The Role of Congestion Biomarkers in Heart Failure with Reduced Ejection Fraction
Abstract
:1. Introduction (Congestion in HFrEF)
2. Definition of Biomarkers
3. Congestive Biomarkers
4. Biomarkers in HFrEF and in HFpEF
5. Diagnostic, Prognostic and Therapeutic Significance of Common Congestion Biomarkers
6. Conditions Other than Congestion with Increased Congestion Biomarkers (Figure 1)
7. Novel Congestion Biomarkers and Future Prospects
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [PubMed]
- Haag, S.; Jobs, A.; Stiermaier, T.; Fichera, C.-F.; Paitazoglou, C.; Eitel, I.; Desch, S.; Thiele, H. Lack of correlation between different congestion markers in acute decompensated heart failure. Clin. Res. Cardiol. 2022, 112, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Boorsma, E.M.; ter Maaten, J.M.; Damman, K.; Dinh, W.; Gustafsson, F.; Goldsmith, S.; Burkhoff, D.; Zannad, F.; Udelson, J.E.; Voors, A.A. Congestion in heart failure: A contemporary look at physiology, diagnosis and treatment. Nat. Rev. Cardiol. 2020, 17, 641–655. [Google Scholar] [CrossRef] [PubMed]
- Mullens, W.; Damman, K.; Harjola, V.-P.; Mebazaa, A.; Rocca, H.-P.B.-L.; Martens, P.; Testani, J.M.; Tang, W.W.; Orso, F.; Rossignol, P.; et al. The use of diuretics in heart failure with congestion—A position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2019, 21, 137–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gheorghiade, M.; Filippatos, G.; De Luca, L.; Burnett, J. Congestion in Acute Heart Failure Syndromes: An Essential Target of Evaluation and Treatment. Am. J. Med. 2006, 119, S3–S10. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Gracia, J.; Demissei, B.G.; ter Maaten, J.M.; Cleland, J.G.; O’Connor, C.M.; Metra, M.; Ponikowski, P.; Teerlink, J.R.; Cotter, G.; Davison, B.A.; et al. Prevalence, predictors and clinical outcome of residual congestion in acute decompensated heart failure. Int. J. Cardiol. 2018, 258, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Lala, A.; McNulty, S.E.; Mentz, R.J.; Dunlay, S.M.; Vader, J.M.; AbouEzzeddine, O.F.; DeVore, A.D.; Khazanie, P.; Redfield, M.M.; Steven, R. Goldsmith. Relief and Recurrence of Congestion During and After Hospitalization for Acute Heart Failure: Insights From Diuretic Optimization Strategy Evaluation in Acute Decompensated Heart Failure (DOSE-AHF) and Cardiorenal Rescue Study in Acute Decompensated Heart. Circ. Heart Fail. 2015, 8, 741–748. [Google Scholar]
- Palazzuoli, A.; Evangelista, I.; Nuti, R. Congestion occurrence and evaluation in acute heart failure scenario: Time to reconsider different pathways of volume overload. Heart Fail. Rev. 2019, 25, 119–131. [Google Scholar] [CrossRef]
- Chakko, S.; Woska, D.; Martinez, H.; De Marchena, E.; Futterman, L.; Kessler, K.M.; Myerburg, R.J. Clinical, radiographic, and hemodynamic correlations in chronic congestive heart failure: Conflicting results may lead to inappropriate care. Am. J. Med. 1991, 90, 353–359. [Google Scholar] [CrossRef]
- Collins, S.P.; Lindsell, C.J.; Storrow, A.B.; Abraham, W.T. Prevalence of Negative Chest Radiography Results in the Emergency Department Patient With Decompensated Heart Failure. Ann. Emerg. Med. 2006, 47, 13–18. [Google Scholar] [CrossRef]
- Vasan, R.S. Biomarkers of Cardiovascular Disease Molecular Basis and Practical Considerations. Circulation 2006, 113, 2335–2362. [Google Scholar] [CrossRef] [PubMed]
- Fox, N.; Growdon, J.H. Biomarkers and Surrogates. NeuroRx 2004, 1, 181. [Google Scholar] [CrossRef]
- Biomarkers Definitions Working Group; Atkinson, A.J., Jr.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; Spilker, B.A.; et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Freund, O.; Rotem-Green, M.; Rahat, M.; Gershman, E.; Ophir, N.; Fireman, E.; Shenhar-Tsarfaty, S.; Bar-Shai, A. Nanoparticles in induced sputum—A window to airway inflammation among active smokers. Nanomedicine 2023, 18, 303–315. [Google Scholar] [CrossRef]
- Correale, M.; Monaco, I.; Brunetti, N.D.; Di Biase, M.; Metra, M.; Nodari, S.; Butler, J.; Gheorghiade, M.; Master Program Students on Drug Development for Heart Failure. Redefining biomarkers in heart failure. Heart Fail Rev. 2018, 23, 237–253. [Google Scholar] [CrossRef]
- Sarhene, M.; Wang, Y.; Wei, J.; Huang, Y.; Li, M.; Li, L.; Acheampong, E.; Zhengcan, Z.; Xiaoyan, Q.; Yunsheng, X.; et al. Biomarkers in heart failure: The past, current and future. Heart Fail. Rev. 2019, 24, 867–903. [Google Scholar] [CrossRef]
- Cowie, M.; Jourdain, P.; Maisel, A.; Dahlstrom, U.; Follath, F.; Isnard, R.; Luchner, A.; McDonagh, T.; Mair, J.; Nieminen, M.; et al. Clinical applications of B-type natriuretic peptide (BNP) testing. Eur. Heart J. 2003, 24, 1710–1718. [Google Scholar] [CrossRef]
- Cui, K.; Huang, W.; Fan, J.; Lei, H. Midregional pro-atrial natriuretic peptide is a superior biomarker to N-terminal pro-B-type natriuretic peptide in the diagnosis of heart failure patients with preserved ejection fraction. Medicine 2018, 97, e12277. [Google Scholar] [CrossRef]
- Negi, S.; Sawano, M.; Kohsaka, S.; Inohara, T.; Shiraishi, Y.; Kohno, T.; Maekawa, Y.; Sano, M.; Yoshikawa, T.; Fukuda, K. Prognostic Implication of Physical Signs of Congestion in Acute Heart Failure Patients and Its Association with Steady-State Biomarker Levels. PLoS ONE 2014, 9, e96325. [Google Scholar] [CrossRef]
- Peacock, W.F.; De Marco, T.F.G. Cardiac troponin and outcome in acute heart failure. N. Engl. J. Med. 2008, 358, 2117–2126. [Google Scholar] [CrossRef] [Green Version]
- Felker, G.M.; Hasselblad, V.; Tang, W.W.; Hernandez, A.F.; Armstrong, P.W.; Fonarow, G.C.; Voors, A.A.; Metra, M.; McMurray, J.J.; Butler, J.; et al. Troponin I in acute decompensated heart failure: Insights from the ASCEND-HF study. Eur. J. Heart Fail. 2012, 14, 1257–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miñana, G.; Núñez, J.; Sanchis, J.; Bodí, V.; Núñez, E.; Llàcer, A. CA125 and immunoinflammatory activity in acute heart failure. Int. J. Cardiol. 2010, 145, 547–548. [Google Scholar] [CrossRef] [PubMed]
- Leard, L.E.; Broaddus, V.C. Mesothelial cell proliferation and apoptosis. Respirology 2004, 9, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Chen, J.; Liu, Y.; Zhang, K.; Wang, J.; Huang, H. New mechanism of elevated CA125 in heart failure: The mechanical stress and inflammatory stimuli initiate CA125 synthesis. Med. Hypotheses 2012, 79, 381–383. [Google Scholar] [CrossRef] [PubMed]
- Kosar, F.; Aksoy, Y.; Ozguntekin, G.; Ozerol, I.; Varol, E. Relationship between cytokines and tumour markers in patients with chronic heart failure. Eur. J. Heart Fail. 2006, 8, 270–274. [Google Scholar] [CrossRef]
- Ganda, A.; Onat, D.; Demmer, R.T.; Wan, E.; Vittorio, T.J.; Sabbah, H.N.; Colombo, P.C. Venous congestion and endothelial cell activation in acute decompensated heart failure. Curr. Heart Fail. Rep. 2010, 7, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Hartupee, J.; Mann, D.L. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol. 2016, 14, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Kumric, M.; Kurir, T.T.; Bozic, J.; Glavas, D.; Saric, T.; Marcelius, B.; D’amario, D.; Borovac, J.A. Carbohydrate Antigen 125: A Biomarker at the Crossroads of Congestion and Inflammation in Heart Failure. Card. Fail. Rev. 2021, 7, e19. [Google Scholar] [CrossRef]
- Núñez, J.; Bayés-Genís, A.; Revuelta-López, E.; Miñana, G.; Santas, E.; ter Maaten, J.M.; de la Espriella, R.; Carratalá, A.; Lorenzo, M.; Palau, P.; et al. Optimal carbohydrate antigen 125 cutpoint for identifying low-risk patients after admission for acute heart failure. Rev. Esp. Cardiol. 2022, 75, 316–324. [Google Scholar] [CrossRef]
- Núñez-Marín, G.; de la Espriella, R.; Santas, E.; Lorenzo, M.; Miñana, G.; Núñez, E.; Bodí, V.; González, M.; Górriz, J.L.; Bonanad, C. CA125 but not NT-proBNP predicts the presence of a congestive intrarenal venous flow in patients with acute heart failure. Eur. Heart J. Acute Cardiovasc. Care 2021, 30, 475–483. [Google Scholar] [CrossRef]
- Moura, B.; Aimo, A.; Al-Mohammad, A.; Flammer, A.; Barberis, V.; Bayes-Genis, A.; Rocca, H.-P.B.-L.; Fontes-Carvalho, R.; Grapsa, J. Integration of imaging and circulating biomarkers in heart failure: A consensus document by the Biomarkers and Imaging Study Groups of the Heart Failure Association of the European Society of Cardi-ology. Eur. J. Heart Fail. 2021, 23, 1577–1596. [Google Scholar] [CrossRef] [PubMed]
- Aimo, A.; Januzzi, J.L., Jr.; Bayes-Genis, A.; Vergaro, G.; Sciarrone, P.; Passino, C.; Emdin, M. Clinical and Prognostic Significance of sST2 in Heart Failure. JACC Rev Top Week. J. Am. Coll. Cardiol. 2019, 74, 2193–2203. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.C.; Pokharel, S.; Van Brakel, T.J.; van Berlo, J.; Cleutjens, J.P.M.; Schroen, B.; André, S.; Crijns, H.J.G.M.; Gabius, H.-J.; Maessen, J.; et al. Galectin-3 Marks Activated Macrophages in Failure-Prone Hypertrophied Hearts and Contributes to Cardiac Dysfunction. Circulation 2004, 110, 3121–3128. [Google Scholar] [CrossRef] [PubMed]
- Blanda, V.; Bracale, U.M.; Di Taranto, M.D.; Fortunato, G. Galectin-3 in Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 21, 9232. [Google Scholar] [CrossRef] [PubMed]
- Zaborska, B.; Sygitowicz, G.; Smarż, K.; Pilichowska-Paszkiet, E.; Budaj, A. Galectin-3 is related to right ventricular dysfunction in heart failure patients with reduced ejection fraction and may affect exercise capacity. Sci. Rep. 2020, 10, 16682. [Google Scholar] [CrossRef]
- Correale, M.; Tarantino, N.; Petrucci, R.; Tricarico, L.; Laonigro, I.; Di Biase, M.; Brunetti, N.D. Liver disease and heart failure: Back and forth. Eur. J. Intern. Med. 2018, 48, 25–34. [Google Scholar] [CrossRef]
- Girerd, N.; Seronde, M.-F.; Coiro, S.; Chouihed, T.; Bilbault, P.; Braun, F.; Kenizou, D.; Maillier, B.; Nazeyrollas, P.; Roul, G.; et al. Integrative Assessment of Congestion in Heart Failure Throughout the Patient Journey. JACC Heart Fail. 2017, 6, 273–285. [Google Scholar] [CrossRef]
- Samsky, M.D.; Patel, C.B.; DeWald, T.A.; Smith, A.D.; Felker, G.M.; Rogers, J.G.; Hernandez, A.F. Cardiohepatic interactions in heart failure: An overview and clinical implications. J. Am. Coll. Cardiol. 2013, 61, 2397–2405. [Google Scholar] [CrossRef] [Green Version]
- Van Deursen, V.M.; Damman, K.; Hillege, H.L.; van Beek, A.P.; Van Veldhuisen, D.J.; Voors, A.A. Abnormal Liver Function in Relation to Hemodynamic Profile in Heart Failure Patients. J. Card. Fail. 2010, 16, 84–90. [Google Scholar] [CrossRef]
- Correale, M.; Tricarico, L.; Leopizzi, A.; Mallardi, A.; Mazzeo, P.; Tucci, S.; Grazioli, D.; Di Biase, M.; Brunetti, N.D. Liver disease and heart failure. Panminerva. Med. 2020, 62, 26–37. [Google Scholar] [CrossRef]
- Duarte, K.; Monnez, J.-M.; Albuisson, E.; Pitt, B.; Zannad, F.; Rossignol, P. Prognostic Value of Estimated Plasma Volume in Heart Failure. JACC Heart Fail. 2015, 3, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Mentz, R.J.; Kjeldsen, K.; Rossi, G.P.; Voors, A.A.; Cleland, J.G.; Anker, S.D.; Gheorghiade, M.; Fiuzat, M.; Rossignol, P.; Zannad, F.; et al. Decongestion in acute heart failure. Eur. J. Heart Fail. 2014, 16, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Wijk, S.S.-V.; van Empel, V.; Davarzani, N.; Maeder, M.T.; Handschin, R.; Pfisterer, M.E.; Rocca, H.-P.B.-L.; TIME-CHF Investigators. Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved vs. reduced left ventricular ejection fraction. Eur. J. Heart Fail. 2015, 17, 1006–1014. [Google Scholar] [CrossRef]
- Santhanakrishnan, R.; Chong, J.P.; Ng, T.P.; Ling, L.H.; Sim, D.; Leong, K.T.; Yeo, P.S.; Ong, H.Y.; Jaufeerally, F.; Wong, R.; et al. Growth differentiation factor 15, ST2, high-sensitivity troponin T, and N-terminal pro brain na-triuretic peptide in heart failure with preserved vs. reduced ejection fraction. Eur. J. Heart Fail. 2012, 14, 1338–1347. [Google Scholar] [CrossRef] [PubMed]
- Anjan, V.Y.; Loftus, T.M.; Burke, M.A.; Akhter, N.; Fonarow, G.C.; Gheorghiade, M.; Shah, S.J. Prevalence, Clinical Phenotype, and Outcomes Associated with Normal B-Type Natriuretic Peptide Levels in Heart Failure With Preserved Ejection Fraction. Am. J. Cardiol. 2012, 110, 870–876. [Google Scholar] [CrossRef] [Green Version]
- Meijers, W.C.; van der Velde, A.R.; de Boer, R.A. Biomarkers in heart failure with preserved ejection fraction. Neth. Heart J. 2016, 24, 252–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chioncel, O.; Mebazaa, A.; Harjola, V.-P.; Coats, A.J.; Piepoli, M.F.; Crespo-Leiro, M.G.; Laroche, C.; Seferovic, P.M.; Anker, S.D.; Ferrari, R.; et al. Clinical phenotypes and outcome of patients hospitalized for acute heart failure: The ESC Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2017, 19, 1242–1254. [Google Scholar] [CrossRef] [Green Version]
- Castiglione, V.; Aimo, A.; Vergaro, G.; Saccaro, L.; Passino, C.; Emdin, M. Biomarkers for the diagnosis and management of heart failure. Heart Fail. Rev. 2021, 27, 625–643. [Google Scholar] [CrossRef]
- Maisel, A.; Mueller, C.; Adams, K., Jr.; Anker, S.D.; Aspromonte, N.; Cleland, J.G.; Cohen-Solal, A.; Dahlstrom, U.; DeMaria, A.; Di Somma, S.; et al. State of the art: Using natriuretic peptide levels in clinical practice. Eur. J. Heart Fail. 2008, 10, 824–839. [Google Scholar] [CrossRef]
- Chow, S.L.; Maisel, A.S.; Anand, I.; Bozkurt, B.; de Boer, R.A.; Felker, G.M.; Fonarow, G.C.; Greenberg, B.; Januzzi, J.L., Jr.; Kiernan, M.S.; et al. Role of Biomarkers for the Prevention, Assessment, and Management of Heart Failure: A Scientific Statement From the American Heart Association. Circulation 2017, 135, e1054–e1091. [Google Scholar] [CrossRef]
- Maisel, A.; Xue, Y.; Greene, S.J.; Pang, P.S.; Januzzi, J.L.; Piña, I.L.; DeFilippi, C.; Butler, J. The Potential Role of Natriuretic Peptide–Guided Management for Patients Hospitalized for Heart Failure. J. Card. Fail. 2014, 21, 233–239. [Google Scholar] [CrossRef]
- Bettencourt, P.; Azevedo, A.; Pimenta, J.; Friões, F.; Ferreira, S.; Ferreira, A. N-Terminal–Pro-Brain Natriuretic Peptide Predicts Outcome After Hospital Discharge in Heart Failure Patients. Circulation 2004, 110, 2168–2174. [Google Scholar] [CrossRef] [Green Version]
- Logeart, D.; Thabut, G.; Jourdain, P.; Chavelas, C.; Beyne, P.; Beauvais, F.; Bouvier, E.; Solal, A.C. Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. J. Am. Coll. Cardiol. 2004, 43, 635–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demissei, B.G.; Cotter, G.; Prescott, M.F.; Felker, G.M.; Filippatos, G.; Greenberg, B.H.; Pang, P.S.; Ponikowski, P.; Severin, T.M.; Wang, Y.; et al. A multimarker multi-time point-based risk stratification strategy in acute heart failure: Results from the RELAX-AHF trial. Eur. J. Heart Fail. 2017, 19, 1001–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabassi, A.; de Champlain, J.; Maggiore, U.; Parenti, E.; Coghi, P.; Vicini, V.; Tedeschi, S.; Cremaschi, E.; Binno, S.; Rocco, R.; et al. Prealbumin improves death risk prediction of BNP-added Seattle Heart Failure Model: Results from a pilot study in elderly chronic heart failure patients. Int. J. Cardiol. 2013, 168, 3334–3339. [Google Scholar] [CrossRef]
- Brouwers, F.P.; van Gilst, W.H.; Damman, K.; Berg, M.V.D.; Gansevoort, R.T.; Bakker, S.J.; Hillege, H.L.; van Veldhuisen, D.J.; van der Harst, P.; de Boer, R.A. Clinical Risk Stratification Optimizes Value of Biomarkers to Predict New-Onset Heart Failure in a Community-Based Cohort. Circ. Heart Fail. 2014, 7, 723–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velagaleti, R.S.; Gona, P.; Larson, M.G.; Wang, T.J.; Levy, D.; Benjamin, E.J.; Selhub, J.; Jacques, P.F.; Meigs, J.B.; Tofler, G.H.; et al. Multimarker Approach for the Prediction of Heart Failure Incidence in the Community. Circulation 2010, 122, 1700–1706. [Google Scholar] [CrossRef] [Green Version]
- Aimo, A.; Januzzi, J.L.; Vergaro, G.; Ripoli, A.; Latini, R.; Masson, S.; Magnoli, M.; Anand, I.S.; Cohn, J.N.; Tavazzi, L.; et al. High-sensitivity troponin T, NT-proBNP and glomerular filtration rate: A multimarker strategy for risk stratification in chronic heart failure. Int. J. Cardiol. 2018, 277, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Chirinos, J.A.; Orlenko, A.; Zhao, L.; Basso, M.D.; Cvijic, M.E.; Li, Z.; Spires, T.E.; Yarde, M.; Wang, Z.; Seiffert, D.A.; et al. Multiple Plasma Biomarkers for Risk Stratification in Patients With Heart Failure and Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2020, 75, 1281–1295. [Google Scholar] [CrossRef]
- Jourdain, P.; Jondeau, G.; Funck, F.; Gueffet, P.; Le Helloco, A.; Donal, E.; Aupetit, J.F.; Aumont, M.C.; Galinier, M.; Eicher, J.C.; et al. Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: The STARS-BNP Multicenter Study. J. Am. Coll. Cardiol. 2007, 49, 1733–1739. [Google Scholar] [CrossRef]
- Weiner, R.B.; Baggish, A.L.; Chen-Tournoux, A.; Marshall, J.E.; Gaggin, H.K.; Bhardwaj, A.; Mohammed, A.A.; Rehman, S.U.; Barajas, L.; Barajas, J.; et al. Improvement in structural and functional echocardiographic parameters during chronic heart failure therapy guided by natriuretic peptides: Mechanistic insights from the ProBNP Outpatient Tailored Chronic Heart Failure (PROTECT) study. Eur. J. Heart Fail. 2013, 15, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Lainchbury, J.G.; Troughton, R.W.; Strangman, K.M.; Frampton, C.M.; Pilbrow, A.; Yandle, T.G.; Hamid, A.K.; Nicholls, M.G.; Richards, A.M. N-terminal pro-B-type natriuretic peptide-guided treatment for chronic heart failure: Results from the BATTLESCARRED (NT-proBNP-Assisted Treatment To Lessen Serial Cardiac Readmissions and Death) trial. J. Am. Coll. Cardiol. 2009, 55, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davarzani, N.; Wijk, S.S.; Karel, J.; Maeder, M.T.; Leibundgut, G.; Gutmann, M.; Pfisterer, M.E.; Rickenbacher, P.; Peeters, R.; Rocca, H.-P.B. N-Terminal Pro–B-Type Natriuretic Peptide–Guided Therapy in Chronic Heart Failure Reduces Repeated Hospitalizations—Results From TIME-CHF. J. Card. Fail. 2017, 23, 382–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stienen, S.; Salah, K.; Moons, A.H.; Bakx, A.L.; van Pol, P.E.; Schroeder-Tanka, J.M.; Voogel, A.J.; Keijer, J.T.; Kortz, R.A.; Dickhoff, C.; et al. Rationale and design of PRIMA II: A multicenter, randomized clinical trial to study the impact of in-hospital guidance for acute decompensated heart failure treatment by a predefined NT-PRoBNP target on the reduction of readmIssion and Mortality rAtes. Am. Heart J. 2014, 168, 30–36. [Google Scholar] [CrossRef]
- O’Connor, C.; Fiuzat, M.; Mulder, H.; Coles, A.; Ahmad, T.; Ezekowitz, J.A.; Adams, K.F.; Piña, I.L.; Anstrom, K.J.; Cooper, L.S.; et al. Clinical factors related to morbidity and mortality in high-risk heart failure patients: The GUIDE-IT predictive model and risk score. Eur. J. Heart Fail. 2019, 21, 770–778. [Google Scholar] [CrossRef]
- Madamanchi, C.; Alhosaini, H.; Sumida, A.; Runge, M.S. Obesity and natriuretic peptides, BNP and NT-proBNP: Mechanisms and diagnostic implications for heart failure. Int. J. Cardiol. 2014, 176, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Gaggin, H.K.; Januzzi, J.L., Jr. Biomarkers and diagnostics in heart failure. Biochim. Biophy. Acta 2013, 1832, 2442–2450. [Google Scholar] [CrossRef] [Green Version]
- Doust, J.; Lehman, R.; Glasziou, P. The role of BNP testing in heart failure. Am. Fam. Physician 2006, 74, 1893–1898. [Google Scholar]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T. Corrigendum to: 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Freund, O.; Azolai, L.; Sror, N.; Zeeman, I.; Kozlovsky, T.; Greenberg, S.A.; Epstein Weiss, T.; Bornstein, G.; Tchebiner, J.Z.; Frydman, S. Diag-nostic delays among COVID-19 patients with a second concurrent diagnosis. J. Hosp. Med. 2023, 18, 321–328. [Google Scholar] [CrossRef]
- Freund, O.; Eviatar, T.; Bornstein, G. Concurrent myopathy and inflammatory cardiac disease in COVID-19 patients: A case series and literature review. Rheumatol. Int. 2022, 42, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Chauin, A. The Main Causes and Mechanisms of Increase in Cardiac Troponin Concentrations Other Than Acute Myocardial Infarction (Part 1): Physical Exertion, Inflammatory Heart Disease, Pulmonary Embolism, Renal Failure, Sepsis. Vasc. Health Risk Manag. 2021, 17, 601–617. [Google Scholar] [CrossRef]
- Glasgow, C.G.; Pacheco-Rodriguez, G.; Steagall, W.K.; Haughey, M.E.; Julien-Williams, P.A.; Stylianou, M.P.; Gochuico, B.R.; Moss, J. CA-125 in Disease Progression and Treatment of Lymphangioleio-myomatosis. Chest 2018, 153, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Llàcer, P.; Bayés-Genís, A.; Núñez, J. Carbohydrate antigen 125 in heart failure. A New era in the monitoring and control of treatment. Med. Clínica 2019, 152, 266–273. [Google Scholar] [CrossRef]
- Dong, R.; Zhang, M.; Hu, Q.; Zheng, S.; Soh, A.; Zheng, Y.; Yuan, H. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review). Int. J. Mol. Med. 2018, 41, 599–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudek, M.; Kałużna-Oleksy, M.; Migaj, J.; Straburzyńska-Migaj, E. Clinical value of soluble ST2 in cardiology. Adv. Clin. Exp. Med. 2020, 29, 1205–1210. [Google Scholar] [CrossRef]
- Kim, H.; Hur, M.; Moon, H.-W.; Yun, Y.-M.; Di Somma, S.; Network, G. Multi-marker approach using procalcitonin, presepsin, galectin-3, and soluble suppression of tumorigenicity 2 for the prediction of mortality in sepsis. Ann. Intensiv. Care 2017, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Figal, D.A.; Lax, A.; Perez-Martinez, M.T.; del Carmen Asensio-Lopez, M.; Sanchez-Mas, J.; Network, O.B.O.G. Clinical relevance of sST2 in cardiac diseases. Clin. Chem. Lab. Med. 2016, 54, 29–35. [Google Scholar] [CrossRef]
- Valenzuela-Sánchez, F.; Valenzuela-Méndez, B.; Rodríguez-Gutiérrez, J.F.; Estella-García, Á.; González-García, M.Á. New role of biomarkers: Mid-regional pro-adrenomedullin, the biomarker of organ failure. Ann. Transl. Med. 2016, 4, 329. [Google Scholar] [CrossRef] [Green Version]
- Montrucchio, G.; Sales, G.; Rumbolo, F.; Palmesino, F.; Fanelli, V.; Urbino, R.; Filippini, C.; Mengozzi, G.; Brazzi, L. Effectiveness of mid-regional pro-adrenomedullin (MR-proADM) as prognostic marker in COVID-19 critically ill patients: An observational prospective study. PLoS ONE 2021, 8, e0246771. [Google Scholar] [CrossRef]
- Jalleh, R.; Torpy, D.J. The Emerging Role of Copeptin. Clin. Biochem. Rev. 2021, 42, 17–25. [Google Scholar]
- Mavani, G.P.; DeVita, M.V.; Michelis, M.F. A Review of the Nonpressor and Nonantidiuretic Actions of the Hormone Vasopressin. Front. Med. 2015, 2, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adela, R.; Banerjee, S.K. GDF-15 as a Target and Biomarker for Diabetes and Cardiovascular Diseases: A Translational Pro-spective. J. Diabetes Res. 2015, 2015, 490842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirakabe, A.; Okazaki, H.; Matsushita, M.; Shibata, Y.; Shigihara, S.; Nishigoori, S.; Sawatani, T.; Sasamoto, N.; Kiuchi, K.; Atsukawa, M.; et al. Type III procollagen peptide level can indicate liver dysfunction associated with volume overload in acute heart failure. ESC Heart Fail. 2022, 9, 1832–1843. [Google Scholar] [CrossRef] [PubMed]
- Nikolov, A.; Popovski, N. Extracellular Matrix in Heart Disease: Focus on Circulating Collagen Type I and III Derived Peptides as Biomarkers of Myocardial Fibrosis and Their Potential in the Prognosis of Heart Failure: A Concise Review. Metabolites 2022, 12, 297. [Google Scholar] [CrossRef]
- Kawamura, M.; Munetsugu, Y.; Kawasaki, S.; Onishi, K.; Onuma, Y.; Kikuchi, M.; Tanno, K.; Kobayashi, Y. Type III procollagen-N-peptide as a predictor of persistent atrial fibrillation recurrence after cardioversion. Europace 2012, 14, 1719–1725. [Google Scholar] [CrossRef]
- Abella, V.; Scotece, M.; Conde, J.; Gómez, R.; Lois, A.; Pino, J.; Gómez-Reino, J.J.; Lago, F.; Mobasheri, A.; Gualillo, O. The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases. Biomarkers 2015, 20, 565–571. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, S.; Pedersen, S.H.; Mogelvang, R.; Jensen, J.S.; Flyvbjerg, A.; Galatius, S.; Magnusson, N.E. Prognostic Utility of Neutrophil Gelatinase-Associated Lipocalin in Predicting Mortality and Cardiovascular Events in Patients with ST-Segment Elevation Myocardial Infarction Treated with Primary Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2012, 60, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Palazzuoli, A.; Beltrami, M.; Pellegrini, M.; Nuti, R. Natriuretic peptides and NGAL in heart failure: Does a link exist? Clin. Chim. Acta 2012, 413, 1832–1838. [Google Scholar] [CrossRef]
- Schrock, J.W.; Glasenapp, M.; Drogell, K. Elevated blood urea nitrogen/creatinine ratio is associated with poor outcome in patients with ischemic stroke. Clin. Neurol. Neurosurg. 2012, 114, 881–884. [Google Scholar] [CrossRef]
- Bae, S.J.; Lee, S.H.; Yun, S.J.; Kim, K. Comparison of IVC diameter ratio, BUN/creatinine ratio and BUN/albumin ratio for risk prediction in emergency department patients. Am. J. Emerg. Med. 2021, 47, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Słonina, G.; Zemleduch, T.; Kimla, P.; Kudliński, B. Is it time for the practical application of biomarkers in chronic heart failure management? Pol. Merkur. Lekarski. 2022, 50, 73–77. [Google Scholar] [PubMed]
- Anand, I.S.; Kempf, T.; Rector, T.S.; Tapken, H.; Allhoff, T.; Jantzen, F.; Kuskowski, M.; Cohn, J.N.; Drexler, H.; Wollert, K.C. Serial measurement of growth-differentiation factor-15 in heart failure: Relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation 2010, 122, 1387–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaca, M.P.; Morrow, D.A.; Braunwald, E. Growth differen- tiation factor-15 and risk of recurrent events in patients stabilized after acute coronary syndrome: Observations from PROVE IT-TIMI 22. Arter. Thromb. Vasc. Biol. 2011, 31, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Wollert, K.C.; Kempf, T. Growth Differentiation Factor 15 in Heart Failure: An Update. Curr. Heart Fail. Rep. 2012, 9, 337–345. [Google Scholar] [CrossRef]
- Sinning, C.; Kempf, T.; Schwarzl, M.; Lanfermann, S.; Ojeda, F.; Schnabel, R.B.; Zengin, E.; Wild, P.S.; Lackner, K.-J.; Munzel, T.; et al. Biomarkers for characterization of heart failure—Distinction of heart failure with preserved and reduced ejection fraction. Int. J. Cardiol. 2016, 227, 272–277. [Google Scholar] [CrossRef]
- Tucker, W.; Tucker, B.; Rye, K.-A.; Ong, K.L. Fibroblast growth factor 21 in heart failure. Heart Fail. Rev. 2022, 28, 261–272. [Google Scholar] [CrossRef]
- Vázquez-Sánchez, S.; Poveda, J.; Navarro-García, J.A.; González-Lafuente, L.; Rodríguez-Sánchez, E.; Ruilope, L.M.; Ruiz-Hurtado, G. An Overview of FGF-23 as a Novel Candidate Biomarker of Cardi-ovascular Risk. Front. Physiol. 2021, 12, 632260. [Google Scholar] [CrossRef]
- Maaten, J.M.T.; Voors, A.A.; Damman, K.; van der Meer, P.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; Filippatos, G.; van der Harst, P.; Hillege, H.L. Fibroblast growth factor 23 is related to profiles indicating volume overload, poor therapy opti-mization and prognosis in patients with new-onset and worsening heart failure. Int. J. Cardiol. 2018, 253, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Balling, L.; Gustafsson, F. Copeptin as a biomarker in heart failure. Biomarkers Med. 2014, 8, 841–854. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, R.; Yan, L.; Lin, M.; Liu, X.; You, T. Copeptin in heart failure: Review and meta-analysis. Clin. Chim. Acta 2017, 475, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Goetze, J.P.; Hilsted, L.M.; Rehfeld, J.F.; Alehagen, U. Plasma chromogranin A is a marker of death in elderly patients presenting with symptoms of heart failure. Endocr. Connect. 2014, 3, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.N.; Yang, D.H.; Park, B.E.; Park, Y.J.; Kim, H.J.; Jang, S.Y.; Bae, M.H.; Lee, J.H.; Park, H.S.; Cho, Y.; et al. Prognostic impact of chromogranin A in patients with acute heart failure. Yeungnam Univ. J. Med. 2021, 38, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Calvo, R.; Girona, J.; Alegret, J.M.; Bosquet, A.; Ibarretxe, D.; Masana, L. Role of the fatty acid-binding protein 4 in heart failure and cardiovascular disease. J. Endocrinol. 2017, 233, R173–R184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandhi, P.; ter Maaten, J.M.; Anker, S.D.; Ng, L.L.; Metra, M.; Samani, N.J.; Lang, C.C.; Dickstein, K.; de Boer, R.A.; van Veldhuisen, D.J.; et al. Pathophysiologic Processes and Novel Biomarkers Associated With Congestion in Heart Failure. JACC Heart Fail. 2022, 10, 623–632. [Google Scholar] [CrossRef]
- Trinchet, J.-C.; Hartmann, D.J.; Pateron, D.; Laarif, M.; Callard, P.; Ville, G.; Beaugrand, M. Serum type I collagen and N-terminal peptide of type III procollagen in chronic hepatitis: Relationship to liver histology and conventional liver tests. J. Hepatol. 1991, 12, 139–144. [Google Scholar] [CrossRef]
- Lieber, C.S.; Weiss, D.G.; Paronetto, F.; Veterans Affairs Cooperative Study 391 Group. Value of fibrosis markers for staging liver fibrosis in patients with precirrhotic alcoholic liver disease. Alcohol. Clin. Exp. Res. 2008, 32, 1031–1039. [Google Scholar] [CrossRef]
- Nemcekova, V.; Malikova, E.; Goncalvesova, E.; Krenek, P.; Klimas, J. Altered serum levels of neprilysin in heart failure patients with reduced ejection fraction. Bratisl. Med. J. 2021, 122, 28–33. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Q. Predicting potential biomarkers and immune infiltration characteristics in heart failure. Math. Biosci. Eng. 2022, 19, 8671–8688. [Google Scholar] [CrossRef]
- Cediel, G.; Teis, A.; Codina, P.; Julve, J.; Domingo, M.; Santiago-Vacas, E.; Castelblanco, E.; Amigó, N.; Lupón, J.; Mauricio, D.; et al. GlycA and GlycB as Inflammatory Markers in Chronic Heart Failure. Am. J. Cardiol. 2022, 181, 79–86. [Google Scholar] [CrossRef]
- Mantegazza, V.; Badagliacca, R.; Nodari, S.; Parati, G.; Lombardi, C.; Di Somma, S.; Carluccio, E.; Dini, F.L.; Correale, M.; Magrì, D.; et al. Insufficienza del cuore destro e sinistro group, a research group of the Italian Society of Cardiology. Management of heart failure in the new era: The role of scores. J. Cardiovasc. Med. 2016, 17, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Correale, M.; Tricarico, L.; Fortunato, M.; Mazzeo, P.; Nodari, S.; Di Biase, M.; Brunetti, N.D. New Targets in Heart Failure Drug Therapy. Front. Cardiovasc. Med. 2021, 8, 665797. [Google Scholar] [CrossRef] [PubMed]
- Brunner-La Rocca, H.P.; Bektas, S. Biomarker Guided Therapy in Chronic Heart Failure. Card. Fail. Rev. 2015, 1, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Sharim, J.; Daniels, L.B. Soluble ST2 and Soluble Markers of Fibrosis: Emerging Roles for Prognosis and Guiding Therapy. Curr. Cardiol. Rep. 2020, 22, 41. [Google Scholar] [CrossRef]
- Mebazaa, A.; Davison, B.; Chioncel, O.; Cohen-Solal, A.; Diaz, R.; Filippatos, G.; Metra, M.; Ponikowski, P.; Sliwa, K.; Voors, A.A.; et al. Safety, tolerability and efficacy of up-titration of guideline-directed medical therapies for acute heart failure (STRONG-HF): A multinational, open-label, randomised, trial. Lancet 2022, 400, 1938–1952. [Google Scholar] [CrossRef] [PubMed]
- Correale, M.; Petroni, R.; Coiro, S.; Antohi, E.-L.; Monitillo, F.; Leone, M.; Triggiani, M.; Ishihara, S.; Dungen, H.-D.; Sarwar, C.M.S. Paradigm shift in heart failure treatment: Are cardiologists ready to use gliflozins? Heart Fail. Rev. 2022, 27, 1147–1163. [Google Scholar] [CrossRef]
- de la Espriella, R.; Miñana, G.; Santas, E.; Núñez, G.; Lorenzo, M.; Núñez, E.; Bayés-Genís, A.; Núñez, J. Effects of empagliflozin on CA125 trajectory in patients with chronic congestive heart failure. Int. J. Cardiol. 2021, 339, 102–105. [Google Scholar] [CrossRef]
- Tamaki, S.; Yamada, T.; Morita, T.; Furukawa, Y.; Iwasaki, Y.; Kawasaki, M.; Kikuchi, A.; Kawai, T.; Seo, M.; Abe, M.; et al. 4330 Effect of empagliflozin as add-on therapy on decongestion and renal function in diabetic patients hospitalized for acute decompensated heart failure: A prospective randomized controlled study. Eur. Heart J. 2019, 14, e007048. [Google Scholar] [CrossRef]
- Armstrong, P.W.; Zheng, Y.; Troughton, R.W.; Lund, L.H.; Zhang, J.; Lam, C.S.P.; Westerhout, C.M.; Blaustein, R.O.; Butler, J.; Hernandez, A.F.; et al. Sequential Evaluation of NT-proBNP in Heart Failure: Insights Into Clinical Outcomes and Efficacy of Vericiguat. JACC Heart Fail. 2022, 10, 677–688. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Myhre, P.; Claggett, B.; Packer, M.; Desai, A.S.; Rouleau, J.L.; Zile, M.R.; Swedberg, K.; Lefkowitz, M.; Shi, V.; et al. B-type natriuretic peptide during treatment with sacubitril/valsartan: The paradigm-HF trial. J. Am. Coll. Cardiol. 2019, 73, 3073. [Google Scholar] [CrossRef]
Main Group | Subgroup | Biomarker |
---|---|---|
Myocardial insult | Myocyte stretch | ANP, BNP, NT-proBNP, MR-proANP, GDF-15, neuregulin |
Myocardial injury | Troponin T, TRoponin I, hsTN, heart type fatty acid protein, myosin light-chain kinase1, creatinine kinase MB fraction | |
Oxidative stress | Myeloperoxidase, MR-proADM, oxidized low-density lipoprotein, urinary biopyrrins, plasma malondialdehyde | |
Neurohormonal activation | Renin-Angiotensin System | Renin, Angiotensin II, Aldosterone |
Sympathetic Nervous System | Norepinephrine, Chromogranin A | |
Arginine Vasopressin system | Arginine vasopressin, copeptine | |
Endothelin | Endothelin-1, big proET-1 | |
Chromogranin A and B | ||
Myocardial Remodeling | Inflammation | C-reactive protein, TNF-α, Fas (APO-1), interleukins 1, 6, and 18, cytokines, procalcitonin, adipokines, adiponectin |
Hypertrophy/Fibrosis | SolubleST2, Galectin-3, matrix metalloproteinases, collagenpeptide |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correale, M.; Fioretti, F.; Tricarico, L.; Croella, F.; Brunetti, N.D.; Inciardi, R.M.; Mattioli, A.V.; Nodari, S. The Role of Congestion Biomarkers in Heart Failure with Reduced Ejection Fraction. J. Clin. Med. 2023, 12, 3834. https://doi.org/10.3390/jcm12113834
Correale M, Fioretti F, Tricarico L, Croella F, Brunetti ND, Inciardi RM, Mattioli AV, Nodari S. The Role of Congestion Biomarkers in Heart Failure with Reduced Ejection Fraction. Journal of Clinical Medicine. 2023; 12(11):3834. https://doi.org/10.3390/jcm12113834
Chicago/Turabian StyleCorreale, Michele, Francesco Fioretti, Lucia Tricarico, Francesca Croella, Natale Daniele Brunetti, Riccardo M. Inciardi, Anna Vittoria Mattioli, and Savina Nodari. 2023. "The Role of Congestion Biomarkers in Heart Failure with Reduced Ejection Fraction" Journal of Clinical Medicine 12, no. 11: 3834. https://doi.org/10.3390/jcm12113834
APA StyleCorreale, M., Fioretti, F., Tricarico, L., Croella, F., Brunetti, N. D., Inciardi, R. M., Mattioli, A. V., & Nodari, S. (2023). The Role of Congestion Biomarkers in Heart Failure with Reduced Ejection Fraction. Journal of Clinical Medicine, 12(11), 3834. https://doi.org/10.3390/jcm12113834