Effects of Antithrombin on Persistent Inflammation, Immunosuppression, and Catabolism Syndrome among Patients with Sepsis-Induced Disseminated Intravascular Coagulation
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Source
2.2. Study Population
2.3. Covariates
2.4. Outcomes
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Foley, J.H.; Conway, E.M. Cross Talk Pathways Between Coagulation and Inflammation. Circ. Res. 2016, 118, 1392–1408. [Google Scholar] [CrossRef]
- Gando, S.; Levi, M.; Toh, C.H. Disseminated intravascular coagulation. Nat. Rev. Dis. Prim. 2016, 2, 16037. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; van der Poll, T. Coagulation and sepsis. Thromb. Res. 2017, 149, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Tagami, T.; Matsui, H.; Horiguchi, H.; Fushimi, K.; Yasunaga, H. Antithrombin and mortality in severe pneumonia patients with sepsis-associated disseminated intravascular coagulation: An observational nationwide study. J. Thromb. Haemost. 2014, 12, 1470–1479. [Google Scholar] [CrossRef] [PubMed]
- Allingstrup, M.; Wetterslev, J.; Ravn, F.B.; Møller, A.M.; Afshari, A. Antithrombin III for critically ill patients: A systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2016, 42, 505–520. [Google Scholar] [CrossRef] [Green Version]
- Warren, B.L.; Eid, A.; Singer, P.; Pillay, S.S.; Carl, P.; Novak, I.; Chalupa, P.; Atherstone, A.; Pénzes, I.; Kübler, A.; et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: A randomized controlled trial. JAMA 2001, 286, 1869–1878. [Google Scholar] [CrossRef]
- Kienast, J.; Juers, M.; Wiedermann, C.J.; Hoffmann, J.N.; Ostermann, H.; Strauss, R.; Keinecke, H.; Warren, B.L.; Opal, S.M. Treatment effects of high-dose antithrombin without concomitant heparin in patients with severe sepsis with or without disseminated intravascular coagulation. J. Thromb. Haemost. 2006, 4, 90–97. [Google Scholar] [CrossRef]
- Gentile, L.F.; Cuenca, A.G.; Efron, P.A.; Ang, D.M.; Bihorac, A.; McKinley, B.A.; Moldawer, L.L.; Moore, F.A. Persistent inflammation and immunosuppression: A common syndrome and new horizon for surgical intensive care. J. Trauma Acute Care Surg. 2012, 72, 1491–1501. [Google Scholar] [CrossRef] [Green Version]
- Mira, J.C.; Gentile, L.F.; Mathias, B.J.; Efron, P.A.; Brakenridge, S.C.; Mohr, A.M.; Moore, F.A.; Moldawer, L.L. Sepsis Pathophysiology, Chronic Critical Illness, and Persistent Inflammation-Immunosuppression and Catabolism Syndrome. Crit. Care Med. 2017, 45, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Ogura, K.; Nakano, H.; Naraba, H.; Takahashi, Y.; Sonoo, T.; Hashimoto, H.; Goto, T. Disseminated Intravascular Coagulopathy Is Associated with the Outcome of Persistent Inflammation, Immunosuppression and Catabolism Syndrome. J. Clin. Med. 2020, 9, 2662. [Google Scholar] [CrossRef]
- Nakamura, K.; Ogura, K.; Nakano, H.; Naraba, H.; Takahashi, Y.; Sonoo, T.; Hashimoto, H.; Morimura, N. C-reactive protein clustering to clarify persistent inflammation, immunosuppression and catabolism syndrome. Intensive Care Med. 2020, 46, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Ogura, K.; Ohbe, H.; Goto, T. Clinical Criteria for Persistent Inflammation, Immunosuppression, and Catabolism Syndrome: An Exploratory Analysis of Optimal Cut-Off Values for Biomarkers. J. Clin. Med. 2022, 11, 5790. [Google Scholar] [CrossRef] [PubMed]
- Tonai, M.; Shiraishi, A.; Karumai, T.; Endo, A.; Kobayashi, H.; Fushimi, K.; Hayashi, Y. Hospital-onset sepsis and community-onset sepsis in critical care units in Japan: A retrospective cohort study based on a Japanese administrative claims database. Crit. Care. 2022, 26, 136. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.-M.; Sundararajan, V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Schweickert, W.D.; Pohlman, M.C.; Pohlman, A.S.; Nigos, C.; Pawlik, A.J.; Esbrook, C.L.; Spears, L.; Miller, M.; Franczyk, M.; Deprizio, D.; et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: A randomised controlled trial. Lancet 2009, 373, 1874–1882. [Google Scholar] [CrossRef]
- Griswold, M.E.; Localio, A.R.; Mulrow, C. Propensity score adjustment with multilevel data: Setting your sites on decreasing selection bias. Ann. Intern. Med. 2010, 152, 393–395. [Google Scholar] [CrossRef]
- Rosenbaum, P.; Rubin, D. Constructing a Control Group Using Multivariate Matched Sampling Methods That Incorporate the Propensity Score. Am. Stat. 1985, 39, 1. [Google Scholar]
- Thomas, L.E.; Li, F.; Pencina, M.J. Overlap Weighting: A Propensity Score Method That Mimics Attributes of a Randomized Clinical Trial. JAMA 2020, 323, 2417–2418. [Google Scholar] [CrossRef]
- Li, F.; Thomas, L.E. Addressing Extreme Propensity Scores via the Overlap Weights. Am. J. Epidemiol. 2019, 188, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Desai, R.J.; Franklin, J.M. Alternative approaches for confounding adjustment in observational studies using weighting based on the propensity score: A primer for practitioners. BMJ 2019, 367, l5657. [Google Scholar] [CrossRef] [Green Version]
- Efron, P.A.; Mohr, A.M.; Bihorac, A.; Horiguchi, H.; Hollen, M.K.; Segal, M.S.; Baker, H.V.; Leeuwenburgh, C.; Moldawer, L.L.; Moore, F.A.; et al. Persistent inflammation, immunosuppression, and catabolism and the development of chronic critical illness after surgery. Surgery 2018, 164, 178–184. [Google Scholar] [CrossRef]
- Rublee, D.; Opal, S.M.; Schramm, W.; Keinecke, H.O.; Knaub, S. Quality of life effects of antithrombin III in sepsis survivors: Results from the KyberSept trial [ISRCTN22931023]. Crit. Care 2002, 6, 349–356. [Google Scholar] [CrossRef]
- Moore, F.A.; Phillips, S.M.; McClain, C.J.; Patel, J.J.; Martindale, R.G. Nutrition Support for Persistent Inflammation, Immunosuppression, and Catabolism Syndrome. Nutr. Clin. Pract. 2017, 32, 121S–127S. [Google Scholar] [CrossRef] [Green Version]
- Horiguchi, H.; Loftus, T.; Hawkins, R.B.; Raymond, S.L.; Stortz, J.A.; Hollen, M.K.; Weiss, B.P.; Miller, E.S.; Bihorac, A.; Larson, S.; et al. Innate Immunity in the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome and Its Implications for Therapy. Front. Immunol. 2018, 9, 595. [Google Scholar] [CrossRef] [PubMed]
- Loftus, T.J.; Mira, J.C.; Stortz, J.A.; Ozrazgat-Baslanti, T.; Ghita, G.L.; Wang, Z.; Brumback, B.A.; Ungaro, R.F.; Bihorac, A.; Leeuwenburgh, C.; et al. Persistent inflammation and anemia among critically ill septic patients. J. Trauma Acute Care Surg. 2019, 86, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Gando, S.; Saitoh, D.; Ogura, H.; Mayumi, T.; Koseki, K.; Ikeda, T.; Ishikura, H.; Iba, T.; Ueyama, M.; Eguchi, Y.; et al. Natural history of disseminated intravascular coagulation diagnosed based on the newly established diagnostic criteria for critically ill patients: Results of a multicenter, prospective survey. Crit. Care Med. 2008, 36, 145–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pre-Matched Cohort | Matched Cohort | |||||
---|---|---|---|---|---|---|
Variables | AT (n = 331) | Control (n = 1291) | SMD | AT (n = 324) | Control (n = 324) | SMD |
Age, median (IQR) | 77 (68–83) | 77 (68–84) | 0.068 | 77 (68–83) | 79 (68–84) | 0.092 |
Female, n (%) | 130 (39.3) | 574 (44.5) | 0.105 | 128 (39.5) | 129 (39.8) | 0.006 |
Body mass index, n (%) | ||||||
<18.5 | 82 (24.8) | 254 (19.7) | 0.123 | 77 (23.8) | 76 (23.5) | 0.007 |
≥18.5, <25.0 | 193 (58.3) | 756 (58.6) | 0.005 | 189 (58.3) | 191 (59.0) | 0.013 |
≥25.0, <30.0 | 44 (13.3) | 212 (16.4) | 0.088 | 46 (14.2) | 45 (13.9) | 0.009 |
>30.0 | 12 (3.6) | 69 (5.3) | 0.083 | 12 (3.7) | 12 (3.7) | <0.001 |
Current/ex-smoker, n (%) | 127 (38.4) | 468 (36.3) | 0.044 | 128 (39.5) | 122 (37.7) | 0.038 |
Charlson Comorbidity Index, median (IQR) | 1 (0–3) | 1 (0–3) | 0.072 | 1 (0–2) | 1 (0–2) | 0.059 |
Ambulance use, n (%) | 241 (72.8) | 949 (73.5) | 0.016 | 236 (72.8) | 230 (71.0) | 0.041 |
Emergent admission, n (%) | 326 (98.5) | 1264 (97.9) | 0.044 | 319 (98.5) | 318 (98.1) | 0.024 |
Japan Coma Scale at admission, n (%) | ||||||
Alert | 183 (55.3) | 687 (53.2) | 0.042 | 180 (55.6) | 173 (53.4) | 0.043 |
Confusion | 63 (19.0) | 338 (26.2) | 0.172 | 63 (19.4) | 60 (18.5) | 0.024 |
Somnolence | 42 (12.7) | 145 (11.2) | 0.045 | 42 (13.0) | 48 (14.8) | 0.054 |
Coma | 42 (12.7) | 121 (9.4) | 0.106 | 39 (12.0) | 43 (13.3) | 0.037 |
Laboratory data, median (IQR) | ||||||
White blood cells, 109/L | 13.8 (9.8–20.5) | 14.8 (10.1–22.2) | 0.090 | 13.7 (9.6–19.8) | 14.3 (9.8–22.5) | 0.078 |
Hemoglobin, g/dL | 9.5 (8.3–10.8) | 9.9 (8.3–11.4) | 0.170 | 9.6 (8.3–10.8) | 9.4 (8.1–11.0) | 0.017 |
Platelet, 109/L | 54 (27–89) | 65 (36–114) | 0.304 | 54 (28–86) | 53 (28–84) | 0.078 |
Prothrombin time, INR | 1.55 (1.34–1.85) | 1.44 (1.24–1.73) | 0.151 | 1.55 (1.34–1.89) | 1.54 (1.31–1.85) | 0.037 |
Albumin, g/dL | 2.1 (1.8–2.4) | 2.2 (1.8–2.5) | 0.249 | 2.1 (1.8–2.4) | 2.0 (1.7–2.4) | 0.031 |
Aspartate aminotransferase, IU/L | 100 (46–296) | 77 (36–223) | 0.039 | 92 (45–274) | 99 (45–322) | 0.046 |
Alanine aminotransferase, IU/L | 46 (21–148) | 42 (20–119) | 0.029 | 48 (22–142) | 50 (21–151) | 0.046 |
Lactate dehydrogenase, IU/L | 362 (252–557) | 342 (249–549) | 0.060 | 362 (258–557) | 385 (268–623) | 0.042 |
C-reactive protein, mg/dL | 25.7 (17.8–31.7) | 23.2 (14.7–30.2) | 0.157 | 25.7 (17.9–31.4) | 24.8 (17.4–30.4) | 0.011 |
Focus of infection, n (%) | ||||||
Abdominal | 132 (39.9) | 420 (32.5) | 0.153 | 128 (39.5) | 119 (36.7) | 0.057 |
Blood | 2 (0.6) | 10 (0.8) | 0.021 | 2 (0.6) | 3 (0.9) | 0.035 |
Bone and soft tissue | 15 (4.5) | 45 (3.5) | 0.053 | 15 (4.6) | 14 (4.3) | 0.015 |
Cardiovascular | 6 (1.8) | 33 (2.6) | 0.051 | 6 (1.9) | 8 (2.5) | 0.042 |
Central nervous system | 1 (0.3) | 22 (1.7) | 0.141 | 1 (0.3) | 1 (0.3) | <0.001 |
Respiratory | 31 (9.4) | 156 (12.1) | 0.088 | 31 (9.6) | 33 (10.2) | 0.021 |
Urogenital | 8 (2.4) | 62 (4.8) | 0.128 | 8 (2.5) | 11 (3.4) | 0.055 |
Others | 200 (60.4) | 730 (56.5) | 0.079 | 195 (60.2) | 202 (62.3) | 0.044 |
Supportive therapies, n (%) | ||||||
Mechanical ventilation | 188 (56.8) | 514 (39.8) | 0.345 | 181 (55.9) | 181 (55.9) | <0.001 |
Extracorporeal membrane oxygenation | 8 (2.4) | 22 (1.7) | 0.050 | 8 (2.5) | 4 (1.2) | 0.092 |
Intra-aortic balloon pumping | 3 (0.9) | 12 (0.9) | 0.002 | 3 (0.9) | 1 (0.3) | 0.079 |
Polymyxin B hemoperfusion | 54 (16.3) | 120 (9.3) | 0.423 | 53 (16.4) | 58 (17.9) | 0.041 |
Renal replacement therapy | 129 (39.0) | 326 (25.3) | 0.297 | 124 (38.3) | 125 (38.6) | 0.006 |
Noradrenaline | 246 (74.3) | 755 (58.5) | 0.340 | 239 (73.8) | 247 (76.2) | 0.057 |
Dopamine | 78 (23.6) | 305 (23.6) | 0.001 | 78 (24.1) | 77 (23.8) | 0.007 |
Vasopressin | 72 (21.8) | 144 (11.2) | 0.289 | 68 (21.0) | 67 (20.7) | 0.008 |
Treatments, n (%) | ||||||
Antibiotics on day 0 to day 2 | 260 (78.5) | 934 (72.3) | 0.144 | 253 (78.1) | 257 (79.3) | 0.030 |
Recombinant thrombomodulin | 192 (58.0) | 554 (42.9) | 0.305 | 189 (58.3) | 192 (59.3) | 0.019 |
Unfractionated heparin | 281 (84.9) | 910 (70.5) | 0.351 | 274 (84.6) | 270 (83.3) | 0.034 |
Low-molecular-weight heparin | 10 (3.0) | 29 (2.2) | 0.048 | 10 (3.1) | 10 (3.1) | <0.001 |
Gabexate mesilate/nafamostat mesilate | 187 (56.5) | 463 (35.9) | 0.423 | 180 (55.6) | 182 (56.2) | 0.012 |
Sivelestat sodium | 56 (16.9) | 105 (8.1) | 0.268 | 52 (16.0) | 55 (17.0) | 0.025 |
Systemic steroids | 122 (36.9) | 391 (30.3) | 0.139 | 119 (36.7) | 117 (36.1) | 0.013 |
Ulinastatin | 34 (10.3) | 117 (9.1) | 0.041 | 34 (10.5) | 35 (10.8) | 0.010 |
Intravenous immunoglobulin | 111 (33.5) | 221 (17.1) | 0.384 | 108 (33.3) | 108 (33.3) | <0.001 |
Transfusion therapy, n (%) | ||||||
Red blood cells | 118 (35.6) | 336 (26.0) | 0.210 | 116 (35.8) | 114 (35.2) | 0.013 |
Fresh frozen plasma | 114 (34.4) | 259 (20.1) | 0.327 | 110 (34.0) | 113 (34.9) | 0.019 |
Platelet concentrate | 76 (23.0) | 184 (14.3) | 0.225 | 73 (22.5) | 78 (24.1) | 0.037 |
Albumin | 206 (62.2) | 474 (36.7) | 0.528 | 199 (61.4) | 195 (60.2) | 0.025 |
Pre-Matched Cohort | Matched Cohort | |||||
---|---|---|---|---|---|---|
Outcomes |
AT (n = 331) |
Control (n = 1291) |
AT (n = 324) |
Control (n = 324) | Absolute Risk Difference † | p Value |
Primary outcome | ||||||
PICS or mortality on day 14, n (%) | 212 (64.0) | 770 (59.6) | 207 (63.9) | 221 (68.2) | −4.3 (−11.6 to 3.0) | 0.245 |
PICS on day 14, n (%) | 178 (53.8) | 633 (49.0) | 174 (53.7) | 179 (55.2) | −1.5 (−9.2 to 6.1) | 0.693 |
14-day mortality, n (%) | 43 (13.0) | 164 (12.7) | 40 (12.3) | 51 (15.7) | −3.4 (−8.7 to 1.9) | 0.213 |
Secondary outcomes | ||||||
PICS or mortality on day 28, n (%) | 152 (45.9) | 574 (44.5) | 147 (45.4) | 175 (54.0) | −8.6 (−16.3 to −1.0) | 0.027 |
PICS on day 28, n (%) | 98 (29.6) | 322 (24.9) | 96 (29.6) | 102 (31.5) | −1.9 (−8.9 to 5.2) | 0.609 |
28-day mortality, n (%) | 55 (16.6) | 265 (20.5) | 52 (16.0) | 76 (23.5) | −7.4 (−13.5 to −1.3) | 0.017 |
The Barthel index at discharge ‡, median (IQR) | 15 (0–100) | 10 (0–95) | 15 (0–100) | 0 (0–85) | – | 0.005 |
Hospital days, median (IQR) | 37 (18–59) | 28 (16–52) | 37 (18–59) | 30 (16–55) | – | 0.090 |
In-hospital mortality, n (%) | 83 (25.1) | 407 (31.5) | 79 (24.4) | 116 (35.8) | −11.4 (−18.4 to −4.4) | 0.001 |
Outcomes | Absolute Risk Difference † | p Value |
---|---|---|
Primary outcome | ||
PICS or mortality on day 14 | −3.1 (−9.3 to 3.2) | 0.335 |
PICS on day 14 | −1.1 (−7.5 to 5.4) | 0.747 |
14-day mortality | −2.3 (−6.6 to 2.0) | 0.295 |
Secondary outcomes | ||
PICS or mortality on day 28 | −4.9 (−11.3 to 1.5) | 0.134 |
PICS on day 28 | 1.2 (−4.7 to 7.0) | 0.695 |
28-day mortality | −6.6 (−11.5 to −1.7) | 0.008 |
In-hospital mortality | −9.5 (−15.2 to −3.8) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanda, N.; Ohbe, H.; Nakamura, K. Effects of Antithrombin on Persistent Inflammation, Immunosuppression, and Catabolism Syndrome among Patients with Sepsis-Induced Disseminated Intravascular Coagulation. J. Clin. Med. 2023, 12, 3822. https://doi.org/10.3390/jcm12113822
Kanda N, Ohbe H, Nakamura K. Effects of Antithrombin on Persistent Inflammation, Immunosuppression, and Catabolism Syndrome among Patients with Sepsis-Induced Disseminated Intravascular Coagulation. Journal of Clinical Medicine. 2023; 12(11):3822. https://doi.org/10.3390/jcm12113822
Chicago/Turabian StyleKanda, Naoki, Hiroyuki Ohbe, and Kensuke Nakamura. 2023. "Effects of Antithrombin on Persistent Inflammation, Immunosuppression, and Catabolism Syndrome among Patients with Sepsis-Induced Disseminated Intravascular Coagulation" Journal of Clinical Medicine 12, no. 11: 3822. https://doi.org/10.3390/jcm12113822
APA StyleKanda, N., Ohbe, H., & Nakamura, K. (2023). Effects of Antithrombin on Persistent Inflammation, Immunosuppression, and Catabolism Syndrome among Patients with Sepsis-Induced Disseminated Intravascular Coagulation. Journal of Clinical Medicine, 12(11), 3822. https://doi.org/10.3390/jcm12113822