Visual Snow: A Review on Pathophysiology and Treatment
Abstract
:1. Introduction
1.1. Additional Visual Symptoms
1.2. Non-Visual Symptoms
1.3. Differential Diagnosis
2. Materials and Methods
3. Results
4. Discussion
4.1. Pathophysiology
4.2. Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puledda, F.; Schankin, C.; Digre, K.; Goadsby, P.J. Visual snow syndrome: What we know so far. Curr. Opin. Neurol. 2018, 31, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Berkowitz, E.; River, Y.; Digre, K.; Tiosano, B.; Kesler, A. Visual Snow: A Case Series from Israel. Case Rep. Ophthalmol. 2020, 11, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Metzler, A.I.; Robertson, C.E. Visual Snow Syndrome: Proposed Criteria, Clinical Implications, and Pathophysiology. Curr. Neurol. Neurosci. Rep. 2018, 18, 52. [Google Scholar] [CrossRef] [PubMed]
- Schankin, C.J.; Goadsby, P.J. Visual Snow—Persistent Positive Visual Phenomenon Distinct from Migraine Aura. Curr. Pain Headache Rep. 2015, 19, 23. [Google Scholar] [CrossRef]
- Schankin, C.J.; Maniyar, F.H.; Digre, K.B.; Goadsby, P.J. ‘Visual snow’—A disorder distinct from persistent migraine aura. Brain 2014, 137, 1419–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dongen, R.M.; Alderliefste, G.J.; Onderwater, G.L.J.; Ferrari, M.D.; Terwindt, G.M. Migraine prevalence in visual snow with prior illicit drug use (hallucinogen persisting perception disorder) versus without. Eur. J. Neurol. 2021, 28, 2631–2638. [Google Scholar] [CrossRef]
- Ciuffreda, K.J.; Han, M.E.; Tannen, B.; Rutner, D. Visual snow syndrome: Evolving neuro-optometric considerations in concussion/mild traumatic brain injury. Concussion 2021, 6, CNC89. [Google Scholar] [CrossRef]
- Yoo, Y.-J.; Yang, H.K.; Choi, J.-Y.; Kim, J.-S.; Hwang, J.-M. Neuro-ophthalmologic Findings in Visual Snow Syndrome. J. Clin. Neurol. 2020, 16, 646–652. [Google Scholar] [CrossRef]
- White, O.B.; Clough, M.; McKendrick, A.M.; Fielding, J. Visual Snow: Visual Misperception. J. Neuro-Ophthalmol. 2018, 38, 514–521. [Google Scholar] [CrossRef]
- Barral, E.; Silva, E.M.; García-Azorín, D.; Viana, M.; Puledda, F. Differential Diagnosis of Visual Phenomena Associated with Migraine: Spotlight on Aura and Visual Snow Syndrome. Diagnostics 2023, 13, 252. [Google Scholar] [CrossRef]
- Eren, O.; Schankin, C.J. Insights into pathophysiology and treatment of visual snow syndrome: A systematic review. Prog. Brain Res. 2020, 255, 311–326. [Google Scholar] [CrossRef] [PubMed]
- Aldusary, N.; Traber, G.L.; Freund, P.; Fierz, F.C.; Weber, K.P.; Baeshen, A.; Alghamdi, J.; Saliju, B.; Pazahr, S.; Mazloum, R.; et al. Abnormal Connectivity and Brain Structure in Patients with Visual Snow. Front. Hum. Neurosci. 2020, 14, 582031. [Google Scholar] [CrossRef] [PubMed]
- Eren, O.E.; Ruscheweyh, R.; Rauschel, V.; Eggert, T.; Schankin, C.J.; Straube, A. Magnetic Suppression of Perceptual Accuracy Is Not Reduced in Visual Snow Syndrome. Front. Neurol. 2021, 12, 658857. [Google Scholar] [CrossRef] [PubMed]
- Foletta, P.J.; Clough, M.; McKendrick, A.M.; Solly, E.J.; White, O.B.; Fielding, J. Delayed Onset of Inhibition of Return in Visual Snow Syndrome. Front. Neurol. 2021, 12, 738599. [Google Scholar] [CrossRef]
- Hepschke, J.L.; Martin, P.R.; Fraser, C.L. Short-Wave Sensitive (“Blue”) Cone Activation Is an Aggravating Factor for Visual Snow Symptoms. Front. Neurol. 2021, 12, 697923. [Google Scholar] [CrossRef] [PubMed]
- Hepschke, J.L.; Seymour, R.A.; He, W.; Etchell, A.; Sowman, P.F.; Fraser, C.L. Cortical oscillatory dysrhythmias in visual snow syndrome: A magnetoencephalography study. Brain Commun. 2021, 4, fcab296. [Google Scholar] [CrossRef]
- Latini, F.; Fahlström, M.; Marklund, N.; Feresiadou, A. White matter abnormalities in a patient with visual snow syndrome: New evidence from a diffusion tensor imaging study. Eur. J. Neurol. 2021, 28, 2789–2793. [Google Scholar] [CrossRef]
- Michels, L.; Stämpfli, P.; Aldusary, N.; Piccirelli, M.; Freund, P.; Weber, K.P.; Fierz, F.C.; Kollias, S.; Traber, G. Widespread White Matter Alterations in Patients with Visual Snow Syndrome. Front. Neurol. 2021, 12, 723805. [Google Scholar] [CrossRef]
- Puledda, F.; Bruchhage, M.; O’Daly, O.; Ffytche, D.; Williams, S.C.; Goadsby, P.J. Occipital cortex and cerebellum gray matter changes in visual snow syndrome. Neurology 2020, 95, e1792–e1799. [Google Scholar] [CrossRef]
- Puledda, F.; Ffytche, D.; Lythgoe, D.J.; O’daly, O.; Schankin, C.; Williams, S.C.R.; Goadsby, P.J. Insular and occipital changes in visual snow syndrome: A BOLD fMRI and MRS study. Ann. Clin. Transl. Neurol. 2020, 7, 296–306. [Google Scholar] [CrossRef] [Green Version]
- Puledda, F.; Schankin, C.J.; O’Daly, O.; Ffytche, D.; Eren, O.; Karsan, N.; Williams, S.C.R.; Zelaya, F.; Goadsby, P.J. Localised increase in regional cerebral perfusion in patients with visual snow syndrome: A pseudo-continuous arterial spin labelling study. J. Neurol. Neurosurg. Psychiatry 2022, 92, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Puledda, F.; O’Daly, O.; Schankin, C.; Ffytche, D.; Williams, S.C.; Goadsby, P.J. Disrupted connectivity within visual, attentional and salience networks in the visual snow syndrome. Hum. Brain Mapp. 2021, 42, 2032–2044. [Google Scholar] [CrossRef] [PubMed]
- Puledda, F.; Villar-Martínez, M.D.; Goadsby, P.J. Case Report: Transformation of Visual Snow Syndrome From Episodic to Chronic Associated With Acute Cerebellar Infarct. Front. Neurol. 2022, 13, 811490. [Google Scholar] [CrossRef] [PubMed]
- Schankin, C.J.; Maniyar, F.H.; E Chou, D.; Eller, M.; Sprenger, T.; Goadsby, P.J. Structural and functional footprint of visual snow syndrome. Brain 2020, 143, 1106–1113. [Google Scholar] [CrossRef]
- Shibata, M.; Tsutsumi, K.; Iwabuchi, Y.; Kameyama, M.; Takizawa, T.; Nakahara, T.; Fujiwara, H.; Jinzaki, M.; Nakahara, J.; Dodick, D.W. [123 I]-IMP single-photon emission computed tomography imaging in visual snow syndrome: A case series. Cephalalgia 2020, 40, 1671–1675. [Google Scholar] [CrossRef]
- Solly, E.J.; Clough, M.; McKendrick, A.M.; Foletta, P.; White, O.B.; Fielding, J. Ocular motor measures of visual processing changes in visual snow syndrome. Neurology 2020, 95, e1784–e1791. [Google Scholar] [CrossRef]
- Solly, E.J.; Clough, M.; McKendrick, A.M.; Foletta, P.; White, O.B.; Fielding, J. Eye movement characteristics provide an objective measure of visual processing changes in patients with visual snow syndrome. Sci. Rep. 2021, 11, 9607. [Google Scholar] [CrossRef]
- Strik, M.; Clough, M.; Solly, E.J.; Glarin, R.; White, O.B.; Kolbe, S.C.; Fielding, J. Microstructure in patients with visual snow syndrome: An ultra-high field morphological and quantitative MRI study. Brain Commun. 2022, 4, fcac164. [Google Scholar] [CrossRef]
- Werner, R.N.O.; Gustafson, J.A.O. Case Report: Visual Snow Syndrome after Repetitive Mild Traumatic Brain Injury. Optom. Vis. Sci. 2022, 99, 413–416. [Google Scholar] [CrossRef]
- Grey, V.; Klobusiakova, P.; Minks, E. Can repetitive transcranial magnetic stimulation of the visual cortex ameliorate the state of patients with visual snow? Bratisl. Med. J. 2020, 121, 395–399. [Google Scholar] [CrossRef]
- Coleman, W.; Sengupta, S.; Boisvert, C.J. A case of visual snow treated with phenylephrine. Headache 2021, 61, 792–793. [Google Scholar] [CrossRef] [PubMed]
- Puledda, F.; Vandenbussche, N.; Moreno-Ajona, D.; Eren, O.; Schankin, C.; Goadsby, P.J. Evaluation of treatment response and symptom progression in 400 patients with visual snow syndrome. Br. J. Ophthalmol. 2021, 106, 1318–1324. [Google Scholar] [CrossRef] [PubMed]
- Grande, M.; Lattanzio, L.; Buard, I.; McKendrick, A.M.; Chan, Y.M.; Pelak, V.S. A Study Protocol for an Open-Label Feasibility Treatment Trial of Visual Snow Syndrome With Transcranial Magnetic Stimulation. Front. Neurol. 2021, 12, 724081. [Google Scholar] [CrossRef] [PubMed]
- Guay, M.; Lagman-Bartolome, A.M. Onset of Visual Snow Syndrome After the First Migraine Episode in a Pediatric Patient: A Case Report and Review of Literature. Pediatr. Neurol. 2022, 126, 46–49. [Google Scholar] [CrossRef]
- Naguy, A.M.; Naguy, C.; Singh, A.M. Probable Methylphenidate-Related Reversible “Visual Snow” in a Child With ADHD. Clin. Neuropharmacol. 2022, 45, 105–106. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria |
---|---|
Articles presenting original data Articles published after December 2019 All patients must fulfill VSS criteria or there is a cohort of patients that fulfill them that is considered separately Articles in English | Articles about Hallucinogenic Persisting Perception Disorder |
Reference Number | Patients with VSS (Mean Age) | Controls (Mean Age) | Methods | Results |
---|---|---|---|---|
[12] | 19 (33.3) | 16 (31.6) | Original research: fMRI with an assessment of resting-state functional connectivity (rsFC) Voxel-based morphometry (VBM) | Hyperconnectivity between extrastriate visual and inferior temporal brain regions and between prefrontal and parietal brain regions. Increased grey matter volume in the right lingual gyrus in VSS. |
[13] | 17 (30.0) | 17 (28.3) | Original research: Reduced magnetic suppression of perceptual accuracy (MSPA) | Occipital cortex inhibition assessed with MSPA is not affected in VSS. |
[14] | 40 (26.7) | 20 (25.6) | Original research: An ocular motor version of Posner’s “Inhibition of Return” (IOR) paradigm | Delayed onset of IOR in VSS. |
[15] | 22 (31.8) | 12 (38.4) | Original research: Intuitive Colorimetry testing. | Symptoms are exacerbated by color modulation that selectively increases levels of S-cone excitation. |
[16] | 18 (29) | 16 (31) | Original research: Magnetoencephalography | Significantly higher gamma (40–70 Hz) power in the primary visual cortex and reduced phase-amplitude coupling—hyperactivation and disorganization of cortical activity during early visual processing. |
[17] | 1 (28) | 10 (26) | Case report: Diffusion tensor imaging (DTI)-based parameters | Abnormalities in the dorsal, ventral, and integrative visual streams, and acoustic, optic, and thalamic radiations. |
[18] | 14 (32) | 20 (28.2) | Original research: DTI-based parameters | Abnormalities in prefrontal, temporal, and occipital white matter, superior and middle longitudinal fascicle, and sagittal stratum. When additionally corrected for tinnitus or migraine, less pronounced. |
[19] | 24 (28) | 24 (28) | Original research: MRI with voxel-based morphometry analysis of cerebral and cerebellar anatomy. | Increased gray matter volume in the left primary and secondary visual cortices, left visual motion area V5, and the left cerebellar crus I/lobule VI area. |
[20] | 24 (28) | 24 (28) | Original research: Blood oxygenation level-dependent (BOLD) fMRI during visual-snow-like stimulus Proton Magnetic Resonance Spectroscopy (H-MRS) | Reduced BOLD responses to the visual stimulus in both anterior insulas in VSS. Significant increase of lactate concentrations in the right lingual gyrus in VSS. |
[21] | 24 (28) | 24 (no data) | Original research: MRI with whole-brain maps of regional cerebral blood flow (rCBF) at rest and during visual snow stimulus | Higher rCBF in bilateral cuneus, precuneus, supplementary motor cortex, premotor cortex, posterior cingulate cortex, left primary auditory cortex, fusiform gyrus, and cerebellum at rest and during visual stimulation. Increased rCBF in the right insula during visual stimulation. |
[22] | 24 (28) | 24 (28) | Original research: fMRI: whole-brain maps of functional connectivity at rest and during visual-snow-like stimulus | Hyper and hypoconnectivity within visual, attentional, and salience networks in VSS. |
[23] | 1 (44) | NA | Case report: MRI | Infarction of superior cerebellar artery caused a transformation from episodic to chronic VSS. |
[24] | 20[PET] (31) 17 [VBM] (no data) | 20[PET] (30) 17 [VBM] (no data) | Original research: FDG-PET VBM | Corresponding structural and functional changes in visual association cortex. Other broad alterations suggest that VSS extends beyond the visual system. |
[25] | 3 (26.7) | NA | Case series: SPECT | Different outcomes in all cases: (1) Right occipital and temporal hypoperfusion- ventral visual stream, (2) mild bilateral frontal hypoperfusion, (3) no overt abnormalities |
[26] | 64 (31.56) | 23 (28.74) | Original research: Prosaccade (PS) task Antisaccade (AS) task Interleaved AS-PS task | Visual processing changes in VSS: shortened PS latencies and increased rate of AS errors with no significant changes in AS-PS task. |
[27] | 67 (30.63) | 37 (27,56) | Original research: Endogenously cued saccade task, Saccadic Simon task | VSS patients generated significantly more errors in both tests. Valid trial latencies and cue effect were substantially larger in the endogenously cued saccade task, with no more significant changes in the Saccadic Simon task. |
[28] | 40 (33.2) | 43(29.2) | Original research: High-resolution structural and quantitative MRI | No significant changes in morphometry in VSS patients. Widespread changes in the microstructure of the grey matter—lower quantitative T1 values for entire cortical GM, thalamus, pallidum, putamen and white matter. No significant differences between VSS patients with and without migraine. |
[29] | 1(40) | NA | Case report: MRI Magnetic resonance angiography Electroencephalography Cerebrospinal fluid analysis PET | Hypometabolism in the posterior parietal lobes and left posterior cingulate gyrus. |
[8] | 20 (25.4) | NA | Retrospective review: Best-corrected visual acuity (BCVA), automated refraction slit-lamp biomicroscopy, dilated fundus examinations, visual field testing, pupillary light reflex, contrast sensitivity, full-field and multifocal electroretinography, optical coherence tomography with an assessment of the thickness of the retinal nerve fiber layer (RNFL) | Neuro-ophthalmologic tests are mostly normal in patients with VSS. |
Reference Number | Patients with VSS (Mean Age) | Treatment | Effect on VS |
---|---|---|---|
[8] | n = 20 [5 treated] (25,4) | Lamotrigine 25 mg/d Topiramate 25 mg/d Acetazolamide 750 mg/d Propranolol 20 mg/d (n = 2) | All ineffective |
[30] | n = 9 (32,6) | Repetitive Transcranial Magnetic Stimulation | 10 + 1 Hz reduced sum of VS intensities week after therapy, 10 Hz no significant changes |
[31] | n = 1 (41) | Phenylephrine, FL-41 glasses | Phenylephrine gives partial response for nyctalopia; FL-41 glasses effective for photophobia |
[32] | n = 400 (31) | Antidepressants: SSRIs, Tricyclics, Atypical; Vitamins/nutraceuticals; Antiepileptics: Topiramate, Lamotrigine, Gabapentin, Valproic acid, Pregabalin; Antibiotics/antifungals; Benzodiazepines/hypnotics, NSAIDs, Paracetamol/acetaminophen, Opioids, Antihypertensive drugs, Steroids, Triptans, ADHD medication, amphetamine-type, atomoxetine, methylphenidate, Antihistamines decongestants, Antipsychotics, Nausea/dizziness medication | Benzodiazepines/hypnotic, Triptans, Lamotrigine, Tricyclic antidepressants, Gabapentin, Beta-blockers, Topiramate, and Vitamins/nutraceuticals had the best improvement ratio. |
[33] | n = 10 (no data) | Repetitive Transcranial Magnetic Stimulation | Study discontinued. |
[34] | n = 1 (15) | Topiramate 25 mg, Amitriptyline 30 mg, Gabapentin 900 mg, Onabotulinium toxin A | All ineffective. Topiramate caused a worsening. Onabotulinium toxin A treatment is ongoing. |
[29] | n = 1 (40) | Topiramate, Lamotrigine, Sumatriptan, hyperbaric oxygen chamber therapy, tinted glasses | Pharmacological treatment was ineffective. Improving VS with blue medical filters. |
[35] | n = 1 (10) | Methylphenidate for ADHD was a trigger for VS, then changed to Atomoxetine. | Dose reduction of Methylphenidate causes VS improvement but worsens ADHD symptoms. The shift for Atomoxetine caused improvement in ADHD with no visual phenomena. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusztyn, P.; Stańska, W.; Torbus, A.; Maciejewicz, P. Visual Snow: A Review on Pathophysiology and Treatment. J. Clin. Med. 2023, 12, 3868. https://doi.org/10.3390/jcm12123868
Rusztyn P, Stańska W, Torbus A, Maciejewicz P. Visual Snow: A Review on Pathophysiology and Treatment. Journal of Clinical Medicine. 2023; 12(12):3868. https://doi.org/10.3390/jcm12123868
Chicago/Turabian StyleRusztyn, Przemysław, Wiktoria Stańska, Anna Torbus, and Piotr Maciejewicz. 2023. "Visual Snow: A Review on Pathophysiology and Treatment" Journal of Clinical Medicine 12, no. 12: 3868. https://doi.org/10.3390/jcm12123868
APA StyleRusztyn, P., Stańska, W., Torbus, A., & Maciejewicz, P. (2023). Visual Snow: A Review on Pathophysiology and Treatment. Journal of Clinical Medicine, 12(12), 3868. https://doi.org/10.3390/jcm12123868