Building Team Medicine in the Management of CNS Metastases
Abstract
:SUMMARY TABLE
|
|
|
|
|
|
|
1. Background
2. Multi-Disciplinary Clinical Management of Brain Metastases
2.1. Epidemiology and Prognosis of Brain Metastases
2.2. Surgical Therapies
2.3. Radiation Therapies
2.4. Systemic Therapies
3. Multi-Disciplinary Clinical Management of Leptomeningeal Metastases
3.1. Epidemiology and Prognosis of LM
3.2. Surgical Therapies
3.3. Radiation Therapies
3.4. Systemic Therapies
3.5. CSF-Administered Therapies
4. Optimizing Management of CNS Metastases across a Health Care System (and Beyond)
4.1. Tumor Boards
4.2. Telemedicine
5. Integration of Science into Clinical Care
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lamba, N.; Wen, P.Y.; Aizer, A.A. Epidemiology of brain metastases and leptomeningeal disease. Neuro Oncol. 2021, 23, 1447–1456. [Google Scholar] [CrossRef]
- Amin, S.; Baine, M.; Meza, J.; Lin, C. The impact of treatment facility type on the survival of brain metastases patients regardless of the primary cancer type. BMC Cancer 2021, 21, 387. [Google Scholar] [CrossRef] [PubMed]
- Koshy, M.; Sher, D.J.; Spiotto, M.; Husain, Z.; Engelhard, H.; Slavin, K.; Nicholas, M.K.; Weichselbaum, R.R.; Rusthoven, C. Association between hospital volume and receipt of treatment and survival in patients with glioblastoma. J. Neurooncol. 2017, 135, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Lukas, R.V.; Lesniak, M.S.; Stupp, R. Hospital volume and group expertise in newly diagnosed glioblastoma management. J. Neurooncol. 2018, 136, 213–214. [Google Scholar] [CrossRef]
- Moss, N.S.; El Ahmadieh, T.Y.; Brown, S.; Chen, J.; Imber, B.S.; Pike, L.; Reiner, A.S.; Panageas, K.S.; Brennan, C.; Tabar, V.; et al. Integrated Multidisciplinary Brain Metastasis Care Reduces Patient Visits and Shortens Time to Adjuvant Irradiation. JCO Oncol. Pract. 2022, 18, e1732–e1738. [Google Scholar] [CrossRef]
- Bajwa, M.H.; Bakhshi, S.K.; Shamim, M.S. Role of multidisciplinary neuro-oncology tumour boards in cancer management. J. Pak. Med. Assoc. 2021, 71, 2285–2286. [Google Scholar]
- Ostrom, Q.T.; Wright, C.H.; Barnholtz-Sloan, J.S. Brain metastases: Epidemiology. Handb. Clin. Neurol. 2018, 149, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Abdulhaleem, M.; Ruiz, J.; Cramer, C.; Xing, F.; Lo, H.W.; Su, J.; Chan, M.D. Brain metastasis prognostic nomograms and brain metastasis velocity: A narrative review. Chin. Clin. Oncol. 2022, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Farris, M.; McTyre, E.R.; Cramer, C.K.; Hughes, R.; Randolph, D.M.; Ayala-Peacock, D.N.; Bourland, J.D.; Ruiz, J.; Watabe, K.; Laxton, A.W.; et al. Brain Metastasis Velocity: A Novel Prognostic Metric Predictive of Overall Survival and Freedom From Whole-Brain Radiation Therapy After Distant Brain Failure Following Upfront Radiosurgery Alone. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 131–141. [Google Scholar] [CrossRef]
- Gaspar, L.; Scott, C.; Rotman, M.; Asbell, S.; Phillips, T.; Wasserman, T.; McKenna, W.G.; Byhardt, R. Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int. J. Radiat. Oncol. Biol. Phys. 1997, 37, 745–751. [Google Scholar] [CrossRef]
- Sperduto, P.W.; Mesko, S.; Li, J.; Cagney, D.; Aizer, A.; Lin, N.U.; Nesbit, E.; Kruser, T.J.; Chan, J.; Braunstein, S.; et al. Survival in Patients With Brain Metastases: Summary Report on the Updated Diagnosis-Specific Graded Prognostic Assessment and Definition of the Eligibility Quotient. J. Clin. Oncol. 2020, 38, 3773–3784. [Google Scholar] [CrossRef] [PubMed]
- Patchell, R.A.; Tibbs, P.A.; Walsh, J.W.; Dempsey, R.J.; Maruyama, Y.; Kryscio, R.J.; Markesbery, W.R.; Macdonald, J.S.; Young, B. A randomized trial of surgery in the treatment of single metastases to the brain. N. Engl. J. Med. 1990, 322, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Kamath, A.A.; Friedman, D.D.; Hacker, C.D.; Smyth, M.D.; Limbrick, D.D., Jr.; Kim, A.H.; Hawasli, A.H.; Leuthardt, E.C. MRI-Guided Interstitial Laser Ablation for Intracranial Lesions: A Large Single-Institution Experience of 133 Cases. Stereotact. Funct. Neurosurg. 2017, 95, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Luther, E.; Mansour, S.; Echeverry, N.; McCarthy, D.; Eichberg, D.G.; Shah, A.; Nada, A.; Berry, K.; Kader, M.; Ivan, M.; et al. Laser Ablation for Cerebral Metastases. Neurosurg. Clin. N. Am. 2020, 31, 537–547. [Google Scholar] [CrossRef]
- Luther, E.; McCarthy, D.; Shah, A.; Semonche, A.; Borowy, V.; Burks, J.; Eichberg, D.G.; Komotar, R.; Ivan, M. Radical Laser Interstitial Thermal Therapy Ablation Volumes Increase Progression-Free Survival in Biopsy-Proven Radiation Necrosis. World Neurosurg. 2020, 136, e646–e659. [Google Scholar] [CrossRef]
- Sujijantarat, N.; Hong, C.S.; Owusu, K.A.; Elsamadicy, A.A.; Antonios, J.P.; Koo, A.B.; Baehring, J.M.; Chiang, V.L. Laser interstitial thermal therapy (LITT) vs. bevacizumab for radiation necrosis in previously irradiated brain metastases. J. Neurooncol. 2020, 148, 641–649. [Google Scholar] [CrossRef]
- Srinivasan, E.S.; Grabowski, M.M.; Nahed, B.V.; Barnett, G.H.; Fecci, P.E. Laser interstitial thermal therapy for brain metastases. Neurooncol. Adv. 2021, 3, v16–v25. [Google Scholar] [CrossRef]
- Hong, C.S.; Deng, D.; Vera, A.; Chiang, V.L. Laser-interstitial thermal therapy compared to craniotomy for treatment of radiation necrosis or recurrent tumor in brain metastases failing radiosurgery. J. Neurooncol. 2019, 142, 309–317. [Google Scholar] [CrossRef]
- Ahluwalia, M.; Barnett, G.H.; Deng, D.; Tatter, S.B.; Laxton, A.W.; Mohammadi, A.M.; Leuthardt, E.; Chamoun, R.; Judy, K.; Asher, A.; et al. Laser ablation after stereotactic radiosurgery: A multicenter prospective study in patients with metastatic brain tumors and radiation necrosis. J. Neurosurg. JNS 2019, 130, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Lievens, Y.; Guckenberger, M.; Gomez, D.; Hoyer, M.; Iyengar, P.; Kindts, I.; Méndez Romero, A.; Nevens, D.; Palma, D.; Park, C.; et al. Defining oligometastatic disease from a radiation oncology perspective: An ESTRO-ASTRO consensus document. Radiother. Oncol. 2020, 148, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Slotman, B.; Faivre-Finn, C.; Kramer, G.; Rankin, E.; Snee, M.; Hatton, M.; Postmus, P.; Collette, L.; Musat, E.; Senan, S. Prophylactic cranial irradiation in extensive small-cell lung cancer. N. Engl. J. Med. 2007, 357, 664–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manapov, F.; Käsmann, L.; Roengvoraphoj, O.; Dantes, M.; Schmidt-Hegemann, N.S.; Belka, C.; Eze, C. Prophylactic cranial irradiation in small-cell lung cancer: Update on patient selection, efficacy and outcomes. Lung Cancer 2018, 9, 49–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crockett, C.; Belderbos, J.; Levy, A.; McDonald, F.; Le Péchoux, C.; Faivre-Finn, C. Prophylactic cranial irradiation (PCI), hippocampal avoidance (HA) whole brain radiotherapy (WBRT) and stereotactic radiosurgery (SRS) in small cell lung cancer (SCLC): Where do we stand? Lung Cancer 2021, 162, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Pospisil, P.; Kazda, T.; Hynkova, L.; Bulik, M.; Dobiaskova, M.; Burkon, P.; Laack, N.N.; Slampa, P.; Jancalek, R. Post-WBRT cognitive impairment and hippocampal neuronal depletion measured by in vivo metabolic MR spectroscopy: Results of prospective investigational study. Radiother. Oncol. 2017, 122, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, E.J.; Jones, B.M.; Dickstein, D.R.; Green, S.; Germano, I.M.; Palmer, J.D.; Laack, N.; Brown, P.D.; Gondi, V.; Wefel, J.S.; et al. The Cognitive Effects of Radiotherapy for Brain Metastases. Front. Oncol. 2022, 12, 893264. [Google Scholar] [CrossRef]
- Gondi, V.; Pugh, S.L.; Tome, W.A.; Caine, C.; Corn, B.; Kanner, A.; Rowley, H.; Kundapur, V.; DeNittis, A.; Greenspoon, J.N.; et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): A phase II multi-institutional trial. J. Clin. Oncol. 2014, 32, 3810–3816. [Google Scholar] [CrossRef]
- Brown, P.D.; Pugh, S.; Laack, N.N.; Wefel, J.S.; Khuntia, D.; Meyers, C.; Choucair, A.; Fox, S.; Suh, J.H.; Roberge, D.; et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: A randomized, double-blind, placebo-controlled trial. Neuro Oncol. 2013, 15, 1429–1437. [Google Scholar] [CrossRef]
- Brown, P.D.; Gondi, V.; Pugh, S.; Tome, W.A.; Wefel, J.S.; Armstrong, T.S.; Bovi, J.A.; Robinson, C.; Konski, A.; Khuntia, D.; et al. Hippocampal Avoidance During Whole-Brain Radiotherapy Plus Memantine for Patients With Brain Metastases: Phase III Trial NRG Oncology CC001. J. Clin. Oncol. 2020, 38, 1019–1029. [Google Scholar] [CrossRef]
- Shinde, A.; Akhavan, D.; Sedrak, M.; Glaser, S.; Amini, A. Shifting paradigms: Whole brain radiation therapy versus stereotactic radiosurgery for brain metastases. CNS Oncol. 2019, 8, Cns27. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ludmir, E.; Wang, Y.; Guha-Thakurta, N.; McAleer, M.; Settle, S.; Yeboa, D.; Ghia, A.; McGovern, S.; Chung, C. Stereotactic radiosurgery versus whole-brain radiation therapy for patients with 4-15 brain metastases: A phase III randomized controlled trial. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, S21–S22. [Google Scholar] [CrossRef]
- Vogelbaum, M.A.; Brown, P.D.; Messersmith, H.; Brastianos, P.K.; Burri, S.; Cahill, D.; Dunn, I.F.; Gaspar, L.E.; Gatson, N.T.N.; Gondi, V.; et al. Treatment for Brain Metastases: ASCO-SNO-ASTRO Guideline. J. Clin. Oncol. 2022, 40, 492–516. [Google Scholar] [CrossRef]
- Akanda, Z.Z.; Hong, W.; Nahavandi, S.; Haghighi, N.; Phillips, C.; Kok, D.L. Post-operative stereotactic radiosurgery following excision of brain metastases: A systematic review and meta-analysis. Radiother. Oncol. 2020, 142, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.D.; Ballman, K.V.; Cerhan, J.H.; Anderson, S.K.; Carrero, X.W.; Whitton, A.C.; Greenspoon, J.; Parney, I.F.; Laack, N.N.I.; Ashman, J.B.; et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): A multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Kayama, T.; Sato, S.; Sakurada, K.; Mizusawa, J.; Nishikawa, R.; Narita, Y.; Sumi, M.; Miyakita, Y.; Kumabe, T.; Sonoda, Y.; et al. Effects of Surgery With Salvage Stereotactic Radiosurgery Versus Surgery With Whole-Brain Radiation Therapy in Patients With One to Four Brain Metastases (JCOG0504): A Phase III, Noninferiority, Randomized Controlled Trial. J. Clin. Oncol. 2018, 36, 3282–3289. [Google Scholar] [CrossRef]
- Palmer, J.D.; Perlow, H.K.; Matsui, J.K.; Ho, C.; Prasad, R.N.; Liu, K.; Upadhyay, R.; Klamer, B.; Wang, J.; Damante, M.; et al. Fractionated pre-operative stereotactic radiotherapy for patients with brain metastases: A multi-institutional analysis. J. Neurooncol. 2022, 159, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Perlow, H.K.; Ho, C.; Matsui, J.K.; Prasad, R.N.; Klamer, B.G.; Wang, J.; Damante, M.; Upadhyay, R.; Thomas, E.; Blakaj, D.M.; et al. Comparing pre-operative versus post-operative single and multi-fraction stereotactic radiotherapy for patients with resectable brain metastases. Clin. Transl. Radiat. Oncol. 2023, 38, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Han, J.Y.; Katakami, N.; Kim, H.R.; Hodge, R.; Kaur, P.; Brown, A.P.; Ghiorghiu, D.; et al. CNS Efficacy of Osimertinib in Patients With T790M-Positive Advanced Non-Small-Cell Lung Cancer: Data From a Randomized Phase III Trial (AURA3). J. Clin. Oncol. 2018, 36, 2702–2709. [Google Scholar] [CrossRef]
- Lin, N.U.; Borges, V.; Anders, C.; Murthy, R.K.; Paplomata, E.; Hamilton, E.; Hurvitz, S.; Loi, S.; Okines, A.; Abramson, V.; et al. Intracranial Efficacy and Survival With Tucatinib Plus Trastuzumab and Capecitabine for Previously Treated HER2-Positive Breast Cancer With Brain Metastases in the HER2CLIMB Trial. J. Clin. Oncol. 2020, 38, 2610–2619. [Google Scholar] [CrossRef]
- Saleem, K.; Davar, D. The role of systemic therapy in melanoma brain metastases: A narrative review. Chin. Clin. Oncol. 2022, 11, 24. [Google Scholar] [CrossRef]
- Hirsch, L.; Martinez Chanza, N.; Farah, S.; Xie, W.; Flippot, R.; Braun, D.A.; Rathi, N.; Thouvenin, J.; Collier, K.A.; Seront, E.; et al. Clinical Activity and Safety of Cabozantinib for Brain Metastases in Patients With Renal Cell Carcinoma. JAMA Oncol. 2021, 7, 1815–1823. [Google Scholar] [CrossRef]
- Darvin, P.; Toor, S.M.; Sasidharan Nair, V.; Elkord, E. Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp. Mol. Med. 2018, 50, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tawbi, H.A.; Forsyth, P.A.; Hodi, F.S.; Algazi, A.P.; Hamid, O.; Lao, C.D.; Moschos, S.J.; Atkins, M.B.; Lewis, K.; Postow, M.A.; et al. Long-term outcomes of patients with active melanoma brain metastases treated with combination nivolumab plus ipilimumab (CheckMate 204): Final results of an open-label, multicentre, phase 2 study. Lancet Oncol. 2021, 22, 1692–1704. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, C.; Gastino, A.; Cerrato, M.; Badellino, S.; Ricardi, U.; Levis, M. Modern Radiation Therapy for the Management of Brain Metastases From Non-Small Cell Lung Cancer: Current Approaches and Future Directions. Front. Oncol. 2021, 11, 772789. [Google Scholar] [CrossRef]
- Le Rhun, E.; Taillibert, S.; Chamberlain, M.C. Carcinomatous meningitis: Leptomeningeal metastases in solid tumors. Surg. Neurol. Int. 2013, 4, S265–S288. [Google Scholar] [CrossRef] [PubMed]
- Le Rhun, E.; Galanis, E. Leptomeningeal metastases of solid cancer. Curr. Opin. Neurol. 2016, 29, 797–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, J.H.; Lee, S.H.; Kim, S.; Joo, J.; Yoo, H.; Lee, S.H.; Shin, S.H.; Gwak, H.S. Risk for leptomeningeal seeding after resection for brain metastases: Implication of tumor location with mode of resection. J. Neurosurg. 2012, 116, 984–993. [Google Scholar] [CrossRef]
- Clarke, J.L.; Perez, H.R.; Jacks, L.M.; Panageas, K.S.; Deangelis, L.M. Leptomeningeal metastases in the MRI era. Neurology 2010, 74, 1449–1454. [Google Scholar] [CrossRef] [Green Version]
- Rinehardt, H.; Kassem, M.; Morgan, E.; Palettas, M.; Stephens, J.A.; Suresh, A.; Ganju, A.; Lustberg, M.; Wesolowski, R.; Sardesai, S.; et al. Assessment of Leptomeningeal Carcinomatosis Diagnosis, Management and Outcomes in Patients with Solid Tumors Over a Decade of Experience. Eur. J. Breast Health 2021, 17, 371–377. [Google Scholar] [CrossRef]
- Le Rhun, E.; Preusser, M.; van den Bent, M.; Andratschke, N.; Weller, M. How we treat patients with leptomeningeal metastases. ESMO Open 2019, 4, e000507. [Google Scholar] [CrossRef] [Green Version]
- Lukas, R.V. Leptomeningeal metastases—What outcomes should we measure and how? Neuro-Oncology 2022, 24, 1736–1737. [Google Scholar] [CrossRef]
- Glover, R.L.; Brook, A.L.; Welch, M.R. Teaching NeuroImages: Leptomeningeal lung carcinoma. Neurology 2014, 82, e183–e184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokkoris, C.P. Leptomeningeal carcinomatosis. How does cancer reach the pia-arachnoid? Cancer 1983, 51, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Boyle, R.; Thomas, M.; Adams, J.H. Diffuse involvement of the leptomeninges by tumour--a clinical and pathological study of 63 cases. Postgrad. Med. J. 1980, 56, 149–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamberlain, M.C.; Baik, C.S.; Gadi, V.K.; Bhatia, S.; Chow, L.Q. Systemic therapy of brain metastases: Non-small cell lung cancer, breast cancer, and melanoma. Neuro Oncol. 2017, 19, i1–i24. [Google Scholar] [CrossRef] [Green Version]
- Pardridge, W.M. CSF, blood-brain barrier, and brain drug delivery. Expert. Opin. Drug. Deliv. 2016, 13, 963–975. [Google Scholar] [CrossRef]
- Boire, A.; Zou, Y.; Shieh, J.; Macalinao, D.G.; Pentsova, E.; Massagué, J. Complement Component 3 Adapts the Cerebrospinal Fluid for Leptomeningeal Metastasis. Cell 2017, 168, 1101–1113.e13. [Google Scholar] [CrossRef] [Green Version]
- Karschnia, P.; Le Rhun, E.; Vogelbaum, M.A.; van den Bent, M.; Grau, S.J.; Preusser, M.; Soffietti, R.; von Baumgarten, L.; Westphal, M.; Weller, M.; et al. The evolving role of neurosurgery for central nervous system metastases in the era of personalized cancer therapy. Eur. J. Cancer 2021, 156, 93–108. [Google Scholar] [CrossRef]
- Murakami, Y.; Ichikawa, M.; Bakhit, M.; Jinguji, S.; Sato, T.; Fujii, M.; Sakuma, J.; Saito, K. Palliative shunt surgery for patients with leptomeningeal metastasis. Clin. Neurol. Neurosurg. 2018, 168, 175–178. [Google Scholar] [CrossRef]
- Montes de Oca Delgado, M.; Cacho Díaz, B.; Santos Zambrano, J.; Guerrero Juárez, V.; López Martínez, M.S.; Castro Martínez, E.; Avendaño Méndez-Padilla, J.; Mejía Pérez, S.; Reyes Moreno, I.; Gutiérrez Aceves, A.; et al. The Comparative Treatment of Intraventricular Chemotherapy by Ommaya Reservoir vs. Lumbar Puncture in Patients With Leptomeningeal Carcinomatosis. Front. Oncol. 2018, 8, 509. [Google Scholar] [CrossRef]
- Tian, X.; Liu, K.; Hou, Y.; Cheng, J.; Zhang, J. The evolution of proton beam therapy: Current and future status. Mol. Clin. Oncol. 2018, 8, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.J.; Wijetunga, N.A.; Yamada, J.; Wolden, S.; Mehallow, M.; Goldman, D.A.; Zhang, Z.; Young, R.J.; Kris, M.G.; Yu, H.A.; et al. Clinical trial of proton craniospinal irradiation for leptomeningeal metastases. Neuro Oncol. 2021, 23, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.T.; Wijetunga, N.A.; Pentsova, E.; Wolden, S.; Young, R.J.; Correa, D.; Zhang, Z.; Zheng, J.; Steckler, A.; Bucwinska, W.; et al. Randomized Phase II Trial of Proton Craniospinal Irradiation Versus Photon Involved-Field Radiotherapy for Patients With Solid Tumor Leptomeningeal Metastasis. J. Clin. Oncol. 2022, 40, 3858–3867. [Google Scholar] [CrossRef]
- Glantz, M.J.; Cole, B.F.; Recht, L.; Akerley, W.; Mills, P.; Saris, S.; Hochberg, F.; Calabresi, P.; Egorin, M.J. High-dose intravenous methotrexate for patients with nonleukemic leptomeningeal cancer: Is intrathecal chemotherapy necessary? J. Clin. Oncol. 1998, 16, 1561–1567. [Google Scholar] [CrossRef] [PubMed]
- Kapke, J.T.; Schneidewend, R.J.; Jawa, Z.A.; Huang, C.-C.; Connelly, J.M.; Chitambar, C.R. High-dose intravenous methotrexate in the management of breast cancer with leptomeningeal disease: Case series and review of the literature. Hematol./Oncol. Stem Cell. Ther. 2019, 12, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Kumthekar, P.; Tang, S.C.; Brenner, A.J.; Kesari, S.; Piccioni, D.E.; Anders, C.; Carrillo, J.; Chalasani, P.; Kabos, P.; Puhalla, S.; et al. ANG1005, a Brain-Penetrating Peptide-Drug Conjugate, Shows Activity in Patients with Breast Cancer with Leptomeningeal Carcinomatosis and Recurrent Brain Metastases. Clin. Cancer Res. 2020, 26, 2789–2799. [Google Scholar] [CrossRef] [Green Version]
- Prakadan, S.M.; Alvarez-Breckenridge, C.A.; Markson, S.C.; Kim, A.E.; Klein, R.H.; Nayyar, N.; Navia, A.W.; Kuter, B.M.; Kolb, K.E.; Bihun, I.; et al. Genomic and transcriptomic correlates of immunotherapy response within the tumor microenvironment of leptomeningeal metastases. Nat. Commun. 2021, 12, 5955. [Google Scholar] [CrossRef]
- Cohen, S.P.; Dragovich, A. Intrathecal analgesia. Anesthesiol. Clin. 2007, 25, 863–882, viii. [Google Scholar] [CrossRef]
- Palmisciano, P.; Watanabe, G.; Conching, A.; Ogasawara, C.; Vojnic, M.; D’Amico, R.S. Intrathecal therapy for the management of leptomeningeal metastatic disease: A scoping review of the current literature and ongoing clinical trials. J. Neurooncol. 2022, 160, 79–100. [Google Scholar] [CrossRef]
- Khang, M.; Bindra, R.S.; Mark Saltzman, W. Intrathecal delivery and its applications in leptomeningeal disease. Adv. Drug. Deliv. Rev. 2022, 186, 114338. [Google Scholar] [CrossRef]
- Beauchesne, P. Intrathecal chemotherapy for treatment of leptomeningeal dissemination of metastatic tumours. Lancet Oncol. 2010, 11, 871–879. [Google Scholar] [CrossRef]
- Pan, Z.; Yang, G.; He, H.; Cui, J.; Li, W.; Yuan, T.; Chen, K.; Jiang, T.; Gao, P.; Sun, Y.; et al. Intrathecal pemetrexed combined with involved-field radiotherapy as a first-line intra-CSF therapy for leptomeningeal metastases from solid tumors: A phase I/II study. Ther. Adv. Med. Oncol. 2020, 12, 1758835920937953. [Google Scholar] [CrossRef] [PubMed]
- Jaeckle, K.A.; Dixon, J.G.; Anderson, S.K.; Moreno-Aspitia, A.; Colon-Otero, G.; Hebenstreit, K.; Patel, T.A.; Reddy, S.L.; Perez, E.A. Intra-CSF topotecan in treatment of breast cancer patients with leptomeningeal metastases. Cancer Med. 2020, 9, 7935–7942. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.C. Neurotoxicity of intra-CSF liposomal cytarabine (DepoCyt) administered for the treatment of leptomeningeal metastases: A retrospective case series. J. Neuro-Oncol. 2012, 109, 143–148. [Google Scholar] [CrossRef]
- Kumthekar, P.U.; Avram, M.J.; Lassman, A.B.; Lin, N.U.; Lee, E.; Grimm, S.A.; Schwartz, M.; Bell Burdett, K.L.; Lukas, R.V.; Dixit, K.; et al. A Phase I/II Study of Intrathecal Trastuzumab in HER-2 Positive Cancer with Leptomeningeal Metastases: Safety, Efficacy, and Cerebrospinal Fluid Pharmacokinetics. Neuro Oncol. 2022, 25, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Oberkampf, F.; Gutierrez, M.; Trabelsi Grati, O.; Le Rhun, É.; Trédan, O.; Turbiez, I.; Kadi, A.; Dubot, C.; Taillibert, S.; Vacher, S.; et al. Phase II study of intrathecal administration of trastuzumab in patients with HER2-positive breast cancer with leptomeningeal metastasis. Neuro Oncol. 2022, 25, 365–374. [Google Scholar] [CrossRef]
- Gaudino, S.; Giordano, C.; Magnani, F.; Cottonaro, S.; Infante, A.; Sabatino, G.; La Rocca, G.; Della Pepa, G.M.; D’Alessandris, Q.G.; Pallini, R.; et al. Neuro-Oncology Multidisciplinary Tumor Board: The Point of View of the Neuroradiologist. J. Pers. Med. 2022, 12, 135. [Google Scholar] [CrossRef]
- El Saghir, N.S.; Charara, R.N.; Kreidieh, F.Y.; Eaton, V.; Litvin, K.; Farhat, R.A.; Khoury, K.E.; Breidy, J.; Tamim, H.; Eid, T.A. Global Practice and Efficiency of Multidisciplinary Tumor Boards: Results of an American Society of Clinical Oncology International Survey. J. Glob. Oncol. 2015, 1, 57–64. [Google Scholar] [CrossRef]
- Lamb, B.W.; Green, J.S.; Benn, J.; Brown, K.F.; Vincent, C.A.; Sevdalis, N. Improving decision making in multidisciplinary tumor boards: Prospective longitudinal evaluation of a multicomponent intervention for 1421 patients. J. Am. Coll. Surg. 2013, 217, 412–420. [Google Scholar] [CrossRef]
- Liu, J.C.; Kaplon, A.; Blackman, E.; Miyamoto, C.; Savior, D.; Ragin, C. The impact of the multidisciplinary tumor board on head and neck cancer outcomes. Laryngoscope 2020, 130, 946–950. [Google Scholar] [CrossRef]
- Quero, G.; Salvatore, L.; Fiorillo, C.; Bagalà, C.; Menghi, R.; Maria, B.; Cina, C.; Laterza, V.; Di Stefano, B.; Maratta, M.G.; et al. The impact of the multidisciplinary tumor board (MDTB) on the management of pancreatic diseases in a tertiary referral center. ESMO Open. 2021, 6, 100010. [Google Scholar] [CrossRef]
- Schäfer, N.; Bumes, E.; Eberle, F.; Fox, V.; Gessler, F.; Giordano, F.A.; Konczalla, J.; Onken, J.; Ottenhausen, M.; Scherer, M.; et al. Implementation, relevance, and virtual adaptation of neuro-oncological tumor boards during the COVID-19 pandemic: A nationwide provider survey. J. Neurooncol. 2021, 153, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Wasilewski, A.; Mohile, N. Tele-neuro-oncology: Current Practices and Future Directions. Curr. Oncol. Rep. 2022, 24, 99–103. [Google Scholar] [CrossRef]
- Strowd, R.E.; Dunbar, E.M.; Gan, H.K.; Kurz, S.; Jordan, J.T.; Mandel, J.J.; Mohile, N.A.; Nevel, K.S.; Taylor, J.W.; Ullrich, N.J.; et al. Practical guidance for telemedicine use in neuro-oncology. Neurooncol. Pract. 2022, 9, 91–104. [Google Scholar] [CrossRef]
- Liu, J.K.C.; Kang, R.; Bilenkin, A.; Prorok, R.; Whiting, J.; Patel, K.B.; Beer-Furlan, A.; Naso, C.; Rogers, A.; Castro, X.B.; et al. Patient satisfaction and cost savings analysis of the telemedicine program within a neuro-oncology department. J. Neurooncol. 2022, 160, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Fonkem, E.; Gatson, N.T.N.; Tadipatri, R.; Cole, S.; Azadi, A.; Sanchez, M.; Stefanowicz, E. Telemedicine review in neuro-oncology: Comparative experiential analysis for Barrow Neurological Institute and Geisinger Health during the 2020 COVID-19 pandemic. Neurooncol. Pract. 2021, 8, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Ekhator, C.; Kesari, S.; Tadipatri, R.; Fonkem, E.; Grewal, J. The Emergence of Virtual Tumor Boards in Neuro-Oncology: Opportunities and Challenges. Cureus 2022, 14, e25682. [Google Scholar] [CrossRef] [PubMed]
- Horbinski, C.; Ligon, K.L.; Brastianos, P.; Huse, J.T.; Venere, M.; Chang, S.; Buckner, J.; Cloughesy, T.; Jenkins, R.B.; Giannini, C.; et al. The medical necessity of advanced molecular testing in the diagnosis and treatment of brain tumor patients. Neuro Oncol. 2019, 21, 1498–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farago, A.F.; Azzoli, C.G. Beyond ALK and ROS1: RET, NTRK, EGFR and BRAF gene rearrangements in non-small cell lung cancer. Transl. Lung Cancer Res. 2017, 6, 550–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brastianos, P.K.; Carter, S.L.; Santagata, S.; Cahill, D.P.; Taylor-Weiner, A.; Jones, R.T.; Van Allen, E.M.; Lawrence, M.S.; Horowitz, P.M.; Cibulskis, K.; et al. Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discov. 2015, 5, 1164–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baskaran, A.B.; Buerki, R.A.; Khan, O.H.; Gondi, V.; Stupp, R.; Lukas, R.V.; Villaflor, V.M. Building Team Medicine in the Management of CNS Metastases. J. Clin. Med. 2023, 12, 3901. https://doi.org/10.3390/jcm12123901
Baskaran AB, Buerki RA, Khan OH, Gondi V, Stupp R, Lukas RV, Villaflor VM. Building Team Medicine in the Management of CNS Metastases. Journal of Clinical Medicine. 2023; 12(12):3901. https://doi.org/10.3390/jcm12123901
Chicago/Turabian StyleBaskaran, Archit B., Robin A. Buerki, Osaama H. Khan, Vinai Gondi, Roger Stupp, Rimas V. Lukas, and Victoria M. Villaflor. 2023. "Building Team Medicine in the Management of CNS Metastases" Journal of Clinical Medicine 12, no. 12: 3901. https://doi.org/10.3390/jcm12123901
APA StyleBaskaran, A. B., Buerki, R. A., Khan, O. H., Gondi, V., Stupp, R., Lukas, R. V., & Villaflor, V. M. (2023). Building Team Medicine in the Management of CNS Metastases. Journal of Clinical Medicine, 12(12), 3901. https://doi.org/10.3390/jcm12123901