Massip-Salcedo, M.; Padrissa-Altes, S.; Bintanel-Morcillo, M.; Ramalho, F.; Serafin, A.; Rimola, A.; Arroyo, V.; Rodes, J.; et al. Inhibition of angiotensin II action protects rat steatotic livers against ischemia-reperfusion injury. Crit. Care Med. 2008, 36, 1256–1266. [Google Scholar] [CrossRef]
- Hafez, T.S.; Glantzounis, G.K.; Fusai, G.; Taanman, J.W.; Wignarajah, P.; Parkes, H.; Fuller, B.; Davidson, B.R.; Seifalian, A.M. Intracellular oxygenation and cytochrome oxidase C activity in ischemic preconditioning of steatotic rabbit liver. Am. J. Surg. 2010, 200, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Tang, J.J.; Wu, B.Q.; Yuan, B.; Qu, Z. The protective effects of different-time-ischemic preconditioning on the reperfusion injury in fatty livers in rats. PLoS ONE 2013, 8, e58086. [Google Scholar] [CrossRef] [Green Version]
- Pantazi, E.; Zaouali, M.A.; Bejaoui, M.; Serafin, A.; Folch-Puy, E.; Petegnief, V.; De Vera, N.; Ben Abdennebi, H.; Rimola, A.; Rosello-Catafau, J. Silent information regulator 1 protects the liver against ischemia-reperfusion injury: Implications in steatotic liver ischemic preconditioning. Transpl. Int. 2014, 27, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Koti, R.S.; Yang, W.; Glantzounis, G.; Quaglia, A.; Davidson, B.R.; Seifalian, A.M. Effect of ischaemic preconditioning on hepatic oxygenation, microcirculation and function in a rat model of moderate hepatic steatosis. Clin. Sci. (Lond.) 2005, 108, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Massip-Salcedo, M.; Casillas-Ramirez, A.; Franco-Gou, R.; Bartrons, R.; Ben Mosbah, I.; Serafin, A.; Rosello-Catafau, J.; Peralta, C. Heat shock proteins and mitogen-activated protein kinases in steatotic livers undergoing ischemia-reperfusion: Some answers. Am. J. Pathol. 2006, 168, 1474–1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massip-Salcedo, M.; Zaouali, M.A.; Padrissa-Altes, S.; Casillas-Ramirez, A.; Rodes, J.; Rosello-Catafau, J.; Peralta, C. Activation of peroxisome proliferator-activated receptor-alpha inhibits the injurious effects of adiponectin in rat steatotic liver undergoing ischemia-reperfusion. Hepatology 2008, 47, 461–472. [Google Scholar] [CrossRef]
- Rolo, A.P.; Teodoro, J.S.; Peralta, C.; Rosello-Catafau, J.; Palmeira, C.M. Prevention of I/R injury in fatty livers by ischemic preconditioning is associated with increased mitochondrial tolerance: The key role of ATPsynthase and mitochondrial permeability transition. Transpl. Int. 2009, 22, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Saidi, R.F.; Chang, J.; Brooks, S.; Nalbantoglu, I.; Adsay, V.; Jacobs, M.J. Ischemic preconditioning and intermittent clamping increase the tolerance of fatty liver to hepatic ischemia-reperfusion injury in the rat. Transplant. Proc. 2007, 39, 3010–3014. [Google Scholar] [CrossRef]
- Selzner, N.; Selzner, M.; Jochum, W.; Clavien, P.A. Ischemic preconditioning protects the steatotic mouse liver against reperfusion injury: An ATP dependent mechanism. J. Hepatol. 2003, 39, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Casillas-Ramirez, A.; Alfany-Fernandez, I.; Massip-Salcedo, M.; Juan, M.E.; Planas, J.M.; Serafin, A.; Pallas, M.; Rimola, A.; Rodes, J.; Peralta, C. Retinol-binding protein 4 and peroxisome proliferator-activated receptor-gamma in steatotic liver transplantation. J. Pharmacol. Exp. Ther. 2011, 338, 143–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, L.; Carrasco-Chaumel, E.; Serafin, A.; Xaus, C.; Grande, L.; Rimola, A.; Rosello-Catafau, J.; Peralta, C. Is ischemic preconditioning a useful strategy in steatotic liver transplantation? Am. J. Transplant. 2004, 4, 888–899. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Castro, M.B.; Merono, N.; Mendes-Braz, M.; Gracia-Sancho, J.; Martinez-Carreres, L.; Cornide-Petronio, M.E.; Casillas-Ramirez, A.; Rodes, J.; Peralta, C. The effect of brain death in rat steatotic and non-steatotic liver transplantation with previous ischemic preconditioning. J. Hepatol. 2015, 62, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Niemann, C.U.; Hirose, R.; Liu, T.; Behrends, M.; Brown, J.L.; Kominsky, D.F.; Roberts, J.P.; Serkova, N. Ischemic preconditioning improves energy state and transplantation survival in obese Zucker rat livers. Anesth. Analg. 2005, 101, 1577–1583. [Google Scholar] [CrossRef]
- Chu, M.J.; Hickey, A.J.; Jiang, Y.; Petzer, A.; Bartlett, A.S.; Phillips, A.R. Mitochondrial dysfunction in steatotic rat livers occurs because a defect in complex i makes the liver susceptible to prolonged cold ischemia. Liver Transpl. 2015, 21, 396–407. [Google Scholar] [CrossRef]
- Clavien, P.A.; Selzner, M.; Rudiger, H.A.; Graf, R.; Kadry, Z.; Rousson, V.; Jochum, W. A prospective randomized study in 100 consecutive patients undergoing major liver resection with versus without ischemic preconditioning. Ann. Surg. 2003, 238, 843–850, discussion 851–842. [Google Scholar] [CrossRef] [Green Version]
- Hahn, O.; Blazovics, A.; Vali, L.; Kupcsulik, P.K. The effect of ischemic preconditioning on redox status during liver resections--randomized controlled trial. J. Surg. Oncol. 2011, 104, 647–653. [Google Scholar] [CrossRef]
- Amador, A.; Grande, L.; Marti, J.; Deulofeu, R.; Miquel, R.; Sola, A.; Rodriguez-Laiz, G.; Ferrer, J.; Fondevila, C.; Charco, R.; et al. Ischemic pre-conditioning in deceased donor liver transplantation: A prospective randomized clinical trial. Am. J. Transplant. 2007, 7, 2180–2189. [Google Scholar] [CrossRef]
- Azoulay, D.; Del Gaudio, M.; Andreani, P.; Ichai, P.; Sebag, M.; Adam, R.; Scatton, O.; Min, B.Y.; Delvard, V.; Lemoine, A.; et al. Effects of 10 minutes of ischemic preconditioning of the cadaveric liver on the graft’s preservation and function: The ying and the yang. Ann. Surg. 2005, 242, 133–139. [Google Scholar] [CrossRef]
- Franchello, A.; Gilbo, N.; David, E.; Ricchiuti, A.; Romagnoli, R.; Cerutti, E.; Salizzoni, M. Ischemic preconditioning (IP) of the liver as a safe and protective technique against ischemia/reperfusion injury (IRI). Am. J. Transplant. 2009, 9, 1629–1639. [Google Scholar] [CrossRef]
- Jassem, W.; Fuggle, S.; Thompson, R.; Arno, M.; Taylor, J.; Byrne, J.; Heaton, N.; Rela, M. Effect of ischemic preconditioning on the genomic response to reperfusion injury in deceased donor liver transplantation. Liver Transpl. 2009, 15, 1750–1765. [Google Scholar] [CrossRef] [PubMed]
- Koneru, B.; Shareef, A.; Dikdan, G.; Desai, K.; Klein, K.M.; Peng, B.; Wachsberg, R.H.; de la Torre, A.N.; Debroy, M.; Fisher, A.; et al. The ischemic preconditioning paradox in deceased donor liver transplantation-evidence from a prospective randomized single blind clinical trial. Am. J. Transplant. 2007, 7, 2788–2796. [Google Scholar] [CrossRef]
- Jakubauskiene, L.; Jakubauskas, M.; Stiegler, P.; Leber, B.; Schemmer, P.; Strupas, K. Ischemic Preconditioning for Liver Transplantation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Visc. Med. 2021, 37, 329–337. [Google Scholar] [CrossRef]
- Guarrera, J.V.; Henry, S.D.; Samstein, B.; Odeh-Ramadan, R.; Kinkhabwala, M.; Goldstein, M.J.; Ratner, L.E.; Renz, J.F.; Lee, H.T.; Brown, R.S., Jr.; et al. Hypothermic machine preservation in human liver transplantation: The first clinical series. Am. J. Transplant. 2010, 10, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Burlage, L.C.; Karimian, N.; Westerkamp, A.C.; Visser, N.; Matton, A.P.M.; van Rijn, R.; Adelmeijer, J.; Wiersema-Buist, J.; Gouw, A.S.H.; Lisman, T.; et al. Oxygenated hypothermic machine perfusion after static cold storage improves endothelial function of extended criteria donor livers. HPB (Oxf.) 2017, 19, 538–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cussa, D.; Patrono, D.; Catalano, G.; Rizza, G.; Catalano, S.; Gambella, A.; Tandoi, F.; Romagnoli, R. Use of Dual Hypothermic Oxygenated Machine Perfusion to Recover Extended Criteria Pediatric Liver Grafts. Liver Transpl. 2020, 26, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Dondossola, D.; Lonati, C.; Zanella, A.; Maggioni, M.; Antonelli, B.; Reggiani, P.; Gatti, S.; Rossi, G. Preliminary Experience With Hypothermic Oxygenated Machine Perfusion in an Italian Liver Transplant Center. Transplant. Proc. 2019, 51, 111–116. [Google Scholar] [CrossRef]
- Dondossola, D.; Ravaioli, M.; Lonati, C.; Maroni, L.; Pini, A.; Accardo, C.; Germinario, G.; Antonelli, B.; Odaldi, F.; Zanella, A.; et al. The Role of Ex Situ Hypothermic Oxygenated Machine Perfusion and Cold Preservation Time in Extended Criteria Donation After Circulatory Death and Donation After Brain Death. Liver Transpl. 2021, 27, 1130–1143. [Google Scholar] [CrossRef]
- Dutkowski, P.; Polak, W.G.; Muiesan, P.; Schlegel, A.; Verhoeven, C.J.; Scalera, I.; DeOliveira, M.L.; Kron, P.; Clavien, P.A. First Comparison of Hypothermic Oxygenated PErfusion Versus Static Cold Storage of Human Donation After Cardiac Death Liver Transplants: An International-matched Case Analysis. Ann. Surg. 2015, 262, 764–770, discussion 770–761. [Google Scholar] [CrossRef] [Green Version]
- Dutkowski, P.; Schlegel, A.; de Oliveira, M.; Mullhaupt, B.; Neff, F.; Clavien, P.A. HOPE for human liver grafts obtained from donors after cardiac death. J. Hepatol. 2014, 60, 765–772. [Google Scholar] [CrossRef]
- Guarrera, J.V.; Henry, S.D.; Samstein, B.; Reznik, E.; Musat, C.; Lukose, T.I.; Ratner, L.E.; Brown, R.S., Jr.; Kato, T.; Emond, J.C. Hypothermic machine preservation facilitates successful transplantation of “orphan” extended criteria donor livers. Am. J. Transplant. 2015, 15, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Kron, P.; Schlegel, A.; Mancina, L.; Clavien, P.A.; Dutkowski, P. Hypothermic oxygenated perfusion (HOPE) for fatty liver grafts in rats and humans. J. Hepatol. 2017, 68, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Op den Dries, S.; Sutton, M.E.; Karimian, N.; de Boer, M.T.; Wiersema-Buist, J.; Gouw, A.S.; Leuvenink, H.G.; Lisman, T.; Porte, R.J. Hypothermic oxygenated machine perfusion prevents arteriolonecrosis of the peribiliary plexus in pig livers donated after circulatory death. PLoS ONE 2014, 9, e88521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrono, D.; Cussa, D.; Sciannameo, V.; Montanari, E.; Panconesi, R.; Berchialla, P.; Lepore, M.; Gambella, A.; Rizza, G.; Catalano, G.; et al. Outcome of liver transplantation with grafts from brain-dead donors treated with dual hypothermic oxygenated machine perfusion, with particular reference to elderly donors. Am. J. Transplant. 2022, 22, 1382–1395. [Google Scholar] [CrossRef]
- Patrono, D.; Lavezzo, B.; Molinaro, L.; Rizza, G.; Catalano, G.; Gonella, F.; Salizzoni, M.; Romagnoli, R. Hypothermic Oxygenated Machine Perfusion for Liver Transplantation: An Initial Experience. Exp. Clin. Transplant. 2018, 16, 172–176. [Google Scholar] [CrossRef]
- Patrono, D.; Surra, A.; Catalano, G.; Rizza, G.; Berchialla, P.; Martini, S.; Tandoi, F.; Lupo, F.; Mirabella, S.; Stratta, C.; et al. Hypothermic Oxygenated Machine Perfusion of Liver Grafts from Brain-Dead Donors. Sci. Rep. 2019, 9, 9337. [Google Scholar] [CrossRef] [Green Version]
- Ravaioli, M.; De Pace, V.; Angeletti, A.; Comai, G.; Vasuri, F.; Baldassarre, M.; Maroni, L.; Odaldi, F.; Fallani, G.; Caraceni, P.; et al. Hypothermic Oxygenated New Machine Perfusion System in Liver and Kidney Transplantation of Extended Criteria Donors:First Italian Clinical Trial. Sci. Rep. 2020, 10, 6063. [Google Scholar] [CrossRef] [Green Version]
- Rayar, M.; Beaurepaire, J.M.; Bajeux, E.; Hamonic, S.; Renard, T.; Locher, C.; Desfourneaux, V.; Merdrignac, A.; Bergeat, D.; Lakehal, M.; et al. Hypothermic Oxygenated Perfusion Improves Extended Criteria Donor Liver Graft Function and Reduces Duration of Hospitalization Without Extra Cost: The PERPHO Study. Liver Transpl. 2021, 27, 349–362. [Google Scholar] [CrossRef]
- Schlegel, A.; Muller, X.; Kalisvaart, M.; Muellhaupt, B.; Perera, M.; Isaac, J.R.; Clavien, P.A.; Muiesan, P.; Dutkowski, P. Outcomes of DCD liver transplantation using organs treated by hypothermic oxygenated perfusion before implantation. J. Hepatol. 2019, 70, 50–57. [Google Scholar] [CrossRef]
- Westerkamp, A.C.; Karimian, N.; Matton, A.P.; Mahboub, P.; van Rijn, R.; Wiersema-Buist, J.; de Boer, M.T.; Leuvenink, H.G.; Gouw, A.S.; Lisman, T.; et al. Oxygenated Hypothermic Machine Perfusion After Static Cold Storage Improves Hepatobiliary Function of Extended Criteria Donor Livers. Transplantation 2016, 100, 825–835. [Google Scholar] [CrossRef] [Green Version]
- Czigany, Z.; Pratschke, J.; Fronek, J.; Guba, M.; Schoning, W.; Raptis, D.A.; Andrassy, J.; Kramer, M.; Strnad, P.; Tolba, R.H.; et al. Hypothermic Oxygenated Machine Perfusion Reduces Early Allograft Injury and Improves Post-transplant Outcomes in Extended Criteria Donation Liver Transplantation From Donation After Brain Death: Results From a Multicenter Randomized Controlled Trial (HOPE ECD-DBD). Ann. Surg. 2021, 274, 705–712. [Google Scholar] [CrossRef]
- Ravaioli, M.; Germinario, G.; Dajti, G.; Sessa, M.; Vasuri, F.; Siniscalchi, A.; Morelli, M.C.; Serenari, M.; Del Gaudio, M.; Zanfi, C.; et al. Hypothermic oxygenated perfusion in extended criteria donor liver transplantation-A randomized clinical trial. Am. J. Transplant. 2022, 22, 2401–2408. [Google Scholar] [CrossRef]
- Schlegel, A.; Mueller, M.; Muller, X.; Eden, J.; Panconesi, R.; von Felten, S.; Steigmiller, K.; Sousa Da Silva, R.X.; de Rougemont, O.; Mabrut, J.Y.; et al. A multicenter randomized-controlled trial of hypothermic oxygenated perfusion (HOPE) for human liver grafts before transplantation. J. Hepatol. 2023, 78. [Google Scholar] [CrossRef]
- van Rijn, R.; Schurink, I.J.; de Vries, Y.; van den Berg, A.P.; Cortes Cerisuelo, M.; Darwish Murad, S.; Erdmann, J.I.; Gilbo, N.; de Haas, R.J.; Heaton, N.; et al. Hypothermic Machine Perfusion in Liver Transplantation—A Randomized Trial. N. Engl. J. Med. 2021, 384, 1391–1401. [Google Scholar] [CrossRef]
- Patrono, D.; Romagnoli, R. Postreperfusion syndrome, hyperkalemia and machine perfusion in liver transplantation. Transl. Gastroenterol. Hepatol. 2019, 4, 68. [Google Scholar] [CrossRef] [PubMed]
- Karangwa, S.; Panayotova, G.; Dutkowski, P.; Porte, R.J.; Guarrera, J.V.; Schlegel, A. Hypothermic machine perfusion in liver transplantation. Int. J. Surg. 2020, 82S, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Panconesi, R.; Widmer, J.; Carvalho, M.F.; Eden, J.; Dondossola, D.; Dutkowski, P.; Schlegel, A. Mitochondria and ischemia reperfusion injury. Curr. Opin. Organ. Transplant. 2022, 27, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, A.; de Rougemont, O.; Graf, R.; Clavien, P.A.; Dutkowski, P. Protective mechanisms of end-ischemic cold machine perfusion in DCD liver grafts. J. Hepatol. 2013, 58, 278–286. [Google Scholar] [CrossRef]
- Schlegel, A.; Muller, X.; Mueller, M.; Stepanova, A.; Kron, P.; de Rougemont, O.; Muiesan, P.; Clavien, P.A.; Galkin, A.; Meierhofer, D.; et al. Hypothermic oxygenated perfusion protects from mitochondrial injury before liver transplantation. EBioMedicine 2020, 60, 103014. [Google Scholar] [CrossRef]
- Schlegel, A.; Porte, R.; Dutkowski, P. Protective mechanisms and current clinical evidence of hypothermic oxygenated machine perfusion (HOPE) in preventing post-transplant cholangiopathy. J. Hepatol. 2022, 76, 1330–1347. [Google Scholar] [CrossRef] [PubMed]
- Rayar, M.; Maillot, B.; Bergeat, D.; Camus, C.; Houssel-Debry, P.; Sulpice, L.; Meunier, B.; Boudjema, K. A Preliminary Clinical Experience Using Hypothermic Oxygenated Machine Perfusion for Rapid Recovery of Octogenarian Liver Grafts. Prog. Transplant. 2018, 29, 97–98. [Google Scholar] [CrossRef] [PubMed]
- Patrono, D.; Catalano, G.; Rizza, G.; Lavorato, N.; Berchialla, P.; Gambella, A.; Caropreso, P.; Mengozzi, G.; Romagnoli, R. Perfusate Analysis During Dual Hypothermic Oxygenated Machine Perfusion of Liver Grafts: Correlations With Donor Factors and Early Outcomes. Transplantation 2020, 104, 1929–1942. [Google Scholar] [CrossRef]
- Muller, X.; Schlegel, A.; Kron, P.; Eshmuminov, D.; Wurdinger, M.; Meierhofer, D.; Clavien, P.A.; Dutkowski, P. Novel Real-time Prediction of Liver Graft Function During Hypothermic Oxygenated Machine Perfusion Before Liver Transplantation. Ann. Surg. 2019, 270, 783–790. [Google Scholar] [CrossRef]
- Bessems, M.; Doorschodt, B.M.; Kolkert, J.L.; Vetelainen, R.L.; van Vliet, A.K.; Vreeling, H.; van Marle, J.; van Gulik, T.M. Preservation of steatotic livers: A comparison between cold storage and machine perfusion preservation. Liver Transpl. 2007, 13, 497–504. [Google Scholar] [CrossRef]
- Patrono, D.; Roggio, D.; Mazzeo, A.T.; Catalano, G.; Mazza, E.; Rizza, G.; Gambella, A.; Rigo, F.; Leone, N.; Elia, V.; et al. Clinical assessment of liver metabolism during hypothermic oxygenated machine perfusion using microdialysis. Artif. Organs 2022, 46, 281–295. [Google Scholar] [CrossRef]
- Bruggenwirth, I.M.A.; de Meijer, V.E.; Porte, R.J.; Martins, P.N. Viability criteria assessment during liver machine perfusion. Nat. Biotechnol. 2020, 38, 1260–1262. [Google Scholar] [CrossRef] [PubMed]
- Panconesi, R.; Flores Carvalho, M.; Mueller, M.; Meierhofer, D.; Dutkowski, P.; Muiesan, P.; Schlegel, A. Viability Assessment in Liver Transplantation-What Is the Impact of Dynamic Organ Preservation? Biomedicines 2021, 9, 161. [Google Scholar] [CrossRef]
- Patrono, D.; Cussa, D.; Rigo, F.; Romagnoli, R.; Liver Machine Perfusion Survey, G. Heterogeneous indications and the need for viability assessment: An international survey on the use of machine perfusion in liver transplantation. Artif. Organs 2022, 46, 296–305. [Google Scholar] [CrossRef]
- Patrono, D.; Lonati, C.; Romagnoli, R. Viability testing during liver preservation. Curr. Opin. Organ. Transplant. 2022, 27, 454–465. [Google Scholar] [CrossRef]
- Clavien, P.A.; Dutkowski, P.; Mueller, M.; Eshmuminov, D.; Bautista Borrego, L.; Weber, A.; Muellhaupt, B.; Sousa Da Silva, R.X.; Burg, B.R.; Rudolf von Rohr, P.; et al. Transplantation of a human liver following 3 days of ex situ normothermic preservation. Nat. Biotechnol. 2022, 40, 1610–1616. [Google Scholar] [CrossRef]
- Eshmuminov, D.; Becker, D.; Bautista Borrego, L.; Hefti, M.; Schuler, M.J.; Hagedorn, C.; Muller, X.; Mueller, M.; Onder, C.; Graf, R.; et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat. Biotechnol. 2020, 38, 189–198. [Google Scholar] [CrossRef]
- Sousa Da Silva, R.X.; Weber, A.; Dutkowski, P.; Clavien, P.A. Machine perfusion in liver transplantation. Hepatology 2022, 76, 1531–1549. [Google Scholar] [CrossRef] [PubMed]
- Vairetti, M.; Ferrigno, A.; Carlucci, F.; Tabucchi, A.; Rizzo, V.; Boncompagni, E.; Neri, D.; Gringeri, E.; Freitas, I.; Cillo, U. Subnormothermic machine perfusion protects steatotic livers against preservation injury: A potential for donor pool increase? Liver Transpl. 2009, 15, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Boncompagni, E.; Gini, E.; Ferrigno, A.; Milanesi, G.; Gringeri, E.; Barni, S.; Cillo, U.; Vairetti, M.; Freitas, I. Decreased apoptosis in fatty livers submitted to subnormothermic machine-perfusion respect to cold storage. Eur. J. Histochem. 2011, 55, e40. [Google Scholar] [CrossRef] [Green Version]
- Tarantola, E.; Bertone, V.; Milanesi, G.; Gruppi, C.; Ferrigno, A.; Vairetti, M.; Barni, S.; Freitas, I. Dipeptidylpeptidase-IV activity and expression reveal decreased damage to the intrahepatic biliary tree in fatty livers submitted to subnormothermic machine-perfusion respect to conventional cold storage. Eur. J. Histochem. 2014, 58, 2414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamura, Y.; Hata, K.; Tanaka, H.; Hirao, H.; Kubota, T.; Inamoto, O.; Kageyama, S.; Tamaki, I.; Yermek, N.; Yoshikawa, J.; et al. Impact of Subnormothermic Machine Perfusion Preservation in Severely Steatotic Rat Livers: A Detailed Assessment in an Isolated Setting. Am. J. Transplant. 2017, 17, 1204–1215. [Google Scholar] [CrossRef] [Green Version]
- Beijert, I.; Mert, S.; Huang, V.; Karimian, N.; Geerts, S.; Hafiz, E.O.A.; Markmann, J.F.; Yeh, H.; Porte, R.J.; Uygun, K. Endothelial Dysfunction in Steatotic Human Donor Livers: A Pilot Study of the Underlying Mechanism During Subnormothermic Machine Perfusion. Transplant. Direct 2018, 4, e345. [Google Scholar] [CrossRef]
- Karimian, N.; Raigani, S.; Huang, V.; Nagpal, S.; Hafiz, E.O.A.; Beijert, I.; Mahboub, P.; Porte, R.J.; Uygun, K.; Yarmush, M.; et al. Subnormothermic Machine Perfusion of Steatotic Livers Results in Increased Energy Charge at the Cost of Anti-Oxidant Capacity Compared to Normothermic Perfusion. Metabolites 2019, 9, 246. [Google Scholar] [CrossRef] [Green Version]
- Minor, T.; Efferz, P.; Fox, M.; Wohlschlaeger, J.; Luer, B. Controlled oxygenated rewarming of cold stored liver grafts by thermally graduated machine perfusion prior to reperfusion. Am. J. Transplant. 2013, 13, 1450–1460. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, O.B.; Bodewes, S.B.; Lantinga, V.A.; Haring, M.P.D.; Thorne, A.M.; Bruggenwirth, I.M.A.; van den Berg, A.P.; de Boer, M.T.; de Jong, I.E.M.; de Kleine, R.H.J.; et al. Sequential hypothermic and normothermic machine perfusion enables safe transplantation of high-risk donor livers. Am. J. Transplant. 2022, 22, 1658–1670. [Google Scholar] [CrossRef]
- van Leeuwen, O.B.; de Vries, Y.; Fujiyoshi, M.; Nijsten, M.W.N.; Ubbink, R.; Pelgrim, G.J.; Werner, M.J.M.; Reyntjens, K.; van den Berg, A.P.; de Boer, M.T.; et al. Transplantation of High-risk Donor Livers After Ex Situ Resuscitation and Assessment Using Combined Hypo- and Normothermic Machine Perfusion: A Prospective Clinical Trial. Ann. Surg. 2019, 270, 906–914. [Google Scholar] [CrossRef]
- Watson, C.J.E.; Kosmoliaptsis, V.; Pley, C.; Randle, L.; Fear, C.; Crick, K.; Gimson, A.E.; Allison, M.; Upponi, S.; Brais, R.; et al. Observations on the ex situ perfusion of livers for transplantation. Am. J. Transplant. 2018, 18, 2005–2020. [Google Scholar] [CrossRef] [Green Version]
- Ceresa, C.D.L.; Nasralla, D.; Watson, C.J.E.; Butler, A.J.; Coussios, C.C.; Crick, K.; Hodson, L.; Imber, C.; Jassem, W.; Knight, S.R.; et al. Transient Cold Storage Prior to Normothermic Liver Perfusion May Facilitate Adoption of a Novel Technology. Liver Transpl. 2019, 25, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
- Mergental, H.; Laing, R.W.; Kirkham, A.J.; Perera, M.; Boteon, Y.L.; Attard, J.; Barton, D.; Curbishley, S.; Wilkhu, M.; Neil, D.A.H.; et al. Transplantation of discarded livers following viability testing with normothermic machine perfusion. Nat. Commun. 2020, 11, 2939. [Google Scholar] [CrossRef]
- Fodor, M.; Cardini, B.; Peter, W.; Weissenbacher, A.; Oberhuber, R.; Hautz, T.; Otarashvili, G.; Margreiter, C.; Maglione, M.; Resch, T.; et al. Static cold storage compared with normothermic machine perfusion of the liver and effect on ischaemic-type biliary lesions after transplantation: A propensity score-matched study. Br. J. Surg. 2021, 108, 1082–1089. [Google Scholar] [CrossRef]
- Patrono, D.; De Carlis, R.; Gambella, A.; Farnesi, F.; Podesta, A.; Lauterio, A.; Tandoi, F.; De Carlis, L.; Romagnoli, R. Viability assessment and transplantation of fatty liver grafts using end-ischemic normothermic machine perfusion. Liver Transpl. 2022, 29, 508. [Google Scholar] [CrossRef]
- He, X.; Guo, Z.; Zhao, Q.; Ju, W.; Wang, D.; Wu, L.; Yang, L.; Ji, F.; Tang, Y.; Zhang, Z.; et al. The first case of ischemia-free organ transplantation in humans: A proof of concept. Am. J. Transplant. 2018, 18, 737–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Chen, Z.; Lin, X.; Hong, X.; Ma, Y.; Huang, C.; He, X.; Ju, W. Application of ischaemia-free liver transplantation improves prognosis of patients with steatotic donor livers—A retrospective study. Transpl. Int. 2021, 34, 1261–1270. [Google Scholar] [CrossRef]
- Vogel, T.; Brockmann, J.G.; Coussios, C.; Friend, P.J. The role of normothermic extracorporeal perfusion in minimizing ischemia reperfusion injury. Transplant. Rev. (Orlando) 2012, 26, 156–162. [Google Scholar] [CrossRef]
- Vogel, T.; Brockmann, J.G.; Quaglia, A.; Morovat, A.; Jassem, W.; Heaton, N.D.; Coussios, C.C.; Friend, P.J. The 24-hour normothermic machine perfusion of discarded human liver grafts. Liver Transpl. 2017, 23, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Ravikumar, R.; Jassem, W.; Mergental, H.; Heaton, N.; Mirza, D.; Perera, M.T.; Quaglia, A.; Holroyd, D.; Vogel, T.; Coussios, C.C.; et al. Liver Transplantation After Ex Vivo Normothermic Machine Preservation: A Phase 1 (First-in-Man) Clinical Trial. Am. J. Transplant. 2016, 16, 1779–1787. [Google Scholar] [CrossRef]
- Cardini, B.; Oberhuber, R.; Fodor, M.; Hautz, T.; Margreiter, C.; Resch, T.; Scheidl, S.; Maglione, M.; Bosmuller, C.; Mair, H.; et al. Clinical Implementation of Prolonged Liver Preservation and Monitoring Through Normothermic Machine Perfusion in Liver Transplantation. Transplantation 2020, 104, 1917–1928. [Google Scholar] [CrossRef] [PubMed]
- Quintini, C.; Del Prete, L.; Simioni, A.; Del Angel, L.; Diago Uso, T.; D’Amico, G.; Hashimoto, K.; Aucejo, F.; Fujiki, M.; Eghtesad, B.; et al. Transplantation of declined livers after normothermic perfusion. Surgery 2022, 171, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Reiling, J.; Butler, N.; Simpson, A.; Hodgkinson, P.; Campbell, C.; Lockwood, D.; Bridle, K.; Santrampurwala, N.; Britton, L.; Crawford, D.; et al. Assessment and Transplantation of Orphan Donor Livers: A Back-to-Base Approach to Normothermic Machine Perfusion. Liver Transpl. 2020, 26, 1618–1628. [Google Scholar] [CrossRef] [PubMed]
- Attard, J.; Sneiders, D.; Laing, R.; Boteon, Y.; Mergental, H.; Isaac, J.; Mirza, D.F.; Afford, S.; Hartog, H.; Neil, D.A.H.; et al. The effect of end-ischaemic normothermic machine perfusion on donor hepatic artery endothelial integrity. Langenbecks Arch. Surg. 2022, 407, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Fan, Y.; Ding, H.; Han, D.; Yan, Y.; Wu, R.; Lv, Y.; Zheng, X. Normothermic machine perfusion attenuates hepatic ischaemia-reperfusion injury by inhibiting CIRP-mediated oxidative stress and mitochondrial fission. J. Cell. Mol. Med. 2021, 25, 11310–11321. [Google Scholar] [CrossRef]
- Ohman, A.; Raigani, S.; Santiago, J.C.; Heaney, M.G.; Boylan, J.M.; Parry, N.; Carroll, C.; Baptista, S.G.; Uygun, K.; Gruppuso, P.A.; et al. Activation of autophagy during normothermic machine perfusion of discarded livers is associated with improved hepatocellular function. Am. J. Physiol. Gastrointest. Liver Physiol. 2022, 322, G21–G33. [Google Scholar] [CrossRef]
- Op den Dries, S.; Karimian, N.; Westerkamp, A.C.; Sutton, M.E.; Kuipers, M.; Wiersema-Buist, J.; Ottens, P.J.; Kuipers, J.; Giepmans, B.N.; Leuvenink, H.G.; et al. Normothermic machine perfusion reduces bile duct injury and improves biliary epithelial function in rat donor livers. Liver Transpl. 2016, 22, 994–1005. [Google Scholar] [CrossRef] [PubMed]
- Jassem, W.; Xystrakis, E.; Ghnewa, Y.G.; Yuksel, M.; Pop, O.; Martinez-Llordella, M.; Jabri, Y.; Huang, X.; Lozano, J.J.; Quaglia, A.; et al. Normothermic Machine Perfusion (NMP) Inhibits Proinflammatory Responses in the Liver and Promotes Regeneration. Hepatology 2018, 70, 682–695. [Google Scholar] [CrossRef] [Green Version]
- Lonati, C.; Dondossola, D.; Zizmare, L.; Battistin, M.; Wust, L.; Vivona, L.; Carbonaro, M.; Zanella, A.; Gatti, S.; Schlegel, A.; et al. Quantitative Metabolomics of Tissue, Perfusate, and Bile from Rat Livers Subjected to Normothermic Machine Perfusion. Biomedicines 2022, 10, 538. [Google Scholar] [CrossRef] [PubMed]
- Calleri, A.; Roggio, D.; Navarro-Tableros, V.; De Stefano, N.; Pasquino, C.; David, E.; Frigatti, G.; Rigo, F.; Antico, F.; Caropreso, P.; et al. Protective Effects of Human Liver Stem Cell-Derived Extracellular Vesicles in a Mouse Model of Hepatic Ischemia-Reperfusion Injury. Stem Cell. Rev. Rep. 2021, 17, 459–470. [Google Scholar] [CrossRef]
- De Stefano, N.; Navarro-Tableros, V.; Roggio, D.; Calleri, A.; Rigo, F.; David, E.; Gambella, A.; Bassino, D.; Amoroso, A.; Patrono, D.; et al. Human liver stem cell-derived extracellular vesicles reduce injury in a model of normothermic machine perfusion of rat livers previously exposed to a prolonged warm ischemia. Transpl. Int. 2021, 34, 1607–1617. [Google Scholar] [CrossRef] [PubMed]
- Laing, R.W.; Stubblefield, S.; Wallace, L.; Roobrouck, V.D.; Bhogal, R.H.; Schlegel, A.; Boteon, Y.L.; Reynolds, G.M.; Ting, A.E.; Mirza, D.F.; et al. The Delivery of Multipotent Adult Progenitor Cells to Extended Criteria Human Donor Livers Using Normothermic Machine Perfusion. Front. Immunol. 2020, 11, 1226. [Google Scholar] [CrossRef]
- Rigo, F.; De Stefano, N.; Navarro-Tableros, V.; David, E.; Rizza, G.; Catalano, G.; Gilbo, N.; Maione, F.; Gonella, F.; Roggio, D.; et al. Extracellular Vesicles from Human Liver Stem Cells Reduce Injury in an Ex Vivo Normothermic Hypoxic Rat Liver Perfusion Model. Transplantation 2018, 102, e205–e210. [Google Scholar] [CrossRef]
- Patrono, D.; De Stefano, N.; Rigo, F.; Cussa, D.; Romagnoli, R. Some like it hot. Utility and mechanism of ex-situ normothermic machine perfusion of the liver. Eur. J. Transplant. 2023, 1, 92–112. [Google Scholar] [CrossRef]
- Nasralla, D.; Coussios, C.C.; Mergental, H.; Akhtar, M.Z.; Butler, A.J.; Ceresa, C.D.L.; Chiocchia, V.; Dutton, S.J.; Garcia-Valdecasas, J.C.; Heaton, N.; et al. A randomized trial of normothermic preservation in liver transplantation. Nature 2018, 557, 50–56. [Google Scholar] [CrossRef]
- Markmann, J.F.; Abouljoud, M.S.; Ghobrial, R.M.; Bhati, C.S.; Pelletier, S.J.; Lu, A.D.; Ottmann, S.; Klair, T.; Eymard, C.; Roll, G.R.; et al. Impact of Portable Normothermic Blood-Based Machine Perfusion on Outcomes of Liver Transplant: The OCS Liver PROTECT Randomized Clinical Trial. JAMA Surg. 2022, 157, 189–198. [Google Scholar] [CrossRef]
- Ghinolfi, D.; Rreka, E.; De Tata, V.; Franzini, M.; Pezzati, D.; Fierabracci, V.; Masini, M.; Cacciatoinsilla, A.; Bindi, M.L.; Marselli, L.; et al. Pilot, Open, Randomized, Prospective Trial for Normothermic Machine Perfusion Evaluation in Liver Transplantation From Older Donors. Liver Transpl. 2019, 25, 436–449. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Xu, J.; Huang, S.; Yin, M.; Zhao, Q.; Ju, W.; Wang, D.; Gao, N.; Huang, C.; Yang, L.; et al. Abrogation of graft ischemia-reperfusion injury in ischemia-free liver transplantation. Clin. Transl. Med. 2022, 12, e546. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhao, Q.; Jia, Z.; Huang, C.; Wang, D.; Ju, W.; Zhang, J.; Yang, L.; Huang, S.; Chen, M.; et al. A randomized-controlled trial of ischemia-free liver transplantation for end-stage liver disease. J. Hepatol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Nagrath, D.; Xu, H.; Tanimura, Y.; Zuo, R.; Berthiaume, F.; Avila, M.; Yarmush, R.; Yarmush, M.L. Metabolic preconditioning of donor organs: Defatting fatty livers by normothermic perfusion ex vivo. Metab. Eng. 2009, 11, 274–283. [Google Scholar] [CrossRef] [Green Version]
- Jamieson, R.W.; Zilvetti, M.; Roy, D.; Hughes, D.; Morovat, A.; Coussios, C.C.; Friend, P.J. Hepatic steatosis and normothermic perfusion-preliminary experiments in a porcine model. Transplantation 2011, 92, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Nassar, A.; Buccini, L.; Iuppa, G.; Soliman, B.; Pezzati, D.; Hassan, A.; Blum, M.; Baldwin, W.; Bennett, A.; et al. Lipid metabolism and functional assessment of discarded human livers with steatosis undergoing 24 hours of normothermic machine perfusion. Liver Transpl. 2018, 24, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Boteon, Y.L.; Attard, J.; Boteon, A.; Wallace, L.; Reynolds, G.; Hubscher, S.; Mirza, D.F.; Mergental, H.; Bhogal, R.H.; Afford, S.C. Manipulation of Lipid Metabolism During Normothermic Machine Perfusion: Effect of Defatting Therapies on Donor Liver Functional Recovery. Liver Transpl. 2019, 25, 1007–1022. [Google Scholar] [CrossRef] [Green Version]
- Groen, P.C.; de Jonge, J.; Porte, R.J. Prolonged Normothermic Machine Perfusion: Buying More Time for Liver Graft Assessment and Repair. Transplantation 2023, 107, 1221–1222. [Google Scholar] [CrossRef]
- Lau, N.S.; Ly, M.; Dennis, C.; Toomath, S.; Huang, J.L.; Huang, J.; Ly, H.; Chanda, S.; Marinelli, T.; Davis, R.; et al. Microbial Contamination During Long-term Ex Vivo Normothermic Machine Perfusion of Human Livers. Transplantation 2023. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patrono, D.; De Stefano, N.; Vissio, E.; Apostu, A.L.; Petronio, N.; Vitelli, G.; Catalano, G.; Rizza, G.; Catalano, S.; Colli, F.; et al. How to Preserve Steatotic Liver Grafts for Transplantation. J. Clin. Med. 2023, 12, 3982. https://doi.org/10.3390/jcm12123982
Patrono D, De Stefano N, Vissio E, Apostu AL, Petronio N, Vitelli G, Catalano G, Rizza G, Catalano S, Colli F, et al. How to Preserve Steatotic Liver Grafts for Transplantation. Journal of Clinical Medicine. 2023; 12(12):3982. https://doi.org/10.3390/jcm12123982
Chicago/Turabian StylePatrono, Damiano, Nicola De Stefano, Elena Vissio, Ana Lavinia Apostu, Nicoletta Petronio, Giovanni Vitelli, Giorgia Catalano, Giorgia Rizza, Silvia Catalano, Fabio Colli, and et al. 2023. "How to Preserve Steatotic Liver Grafts for Transplantation" Journal of Clinical Medicine 12, no. 12: 3982. https://doi.org/10.3390/jcm12123982
APA StylePatrono, D., De Stefano, N., Vissio, E., Apostu, A. L., Petronio, N., Vitelli, G., Catalano, G., Rizza, G., Catalano, S., Colli, F., Chiusa, L., & Romagnoli, R. (2023). How to Preserve Steatotic Liver Grafts for Transplantation. Journal of Clinical Medicine, 12(12), 3982. https://doi.org/10.3390/jcm12123982