Evaluation of Inflammation and Oxidative Stress Markers in Patients with Obstructive Sleep Apnea (OSA)
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.L.D.; et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garvey, J.F.; Pengo, M.F.; Drakatos, P.; Kent, B.D. Epidemiological aspects of obstructive sleep apnea. J. Thorac. Dis. 2015, 7, 920–929. [Google Scholar]
- Ministero Della Salute—Segretariato Generale Ufficio III Ex DCOM. Direzione Generale Della Prevenzione Sanitaria. Linee Guida Nazionali Per La Prevenzione Ed Il Trattamento Odontoiatrico Della Sindrome Delle Apnee Ostruttive Nel Sonno (OSAS). 2014. Available online: http://www.salute.gov.it/imgs/C_17_pubblicazioni_2307_allegato.pdf (accessed on 20 March 2023).
- Abbasi, A.; Gupta, S.S.; Sabharwal, N.; Meghrajani, V.; Sharma, S.; Kamholz, S.; Kupfer, Y. A comprehensive review of obstructive sleep apnea. Sleep Sci. 2021, 14, 142–154. [Google Scholar] [PubMed]
- Tietjens, J.R.; Claman, D.; Kezirian, E.J.; De Marco, T.; Mirzayan, A.; Sadroonri, B.; Goldberg, A.N.; Long, C.; Gerstenfeld, E.P.; Yeghiazarians, Y. Obstructive sleep apnea in cardiovascular disease: A review of the literature and proposed multidisciplinary clinical management strategy. J. Am. Heart Assoc. 2019, 8, e010440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisele, H.J.; Markart, P.; Schulz, R. Obstructive sleep apnea, oxidative stress, and cardiovascular disease: Evidence from human studies. Oxid. Med. Cell. Longev. 2015, 2015, 608438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e56–e67. [Google Scholar] [CrossRef]
- Lira, A.B.; de Sousa Rodrigues, C.F. Evaluation of oxidative stress markers in obstructive sleep apnea syndrome and additional antioxidant therapy: A review article. Sleep Breath 2016, 20, 1155–1160. [Google Scholar] [CrossRef]
- Fiedorczuk, P.; Stróżyński, A.; Olszewska, E. Is the Oxidative Stress in Obstructive Sleep Apnea Associated With Cardiovas-cular Complications?—Systematic Review. J. Clin. Med. 2020, 9, 3734. [Google Scholar] [CrossRef]
- Gabryelska, A.; Łukasik, Z.M.; Makowska, J.S.; Białasiewicz, P. Obstructive Sleep Apnea: From Intermittent Hypoxia to Cardiovascular Complications via Blood Platelets. Front. Neurol. 2018, 9, 635. [Google Scholar] [CrossRef]
- Arnaud, C.; Bochaton, T.; Pépin, J.L.; Belaidi, E. Obstructive sleep apnoea and cardiovascular consequences: Pathophysiological mechanisms. Arch. Cardiovasc. Dis. 2020, 113, 350–358. [Google Scholar] [CrossRef]
- Mannarino, M.R.; Di Filippo, F.; Pirro, M. Obstructive sleep apnea syndrome. Eur. J. Intern. Med. 2012, 23, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Kapur, V.K.; Auckley, D.H.; Chowdhuri, S.; Kuhlmann, D.C.; Mehra, R.; Ramar, K.; Harrod, C.G. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2017, 13, 479–504. [Google Scholar] [CrossRef] [PubMed]
- Orrù, G.; Storari, M.; Scano, A.; Piras, V.; Taibi, R.; Viscuso, D. Obstructive Sleep Apnea. oxidative stress. inflammation and endothelial dysfunction-An overview of predictive laboratory biomarkers. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 6939–6948. [Google Scholar]
- Wu, M.; Zhou, L.; Zhu, D.; Lai, T.; Chen, Z.; Shen, H. Hematological indices as simple. inexpensive and practical severity markers of obstructive sleep apnea syndrome: A meta-analysis. J. Thorac. Dis. 2018, 10, 6509–6521. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, X.; Lu, Y. Obstructive Sleep Apnea Syndrome and Metabolic Diseases. Endocrinology 2018, 159, 2670–2675. [Google Scholar] [CrossRef] [Green Version]
- Paliogiannis, P.; Fois, A.G.; Sotgia, S.; A Mangoni, A.; Zinellu, E.; Pirina, P.; Carru, C.; Zinellu, A. The neutrophil-to-lymphocyte ratio as a marker of chronic obstructive pulmonary disease and its exacerbations: A systematic review and meta-analysis. Eur. J. Clin. Investig. 2018, 48, e12984. [Google Scholar] [CrossRef] [Green Version]
- Pinna, A.; Porcu, T.; Paliogiannis, P.; Dore, S.; Serra, R.; Boscia, F.; Carru, C.; Zinellu, A. Complete Blood Cell Count Measures in Retinal Artey Occlusions. Acta Ophthalmol. 2021, 99, 637–643. [Google Scholar] [CrossRef]
- Kıvanc, T.; Kulaksızoglu, S.; Lakadamyal, H.; Eyuboglu, F. Importance of laboratory parameters in patients with obstructive sleep apnea and their relationship with cardiovascular diseases. J. Clin. Lab. Anal. 2018, 32, e22199. [Google Scholar] [CrossRef] [Green Version]
- Cao, F.; Wan, Y.; Lei, C.; Zhong, L.; Lei, H.; Sun, H.; Zhong, X.; Xiao, Y. Monocyte-to- lymphocyte ratio as a predictor of stroke-associated pneumonia: A retrospective study-based investigation. Brain Behav. 2021, 11, e02141. [Google Scholar] [CrossRef] [PubMed]
- Koseoglu, H.I.; Altunkas, F.; Kanbay, A.; Doruk, S.; Etikan, I.; Demir, O. Platelet-lymphocyte ratio is an independent predictor for cardiovascular disease in obstructive sleep apnea syndrome. J. Thromb. Thrombolysis 2015, 39, 179–185. [Google Scholar] [CrossRef]
- Rha, M.S.; Kim, C.H.; Yoon, J.H.; Cho, H.J. Association between the neutrophil-to-lymphocyte ratio and obstructive sleep apnea: A meta-analysis. Sci. Rep. 2020, 10, 10862. [Google Scholar] [CrossRef] [PubMed]
- Roche, M.; Rondeau, P.; Singh, N.R.; Tarnus, E.; Bourdon, E. The antioxidant properties of serum albumin. FEBS Lett. 2008, 582, 1783–1787. [Google Scholar] [CrossRef] [PubMed]
- Faure, P.; Tamisier, R.; Baguet, J.P.; Favier, A.; Halimi, S.; Lévy, P.; Pépin, J.L. Impairment of serum albumin antioxidant properties in obstructive sleep apnoea syndrome. Eur. Respir. J. 2008, 31, 1046–1053. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.B.; Brooks, R.; Gamaldo, C.E.; Harding, S.M.; Marcus, C.; Vaughn, B.V. The AASM manual for the scoring of sleep and associated events. Rules Terminol. Tech. Specif. Darien Ill. Am. Acad. Sleep Med. 2012, 176, 2012. [Google Scholar]
- Varghese, L.; Rebekah, G.; Priya, N.; Oliver, A.; Kurien, R. Oxygen desaturation index as alternative parameter in screening patients with severe obstructive sleep apnea. Sleep Sci. 2022, 15, 224–228. [Google Scholar] [CrossRef]
- Wali, S.O.; Abaalkhail, B.; AlQassas, I.; Alhejaili, F.; Spence, D.W.; Pandi-Perumal, S.R. The correlation between oxygen saturation indices and the standard obstructive sleep apnea severity. Ann. Thorac. Med. 2020, 15, 70–75. [Google Scholar] [CrossRef]
- Rashid, N.H.; Zaghi, S.; Scapuccin, M.; Camacho, M.; Certal, V.; Capasso, R. The Value of Oxygen Desaturation Index for Diagnosing Obstructive Sleep Apnea: A Systematic Review. Laryngoscope 2021, 131, 440–447. [Google Scholar] [CrossRef]
- Fernandes, E.R.; Pires, G.N.; Andersen, M.L.; Tufik, S.; Rosa, D.S. Oxygen saturation as predictor of inflammation in obstructive sleep apnea. Sleep Breath 2022, 26, 1613–1620. [Google Scholar] [CrossRef]
- Zinellu, A.; Paliogiannis, P.; Sotgiu, E.; Mellino, S.; Mangoni, A.A.; Zinellu, E.; Negri, S.; Collu, C.; Pintus, G.; Serra, A.; et al. Blood Cell Count Derived Inflammation Indexes in Patients with Idiopathic Pulmonary Fibrosis. Lung 2020, 198, 821–827. [Google Scholar] [CrossRef]
- Meliante, P.G.; Zoccali, F.; Cascone, F.; Di Stefano, V.; Greco, A.; de Vincentiis, M.; Petrella, C.; Fiore, M.; Minni, A.; Barbato, C. Molecular Pathology, Oxidative Stress, and Biomarkers in Obstructive Sleep Apnea. Int. J. Mol. Sci. 2023, 24, 5478. [Google Scholar] [CrossRef]
- Suzuki, Y.J.; Jain, V.; Park, A.M.; Day, R.M. Oxidative stress and oxidant signaling in obstructive sleep apnea and associated cardiovascular diseases. Free Radic. Biol. Med. 2006, 40, 1683–1692. [Google Scholar] [CrossRef] [Green Version]
- Putzu, C.; Cortinovis, D.L.; Colonese, F.; Canova, S.; Carru, C.; Zinellu, A.; Paliogiannis, P. Blood cell count indexes as predictors of outcomes in advanced non-small-cell lung cancer patients treated with nivolumab. Cancer Immunol. Immunother. 2018, 67, 1349–1353. [Google Scholar] [CrossRef]
- Topuz, M.F.; Ture, N.; Akdag, G.; Arik, O.; Gulhan, P.Y. The importance of systemic immune-inflammation index in obstructive sleep apnea syndrome. Eur. Arch. Otorhinolaryngol. 2022, 279, 5033–5038. [Google Scholar] [CrossRef]
- Kim, M.; Cho, S.W.; Won, T.B.; Rhee, C.S.; Jeong-Whun, K. Association between Systemic Inflammatory Markers Based on Blood Cells and Polysomnographic Factors in Obstructive Sleep Apnea. Clin. Exp. Otorhinolaryngol. 2023, 16, 159. [Google Scholar] [CrossRef]
- Nathan, C. Neutrophils and immunity: Challenges and opportunities. Nat. Rev. Immunol. 2006, 6, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Maniaci, A.; Iannella, G.; Cocuzza, S.; Vicini, C.; Magliulo, G.; Ferlito, S.; Cammaroto, G.; Meccariello, G.; De Vito, A.; Nicolai, A.; et al. Oxidative Stress and Inflammation Biomarker Expression in Obstructive Sleep Apnea Patients. J. Clin. Med. 2021, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Walmsley, S.R.; Print, C.; Farahi, N.; Peyssonnaux, C.; Johnson, R.S.; Cramer, T.; Sobolewski, A.; Condliffe, A.M.; Cowburn, A.S.; Johnson, N.; et al. Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J. Exp. Med. 2005, 201, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Lodge, K.M.; Cowburn, A.S.; Li, W.; Condliffe, A.M. The Impact of Hypoxia on Neutrophil Degranulation and Consequences for the Host. Int. J. Mol. Sci. 2020, 21, 1183. [Google Scholar] [CrossRef] [Green Version]
- Galindo, M.; Santiago, B.; Alcami, J.; Rivero, M.; Martín-Serrano, J.; Pablos, J.L. Hypoxia induces expression of the chemokines monocyte chemoattractant protein-1 (MCP-1) and IL-8 in human dermal fibroblasts. Clin. Exp. Immunol. 2001, 123, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Düger, M.; Seyhan, E.C.; Günlüoğlu, M.Z.; Bolatkale, M.; Özgül, M.A.; Turan, D.; Uğur, E.; Ülfer, G. Does ischemia-modified al-bumin level predict severity of obstructive sleep apnea? Sleep Breath 2021, 25, 65–73. [Google Scholar] [CrossRef]
- Leppänen, T.; Kulkas, A.; Mervaala, E.; Töyräs, J. Increase in Body Mass Index Decreases Duration of Apneas and Hypopneas in Obstructive Sleep Apnea. Respir. Care 2019, 64, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinobia, K.; Moses, B.; Faizul, M.S.; Stephen, L.J.; Ghassibi, J.F. Role of body mass index (BMI) on the oxygen saturation and apneic spells in obstructive sleep apnea (OSA). Int. J. Med. Med. Sci. 2015, 7, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Kuvat, N.; Tanriverdi, H.; Armutcu, F. The relationship between obstructive sleep apnea syndrome and obesity: A new perspective on the pathogenesis in terms of organ crosstalk. Clin. Respir. J. 2020, 14, 595–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | OSA Patients N = 259 |
---|---|
Age | |
mean (±SD) | 60.4 (±12.6) |
Sex. n (%) | |
Female | 64 (25%) |
Male | 195 (75%) |
BMI (kg/m2) | |
median (IR) | 33.2 (29.2–38.8) |
ODI | |
median (IR) | 37.7 (21.5–58.6) |
AHI. | |
median (IR) | 35.5 (21.5–55.1) |
SpO2 mean (%) | |
median (IR) | 91.2 (88.3–93) |
Smoking n (%) | |
Current smokers | 56 (22) |
Ex smokers | 94 (36) |
No smokers | 109 (42) |
Hypertension n (%) | 64 (69.5) |
ARB n (%) | 31 (33.7) |
Beta-blockers n (%) | 18 (19.5) |
ACE inhibitors n (%) | 27 (29.4) |
Calcium channel blockers. n (%) | 11 (12) |
Diuretics. n (%) | 27 (29.3) |
Dyslipidemia n (%) | 50 (54.3) |
Statins n (%) | 41 (45.6) |
Diabete mellitus n (%) | 22 (24) |
Metformin n (%) | 16 (17.4) |
Insulin n (%) | 10 (11) |
MPV (fL). | |
median (IR) | 8.4 (7.9–9.2) |
HDW (g/dL) | |
median (IR) | 2.6 (2.4–2.9) |
RDW (%). | |
median (IR) | 13.5 (12.7–14.7) |
WBC (×103/µL). | |
median (IR) | 7.6 (6.1–9.1) |
Neutrophil (×103/µL) | |
median (IR) | 4.1 (3.2–5.5) |
Monocyte (×103/µL) | |
median (IR) | 0.5 (0.4–0.7) |
Lymphocytes (×103/µL) | |
median (IR) | 2.2 (1.8–2.8) |
Platelets (×103/µL) | |
median (IR) | 225 (191–265) |
NLR | |
Median (IR) | 1.9 (1.4–2.7) |
PLR | |
median (IR) | 100.7 (80.2–126.2) |
MLR | |
median (IR) | 0.2 (0.2–0.3) |
SII. | |
median (IR) | 414.2 (296–606.5) |
SIRI | |
median (IR) | 8.3 (0.7–1.6) |
AISI | |
median (IR) | 221.4 (139–369.1) |
Albumin (g/dL) | |
mean (±SD) | 3.8 (±0.31) |
Cholesterol (mg/dL) | |
mean (±SD) | 171.4 (±41.5) |
LDL chol. (mg/dL) | |
mean (±SD) | 108.3 (±34.5) |
ALT (U/L) | |
median (IR) | 20 (15–31) |
AST (U/L) | |
median (IR) | 18 (15–23) |
OSA Parameters N = 259 | AHI | ODI | SpO2 Mean | |||
---|---|---|---|---|---|---|
r | p-Value | r | p-Value | r | p-Value | |
BMI (kg/m2) | 0.003 | 0.003 * | 0.26 | 0.0001 * | −0.40 | <0.0001 * |
AGE | −0.01 | 0.81 | 0.02 | 0.74 | −0.12 | 0.06 |
Sex | 0.04 | 0.51 | 0.06 | 0.3 | −0.1 | 0.09 |
Smoking status | 0.021 | 0.73 | 0.002 | 0.97 | −0.11 | 0.06 |
Hypertension | 0.02 | 0.7 | 0.014 | 0.82 | −0.0368 | 0.55 |
Angiotensin receptor blocker | 0.0013 | 0.98 | 0.017 | 0.78 | −0.13 | 0.026 * |
Beta-blockers | 0.09 | 0.14 | 0.06 | 0.34 | −0.01 | 0.80 |
ACE inhibitors | −0.03 | 0.66 | −0.02 | 0.7 | 0.03 | 0.63 |
Calcium channel blockers | −0.03 | 0.6 | −0.02 | 0.7 | −0.03 | 0.63 |
Diuretics | 0.02 | 0.72 | 0.017 | 0.78 | −0.06 | 0.28 |
Dyslipidaemia | −0.16 | 0.011 * | −0.13 | 0.03 * | 0.04 | 0.51 |
Statins | −0.131 | 0.03 * | −0.11 | 0.06 | 0.05 | 0.38 |
Diabete mellitus | 0.05 | 0.43 | 0.09 | 0.11 | −0.09 | 0.14 |
Metformin | 0.06 | 0.3367 | 0.14 | 0.026 * | −0.16 | 0.0077 * |
Insulin | 0.04 | 0.53 | 0.07 | 0.25 | −0.11 | 0.07 |
MPV (fL) | −0.04 | 0.46 | −0.08 | 0.17 | 0.11 | 0.06 |
HDW (g/dL) | 0.13 | 0.028 * | 0.14 | 0.02 * | 0.21 | 0.0007 * |
RDW (%) | 0.15 | 0.017 * | 0.16 | 0.001 * | −0.25 | <0.0001 * |
WBC (×103/µL) | 0.16 | 0.008 * | 0.18 | 0.004 * | −0.15 | 0.01 * |
Neutrophil (×103/µL) | 0.2 | 0.0013 * | 0.23 | 0.0001 * | −0.22 | 0.0002 * |
Monocyte (×103/µL) | 0.05 | 0.4 | 0.06 | 0.32 | −0.14 | 0.02 * |
Lymphocytes (×103/µL) | 0.07 | 0.23 | 0.03 | 0.6 | 0.04 | 0.5 |
Platelets (×103/µL) | 0.05 | 0.35 | 0.07 | 0.22 | −0.02 | 0.65 |
NLR | 0.12 | 0.05 * | 0.16 | 0.0075 * | −0.21 | 0.0002 * |
PLR | −0.08 | 0.21 | −0.04 | 0.52 | 0.004 | 0.94 |
MLR | −0.02 | 0.66 | −0.005 | 0.94 | −0.153 | 0.014 * |
SII | 0.115 | 0.006 * | 0.16 | 0.009 * | −0.21 | 0.0006 * |
SIRI | 0.12 | 0.07 | 0.15 | 0.013 * | 0.24 | 0.0001 * |
AISI | 0.1 | 0.08 | 0.15 | 0.015 * | −0.23 | 0.0002 * |
ALBUMIN (g/dL) | −0.14 | 0.03 * | −0.16 | 0.013 * | 0.3 | <0.0001 * |
Cholesterol (mg/dL) | −0.07 | 0.25 | −0.08 | 0.18 | 0.12 | 0.07 |
LDL chol (mg/dL) | −0.03 | 0.6 | −0.03 | 0.7 | 0.14 | 0.035 * |
ALT (U/L) | −0.05 | 0.46 | −0.02 | 0.67 | −0.02 | 0.77 |
AST (U/L) | −0.02 | 0.8 | −0.02 | 0.75 | 0.02 | 0.7 |
rpartial | p-Value | |
---|---|---|
BMI (kg/m2) | 0.2061 | 0.0028 * |
Hypercholesterolemia | −0.0752 | 0.2802 |
Statin | −0.0086 | 0.9017 |
HDW (g/dL) | −0.0071 | 0.9179 |
RDW (%) | 0.0643 | 0.3558 |
Albumin (g/dL) | −0.0591 | 0.3962 |
WBC (×103/µL) | 0.0578 | 0.4065 |
BMI (kg/m2) | 0.2109 | 0.0022 * |
Hypercholesterolemia | −0.0731 | 0.2941 |
Statin | −0.0109 | 0.8759 |
HDW (g/dL) | −0.0081 | 0.9070 |
RDW (%) | 0.0662 | 0.3421 |
Albumin (g/dL) | −0.0555 | 0.4257 |
Neutrophils (×103/µL) | 0.0265 | 0.7036 |
BMI (kg/m2) | 0.2246 | 0.0011 * |
Hypercholesterolemia | −0.0740 | 0.2879 |
Statin | −0.0105 | 0.8798 |
HDW (g/dL) | −0.0094 | 0.8929 |
RDW (%) | 0.0748 | 0.2826 |
Albumin (g/dL) | −0.0604 | 0.3861 |
NLR | −0.0220 | 0.7520 |
BMI (kg/m2) | 0.2269 | 0.0010 * |
Hypercholesterolemia | −0.0741 | 0.2869 |
Statin | −0.0102 | 0.8831 |
HDW (g/dL) | −0.0087 | 0.9001 |
RDW (%) | 0.0728 | 0.2954 |
Albumin (g/dL) | −0.0584 | 0.4018 |
SII | −0.0120 | 0.8626 |
rpartial | p-Value | |
---|---|---|
BMI (kg/m2) | 0.2151 | 0.0018 * |
Hypercholesterolemia | −0.1801 | 0.0092 * |
Metformin | 0.1877 | 0.0066 * |
HDW (g/dL) | −0.0061 | 0.9300 |
RDW (%) | 0.0576 | 0.4086 |
Albumin (g/dL) | −0.0811 | 0.2437 |
WBC (×103/µL) | 0.0783 | 0.2606 |
BMI (kg/m2) | 0.2113 | 0.0022 * |
Hypercholesterolemia | −0.1777 | 0.0102 * |
Metformin | 0.1886 | 0.0064 * |
HDW(g/dL) | −0.0054 | 0.9380 |
RDW (%) | 0.0534 | 0.4431 |
Albumin (g/dL) | −0.0735 | 0.2909 |
Neutrophils (×103/µL) | 0.0762 | 0.2737 |
BMI (kg/m2) | 0.2458 | 0.0003 * |
Hypercholesterolemia | −0.1820 | 0.0085 * |
Metformin | 0.1849 | 0.0075 * |
HDW (g/dL) | −0.0103 | 0.8819 |
RDW (%) | 0.0543 | 0.4353 |
Albumin (g/dL) | −0.0667 | 0.3380 |
NLR | 0.0622 | 0.3714 |
BMI (kg/m2) | 0.2384 | 0.0005 * |
Hypercholesterolemia | −0.1850 | 0.0075 * |
Metformin | 0.1883 | 0.0064 * |
HDW (g/dL) | −0.0155 | 0.8241 |
RDW (%) | 0.0570 | 0.4132 |
Albumin (g/dL) | −0.0693 | 0.3199 |
SII | 0.0774 | 0.2662 |
BMI (kg/m2) | 0.2394 | 0.0005 * |
Hypercholesterolemia | −0.1805 | 0.0091 * |
Metformin | 0.1867 | 0.0069 * |
HDW (g/dL) | −0.0144 | 0.8359 |
RDW (%) | 0.0606 | 0.3845 |
Albumin (g/dL) | −0.0727 | 0.2967 |
SIRI | 0.0512 | 0.4621 |
BMI (kg/m2) | 0.2301 | 0.0008 * |
Hypercholesterolemia | −0.1837 | 0.0079 * |
Metformin | 0.1912 | 0.0057 * |
HDW (g/dL) | −0.0212 | 0.7610 |
RDW (%) | 0.0611 | 0.3801 |
Albumin (g/dL) | −0.0735 | 0.2914 |
AISI | 0.0746 | 0.2842 |
rpartial | p-Value | |
---|---|---|
BMI (kg/m2) | −0.3640 | <0.0001 * |
ARB | −0.0457 | 0.5387 |
Metformin | −0.1014 | 0.1722 |
HDW (g/dL) | −0.0066 | 0.9292 |
RDW (%) | −0.0305 | 0.6815 |
Albumin (g/dL) | 0.2219 | 0.0025 * |
LDL Chol (mg/dL) | 0.0313 | 0.6732 |
WBC (×103/µL) | −0.1353 | 0.0679 |
BMI (kg/m2) | −0.3516 | <0.0001 * |
ARB | −0.0379 | 0.6105 |
Metformin | −0.1076 | 0.1471 |
HDW (g/dL) | −0.0115 | 0.8767 |
RDW (%) | −0.0162 | 0.8275 |
Albumin (g/dL) | 0.2101 | 0.0043 * |
LDL Chol (mg/dL) | 0.0328 | 0.6589 |
Neutrophils (×103/µL) | −0.1517 | 0.0404 * |
BMI (kg/m2) | −0.3619 | <0.0001 * |
ARB | −0.0626 | 0.3992 |
Metformin | −0.1236 | 0.0956 |
HDW (g/dL) | 0.0072 | 0.9225 |
RDW (%) | −0.0445 | 0.5494 |
Albumin (g/dL) | 0.2228 | 0.0024 * |
LDL Chol (mg/dL) | 0.0208 | 0.7794 |
Monocytes (×103/µL) | −0.2030 | 0.0058 * |
BMI (kg/m2) | −0.3960 | <0.0001 * |
ARB | −0.0249 | 0.7378 |
Metformin | −0.1002 | 0.1773 |
HDW (g/dL) | −0.0024 | 0.9742 |
RDW (%) | −0.0348 | 0.6395 |
Albumin (g/dL) | 0.2070 | 0.0049 * |
LDL Chol (mg/dL) | 0.0173 | 0.8158 |
NLR | −0.0671 | 0.3668 |
BMI (kg/m2) | −0.3975 | <0.0001 * |
ARB | −0.0308 | 0.6787 |
Metformin | −0.1071 | 0.1489 |
HDW (g/dL) | 0.0066 | 0.9286 |
RDW (%) | −0.0492 | 0.5080 |
Albumin (g/dL) | 0.2071 | 0.0049 * |
LDL Chol (mg/dL) | 0.0083 | 0.9110 |
MLR | −0.0808 | 0.2764 |
BMI (kg/m2) | −0.3921 | <0.0001 * |
ARB | −0.0372 | 0.6166 |
Metformin | −0.0983 | 0.1852 |
HDW (g/dL) | −0.0002 | 0.9976 |
RDW (%) | −0.0508 | 0.4943 |
Albumin (g/dL) | 0.2148 | 0.0035 * |
LDL Chol (mg/dL) | 0.0170 | 0.8189 |
SII | −0.0052 | 0.9442 |
BMI (kg/m2) | −0.3951 | <0.0001 * |
ARB | −0.0192 | 0.7963 |
Metformin | −0.1186 | 0.1099 |
HDW (g/dL) | 0.0072 | 0.9228 |
RDW (%) | −0.0179 | 0.8091 |
Albumin (g/dL) | 0.2088 | 0.0046 * |
LDL Chol (mg/dL) | 0.0184 | 0.8047 |
SIRI | −0.1935 | 0.0087 * |
BMI (kg/m2) | −0.3828 | <0.0001 * |
ARB | −0.0336 | 0.6516 |
Metformin | −0.1063 | 0.1522 |
HDW (g/dL) | 0.0027 | 0.9710 |
RDW (%) | −0.0340 | 0.6475 |
Albumin (g/dL) | 0.2121 | 0.0039 * |
LDL Chol (mg/dL) | 0.0291 | 0.6951 |
AISI | −0.1132 | 0.1272 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pau, M.C.; Zinellu, A.; Mangoni, A.A.; Paliogiannis, P.; Lacana, M.R.; Fois, S.S.; Mellino, S.; Fois, A.G.; Carru, C.; Zinellu, E.; et al. Evaluation of Inflammation and Oxidative Stress Markers in Patients with Obstructive Sleep Apnea (OSA). J. Clin. Med. 2023, 12, 3935. https://doi.org/10.3390/jcm12123935
Pau MC, Zinellu A, Mangoni AA, Paliogiannis P, Lacana MR, Fois SS, Mellino S, Fois AG, Carru C, Zinellu E, et al. Evaluation of Inflammation and Oxidative Stress Markers in Patients with Obstructive Sleep Apnea (OSA). Journal of Clinical Medicine. 2023; 12(12):3935. https://doi.org/10.3390/jcm12123935
Chicago/Turabian StylePau, Maria Carmina, Angelo Zinellu, Arduino A. Mangoni, Panagiotis Paliogiannis, Maria Roberta Lacana, Sara Solveig Fois, Sabrina Mellino, Alessandro G. Fois, Ciriaco Carru, Elisabetta Zinellu, and et al. 2023. "Evaluation of Inflammation and Oxidative Stress Markers in Patients with Obstructive Sleep Apnea (OSA)" Journal of Clinical Medicine 12, no. 12: 3935. https://doi.org/10.3390/jcm12123935
APA StylePau, M. C., Zinellu, A., Mangoni, A. A., Paliogiannis, P., Lacana, M. R., Fois, S. S., Mellino, S., Fois, A. G., Carru, C., Zinellu, E., & Pirina, P. (2023). Evaluation of Inflammation and Oxidative Stress Markers in Patients with Obstructive Sleep Apnea (OSA). Journal of Clinical Medicine, 12(12), 3935. https://doi.org/10.3390/jcm12123935