Acute Infections and Inflammatory Biomarkers in Patients with Acute Pulmonary Embolism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Outcomes
2.2. Biomarker Measurements
2.3. Statistical Analysis
3. Results
3.1. Frequency of Infections Requiring Antibiotic Treatment
3.2. Prognostic Impact of Clinical Infections Requiring Antibiotic Treatment
3.3. Prognostic Impact of Biomarkers of Inflammation
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raskob, G.E.; Angchaisuksiri, P.; Blanco, A.N.; Buller, H.; Gallus, A.; Hunt, B.J.; Hylek, E.M.; Kakkar, A.; Konstantinides, S.V.; McCumber, M.; et al. Thrombosis: A major contributor to global disease burden. Arter. Thromb. Vasc. Biol. 2014, 34, 2363–2371. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, S.V.; Meyer, G. The 2019 ESC Guidelines on the Diagnosis and Management of Acute Pulmonary Embolism. Eur. Heart J. 2019, 40, 3453–3455. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jimenez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur. Respir. J. 2019, 54, 1901647. [Google Scholar] [CrossRef] [PubMed]
- Dewachter, L.; Dewachter, C. Inflammation in Right Ventricular Failure: Does It Matter? Front. Physiol. 2018, 9, 1056. [Google Scholar] [CrossRef]
- Abul, Y.; Karakurt, S.; Ozben, B.; Toprak, A.; Celikel, T. C-Reactive Protein in Acute Pulmonary Embolism. J. Investig. Med. 2011, 59, 8–14. [Google Scholar] [CrossRef]
- Kline, J.A.; Zeitouni, R.; Marchick, M.R.; Hernandez-Nino, J.; Rose, G.A. Comparison of 8 biomarkers for prediction of right ventricular hypokinesis 6 months after submassive pulmonary embolism. Am. Heart J. 2008, 156, 308–314. [Google Scholar] [CrossRef]
- Boussekey, N.; Leroy, O.; Alfandari, S.; Devos, P.; Georges, H.; Guery, B. Procalcitonin kinetics in the prognosis of severe community-acquired pneumonia. Intensive Care Med. 2006, 32, 469–472. [Google Scholar] [CrossRef]
- Islam, M.; Filopei, J.; Frank, M.; Ramesh, N.; Verzosa, S.; Ehrlich, M.; Bondarsky, E.; Miller, A.; Steiger, D. Pulmonary infarction secondary to pulmonary embolism: An evolving paradigm. Respirology 2018, 23, 866–872. [Google Scholar] [CrossRef]
- Kirchner, J.; Obermann, A.; Stuckradt, S.; Tushaus, C.; Goltz, J.; Liermann, D.; Kickuth, R. Lung Infarction Following Pulmonary Embolism: A Comparative Study on Clinical Conditions and CT Findings to Identify Predisposing Factors. Rofo 2015, 187, 440–444. [Google Scholar] [CrossRef]
- Miniati, M.; Bottai, M.; Ciccotosto, C.; Roberto, L.; Monti, S. Predictors of Pulmonary Infarction. Medicine 2015, 94, e1488. [Google Scholar] [CrossRef]
- Paparoupa, M.; Spineli, L.; Framke, T.; Ho, H.; Schuppert, F.; Gillissen, A. Pulmonary Embolism in Pneumonia: Still a Diagnostic Challenge? Results of a Case-Control Study in 100 Patients. Dis. Markers 2016, 2016, 8682506. [Google Scholar] [CrossRef] [PubMed]
- Hellenkamp, K.; Pruszczyk, P.; Jimenez, D.; Wyzgal, A.; Barrios, D.; Ciurzynski, M.; Morillo, R.; Hobohm, L.; Keller, K.; Kurnicka, K.; et al. Prognostic impact of copeptin in pulmonary embolism: A multicentre validation study. Eur. Respir. J. 2018, 51, 1702037. [Google Scholar] [CrossRef] [PubMed]
- Ebner, M.; Kresoja, K.P.; Keller, K.; Hobohm, L.; Rogge, N.I.J.; Hasenfuss, G.; Pieske, B.; Konstantinides, S.V.; Lankeit, M. Temporal trends in management and outcome of pulmonary embolism: A single-centre experience. Clin. Res. Cardiol. 2019, 109, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Torbicki, A.; Perrier, A.; Konstantinides, S.; Agnelli, G.; Galie, N.; Pruszczyk, P.; Bengel, F.; Brady, A.J.; Ferreira, D.; Janssens, U.; et al. Guidelines on the diagnosis and management of acute pulmonary embolism: The Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). Eur. Heart J. 2008, 29, 2276–2315. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, S.V.; Torbicki, A.; Agnelli, G.; Danchin, N.; Fitzmaurice, D.; Galie, N.; Gibbs, J.S.; Huisman, M.V.; Humbert, M.; Kucher, N.; et al. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur. Heart J. 2014, 35, 3033–3080. [Google Scholar] [CrossRef] [PubMed]
- Raskob, G.E.; van Es, N.; Segers, A.; Angchaisuksiri, P.; Oh, D.; Boda, Z.; Lyons, R.M.; Meijer, K.; Gudz, I.; Weitz, J.I.; et al. Edoxaban for venous thromboembolism in patients with cancer: Results from a non-inferiority subgroup analysis of the Hokusai-VTE randomised, double-blind, double-dummy trial. Lancet Haematol. 2016, 3, e379–e387. [Google Scholar] [CrossRef]
- Hobohm, L.; Hellenkamp, K.; Hasenfuss, G.; Munzel, T.; Konstantinides, S.; Lankeit, M. Comparison of risk assessment strategies for not-high-risk pulmonary embolism. Eur. Respir. J. 2016, 47, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Marik, P.E.; Taeb, A.M. SIRS, qSOFA and new sepsis definition. J. Thorac. Dis. 2017, 9, 943–945. [Google Scholar] [CrossRef] [PubMed]
- Lankeit, M.; Jimenez, D.; Kostrubiec, M.; Dellas, C.; Hasenfuss, G.; Pruszczyk, P.; Konstantinides, S. Predictive value of the high-sensitivity troponin T assay and the simplified Pulmonary Embolism Severity Index in hemodynamically stable patients with acute pulmonary embolism: A prospective validation study. Circulation 2011, 124, 2716–2724. [Google Scholar] [CrossRef]
- Demelo-Rodriguez, P.; Galeano-Valle, F.; Marcelo-Ayala, A.; Fernandez-Carracedo, E.; Cuenca-Zarzuela, A.; Gomez-Morales, M.; Alvarez-Sala-Walther, L.A.; Bellon-Cano, J.M.; Del-Toro-Cervera, J. C-reactive protein level predicts 30-day mortality and bleeding in patients with venous thromboembolism: A prospective single-center study. Med. Clin. 2020, 155, 51–56. [Google Scholar] [CrossRef]
- Christ-Crain, M.; Stolz, D.; Bingisser, R.; Muller, C.; Miedinger, D.; Huber, P.R.; Zimmerli, W.; Harbarth, S.; Tamm, M.; Muller, B. Procalcitonin guidance of antibiotic therapy in community-acquired pneumonia: A randomized trial. Am. J. Respir. Crit. Care Med. 2006, 174, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, P.; Christ-Crain, M.; Thomann, R.; Falconnier, C.; Wolbers, M.; Widmer, I.; Neidert, S.; Fricker, T.; Blum, C.; Schild, U.; et al. Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: The ProHOSP randomized controlled trial. JAMA 2009, 302, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, D.; Aujesky, D.; Moores, L.; Gomez, V.; Lobo, J.L.; Uresandi, F.; Otero, R.; Monreal, M.; Muriel, A.; Yusen, R.D.; et al. Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism. Arch. Intern. Med. 2010, 170, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Kaptein, F.H.J.; Kroft, L.J.M.; Hammerschlag, G.; Ninaber, M.K.; Bauer, M.P.; Huisman, M.V.; Klok, F.A. Pulmonary infarction in acute pulmonary embolism. Thromb. Res. 2021, 202, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Esmon, C.T. Inflammation and thrombosis. J. Thromb. Haemost. 2003, 1, 1343–1348. [Google Scholar] [CrossRef]
- Esmon, C.T. Molecular circuits in thrombosis and inflammation. Thromb. Haemost. 2013, 109, 416–420. [Google Scholar] [CrossRef]
- Merx, M.W.; Weber, C. Sepsis and the heart. Circulation 2007, 116, 793–802. [Google Scholar] [CrossRef]
- Liu, D.; Su, L.X.; Guan, W.; Xiao, K.; Xie, L.X. Prognostic value of procalcitonin in pneumonia: A systematic review and meta-analysis. Respirology 2016, 21, 280–288. [Google Scholar] [CrossRef]
- Köktürk, N.; Kanbay, A.; Bukan, N.; Ekim, N. The Value of Serum Procalcitonin in Differential Diagnosis of Pulmonary Embolism and Community-Acquired Pneumonia. Clin. Appl. Thromb. Hemost. 2011, 17, 519–525. [Google Scholar] [CrossRef]
- Ates, H.; Ates, I.; Bozkurt, B.; Celik, H.T.; Ozol, D.; Yldrm, Z. What is the most reliable marker in the differential diagnosis of pulmonary embolism and community-acquired pneumonia? Blood Coagul. Fibrinolysis 2016, 27, 252–258. [Google Scholar] [CrossRef]
- Kruger, S.; Ewig, S.; Marre, R.; Papassotiriou, J.; Richter, K.; von Baum, H.; Suttorp, N.; Welte, T.; Group, C.S. Procalcitonin predicts patients at low risk of death from community-acquired pneumonia across all CRB-65 classes. Eur. Respir. J. 2008, 31, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Grace, E.; Turner, R.M. Use of procalcitonin in patients with various degrees of chronic kidney disease including renal replacement therapy. Clin. Infect. Dis. 2014, 59, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Dahaba, A.A.; Rehak, P.H.; List, W.F. Procalcitonin and C-reactive protein plasma concentrations in nonseptic uremic patients undergoing hemodialysis. Intensive Care Med. 2003, 29, 579–583. [Google Scholar] [CrossRef] [PubMed]
All Patients | Antibiotic Treatment within 7 Days After PE | |||
---|---|---|---|---|
Yes | No | P | ||
Subjects n | 749 | 347 | 402 | |
Age ≥ 75 years | 255 (34.0%) | 118 (34.0%) | 137 (34.1%) | 0.98 |
Sex (female) | 387 (51.7%) | 177 (51.0%) | 210 (52.2%) | 0.74 |
Comorbidities | ||||
Chronic heart failure | 109 (14.6%) | 62 (17.9%) | 47 (11.7%) | 0.017 |
Coronary artery disease | 128 (17.1%) | 59 (17.0%) | 69 (17.2%) | 0.95 |
Arterial hypertension | 479 (64.0%) | 216 (62.2%) | 263 (65.4%) | 0.37 |
Chronic pulmonary disease | 121 (16.2%) | 52 (15.0%) | 69 (17.2%) | 0.42 |
Renal insufficiency | 238 (31.9%) | 112 (32.5%) | 126 (31.5%) | 0.79 |
Diabetes mellitus | 116 (15.5%) | 55 (15.9%) | 61 (15.2%) | 0.80 |
Anaemia | 251 (33.5%) | 132 (38.0%) | 119 (29.6%) | 0.015 |
Active cancer | 145 (19.4%) | 72 (20.7%) | 73 (18.2%) | 0.37 |
Symptoms at presentation | ||||
Dyspnea | 601 (80.5%); n = 747 | 289 (83.5%); n = 346 | 312 (77.8%); n = 401 | 0.049 |
Syncope | 103 (13.8%); n = 748 | 41 (11.8%); n = 346 | 62 (15.4%); n = 402 | 0.16 |
Clinical findings at presentation | ||||
Tachycardia (heart rate ≥ 100 /min) | 259 (35.1%); n = 737 | 130 (37.6%); n = 346 | 129 (33.0%); n = 391 | 0.19 |
Hypoxemia (SpO2 <90%) | 150 (23.7%); n = 634 | 83 (27.5%); n = 302 | 67 (20.2%); n = 332 | 0.031 |
Fever (temperature ≥ 38.0 °C) | 32 (5.3%); n = 602 | 25 (8.4%); n = 298 | 7 (2.3%); n = 304 | <0.001 |
Laboratory markers of inflammation | ||||
CRP (mg/L) | 33.5; IQR 11.4-71.2 | 55.4; IQR 27.7-111.6 | 17.4; IQR 5.5-42.6 | <0.001 |
CRP > 5 mg/L * | 647 (86.4%) | 334 (96.3%) | 313 (77.9%) | <0.001 |
PCT (µg/L) | 0.05; IQR 0.03-0.10; n = 538 | 0.06; IQR 0.03-0.13; n = 245 | 0.05; IQR 0.03-0.08; n = 293 | <0.001 |
PCT > 0.07 µg/L * | 184 (34.2%); n = 538 | 108 (44.1%); n = 245 | 76 (25.9%); n = 293 | <0.001 |
Leukocyte /μL | 9.9; IQR 7.7-12.2; n = 742 | 10.9; IQR 8.6-13.6; n = 345 | 9.2; IQR 7.0-11.0; n = 397 | <0.001 |
Leukocyte > 10.500/μL * | 300 (40.4%); n = 742 | 184 (53.3%); n = 345 | 116 (29.2%); n = 397 | <0.001 |
Lactate (venous) mmol/L | 1.6; IQR 1.1-2.5; n = 510 | 1.6; IQR 1.1-2.6; n = 243 | 1.6; IQR 1.2-2.4; n = 267 | 0.442 |
Risk stratification | ||||
sPESI ≥ 1 points (high-risk class) | 505 (67.4%) | 235 (67.7%) | 270 (67.0%) | 0.87 |
ESC 2019 algorithm | 0.11 | |||
Low risk | 81 (10.8%) | 46 (13.3%) | 35 (8.7%) | |
Intermediate-low risk | 366 (48.9%) | 156 (45.0%) | 210 (52.2%) | |
Intermediate-high risk | 266 (35.5%) | 128 (36.9%) | 138 (34.3%) | |
High risk | 36 (4.8%) | 17 (4.9%) | 19 (4.7%) | |
qSOFA (Score ≥ 2 points) | 34 (5.4%) | 19 (6.5%) | 15 (4.4%) | 0.25 |
Outcomes | ||||
In-hospital adverse outcome | 65 (8.7%) | 46 (13.3%) | 19 (4.7%) | <0.001 |
Catecholamine administration | 54 (7.2%) | 39 (11.2%) | 15 (3.7%) | <0.001 |
In-hospital all-cause mortality | 26 (3.5%) | 19 (5.5%) | 7 (1.7%) | 0.005 |
Resuscitation | 16 (2.1%) | 11 (3.2%) | 5 (1.2%) | 0.07 |
In-hospital PE-related mortality | 17 (2.3%) | 11 (3.2%) | 6 (1.5%) | 0.12 |
Intubation | 39 (5.2%) | 30 (8.6%) | 9 (2.2%) | <0.001 |
Duration of in-hospital stay | 8.0; IQR 5.0-13.0 | 11.0; IQR 6.0-16.0 | 7.0; IQR 4.0-11.0 | <0.001 |
In–Hospital Adverse Outcome (n = 65/749) | ||
---|---|---|
Univariable OR (95% CI) | Multivariable OR (95% CI) | |
Antibiotic treatment | 3.08 (1.77–5.37) | 3.12 (1.70–5.74) |
Age ≥ 75 years | 1.15 (0.68–1.95) | – |
Sex (female) | 1.03 (0.62–1.71) | – |
Chronic heart failure | 2.28 (1.26–4.13) | 1.05 (0.53–2.07) |
Coronary artery disease | 1.24 (0.65–2.35) | – |
Arterial hypertension | 3.37 (1.69–6.73) | 2.28 (1.07–4.87) |
Chronic pulmonary disease | 1.19 (0.62–2.31) | – |
Renal insufficiency (GFR < 60 mL/min/1.73 m2) | 3.78 (2.23–6.41) | 1.98 (1.09–3.61) |
Diabetes mellitus | 1.41 (0.74–2.68) | – |
Anaemia | 3.11 (1.85–5.23) | 2.10 (1.19–3.70) |
Active cancer | 1.54 (0.86–2.76) | – |
Hypotension on admission | 10.84 (5.28–22.24) | – |
ESC risk assessment algorithm (per class) | 4.09 (2.75–6.10) | 3.45 (2.24–5.30) |
A: In–Hospital Adverse Outcome | ||||||||
Prevalence | Adverse Outcome Rate | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | LR+ | OR (95% CI) | |
CRP > 50 mg/L (previously reported CRP cut–off value) [5,20] | 35.9% | 14.1% | 58.5% (46.3–69.6) | 66.2% (62.6–69.7) | 14.1% (10.5–18.8) | 94.4% (91.9–96.1) | 1.7 | 2.76 (1.64–4.63) |
CRP > 124 mg/L (>90% specificity) | 12.0% | 24.4% | 33.8% (22.9–46.7) | 90.1% (87.5–92.1) | 24.4% (16.3–34.8) | 93.5% (91.2–95.2) | 3.4 | 4.64 (2.52–8.21) |
PCT > 0.18 µg/L (>90% specificity) | 12.6% | 29.4% | 40.0% (27.6–53.8) | 90.2% (87.2–92.5) | 29.4% (19.9–41.1) | 93.6% (91–95.5) | 4.1 | 6.11 (3.22–11.58) |
PCT > 0.25 µg/L (cut–off for antibiotics in pneumonia) [21,22] | 9.5% | 33.3% | 34% (22.4–47.8) | 93.0% (90.4–95) | 33.3% (22–47) | 93.2% (90.6–95.1) | 4.9 | 6.88 (3.48–13.59) |
B: In–hospital all–cause mortality | ||||||||
Prevalence | All–Cause Mortality Rate | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | LR+ | OR (95% CI) | |
CRP >50 mg/L (previously reported CRP cut–off value) [5,20] | 35.9% | 5.9% | 61.5% (42.5–77.6) | 65% (61.5–68.4) | 5.9% (3.7–9.4) | 97.9% (96.2–98.9) | 1.8 | 2.97 (1.33–6.45) |
CRP > 124 mg/L (>90% specificity) | 12.0% | 11.1% | 38.5% (20.1–59.3) | 88.9% (86.4–91.1) | 11.1% (5.7–19.9) | 97.6% (96.0–98.6) | 3.5 | 5.02 (2.21–11.45) |
PCT > 0.18 µg/L (>90% specificity) | 12.6% | 10.3% | 36.8% (19.1–59) | 88.2% (85.2–90.7) | 10.3% (5.1–19.8) | 97.4% (95.6–98.5) | 3.1 | 4.38 (1.66–11.55) |
PCT > 0.25 µg/L (cut–off for antibiotics in pneumonia) [21,22] | 9.5% | 11.8% | 31.6% (15.4–54) | 91.3% (88.6–93.5) | 11.8% (5.5–23.4) | 97.3% (95.5–98.4) | 3.6 | 4.86 (1.76–13.41) |
In–Hospital Adverse Outcome (n = 65/749) | In–Hospital All–Cause Mortality (n = 26/749) | |||||
---|---|---|---|---|---|---|
Univariable OR (95% CI) | Multivariable Model 1 OR (95% CI) | Multivariable Model 2 OR (95% CI) | Univariable OR (95% CI) | Multivariable Model 1 OR (95% CI) | Multivariable Model 2 OR (95% CI) | |
Laboratory markers of inflammation | ||||||
CRP > 124 mg/L | 4.64 (2.52–8.21) | 4.87 (2.55–9.33) | – | 5.02 (2.21–11.45) | 5.42 (2.31–12.72) | – |
PCT > 0.25 µg/L | 6.88 (3.48–13.59) | – | 5.91 (2.74–12.76) | 4.86 (1.76–13.41) | – | 3.90 (1.36–11.17) |
Established risk factors of short–term adverse outcome after PE | ||||||
sPESI class | 5.25 (2.23–12.33) | 3.13 (1.19–8.25) | 3.04 (1.01–9.15) | 12.66 (1.7–93.96) | – | – |
hsTnT ≥ 14 pg/mL | 5.7 (2.42–13.43) | 3.72 (1.52–9.09) | 2.34 (0.93–5.91) | 6.72 (1.57–28.76) | – | – |
RV/LV > 1 | 2.32 (0.75–7.14) | – | – | 0.76 (0.12–4.65) | – | – |
Hypotension on admission | 10.84 (5.28–22.24) | 8.61 (3.79–19.56) | 6.80 (2.83–16.35) | 3.93 (1.28–12.07) | – | – |
ESC 2019 risk stratification algorithm (per class) | 4.09 (2.75–6.10) | – | – | 3.12 (1.78–5.45) | 3.36 (1.86–6.08) | 2.93 (1.54–5.57) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eggers, A.-S.; Hafian, A.; Lerchbaumer, M.H.; Hasenfuß, G.; Stangl, K.; Pieske, B.; Lankeit, M.; Ebner, M. Acute Infections and Inflammatory Biomarkers in Patients with Acute Pulmonary Embolism. J. Clin. Med. 2023, 12, 3546. https://doi.org/10.3390/jcm12103546
Eggers A-S, Hafian A, Lerchbaumer MH, Hasenfuß G, Stangl K, Pieske B, Lankeit M, Ebner M. Acute Infections and Inflammatory Biomarkers in Patients with Acute Pulmonary Embolism. Journal of Clinical Medicine. 2023; 12(10):3546. https://doi.org/10.3390/jcm12103546
Chicago/Turabian StyleEggers, Ann-Sophie, Alaa Hafian, Markus H. Lerchbaumer, Gerd Hasenfuß, Karl Stangl, Burkert Pieske, Mareike Lankeit, and Matthias Ebner. 2023. "Acute Infections and Inflammatory Biomarkers in Patients with Acute Pulmonary Embolism" Journal of Clinical Medicine 12, no. 10: 3546. https://doi.org/10.3390/jcm12103546
APA StyleEggers, A.-S., Hafian, A., Lerchbaumer, M. H., Hasenfuß, G., Stangl, K., Pieske, B., Lankeit, M., & Ebner, M. (2023). Acute Infections and Inflammatory Biomarkers in Patients with Acute Pulmonary Embolism. Journal of Clinical Medicine, 12(10), 3546. https://doi.org/10.3390/jcm12103546