Measuring Fatigue and Fatigability in Spinal Muscular Atrophy (SMA): Challenges and Opportunities
Abstract
:1. Introduction
1.1. SMA Background
1.2. Fatigue in SMA
1.3. Conflicting Terminology
1.4. Operational Definitions
2. Current Landscape and the Need for Alternative Outcome Measures
3. Patient-Reported Fatigue
3.1. Dimensions of Fatigue Studied in SMA
3.2. Physical Fatigue Dimension
4. Current Fatigue Scales and What They Measure
4.1. Fatigue Severity Scale (FSS)
4.2. PedsQL™ Multidimensional Fatigue Scale (PedsQL™ MFS)
4.3. Multidimensional Fatigue Inventory (MFI)
4.4. Patient-Reported Outcomes Measurement Information System Fatigue Short Form (F-SF)
5. Additional Assessments of Physical Fatigue Related Construct(s) in SMA (Figure 1B)
5.1. Rating of Perceived Exertion (RPE)
5.2. Fatigue Visual Analog Scale (VAS-F)
5.3. SMA-Health Index (SMA-HI)
5.4. SMA-TOOL
5.5. PROfuture
6. Attributes of Physical Fatigue (Figure 1C)
6.1. Performance Fatigability
6.2. Perceived Fatigability
7. Challenges and Opportunities
7.1. Confounders of Patient-Reported Fatigue
7.2. Inadequate Reflection of Functional Status
7.3. Central and Peripheral Factors and Relationship to Fatigability
8. Proposal for Unidimensional Perceived Physical Fatigability Scale Development
The Pittsburgh Fatigability Scale (PFS)
9. Discussion
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SMA | Spinal Muscular Atrophy |
SMN | Survival Motor Neuron |
PROMs | Patient-Reported Outcome Measures |
HRQoL | Health-Related Quality of Life |
FSS | Fatigue Severity Scale |
MFI | Multidimensional Fatigue Inventory |
SMA-HI | Spinal Muscular Atrophy-Health Index |
PedsQL™MFS | Pediatric Quality of Life Inventory™ Multidimensional Fatigue Scale |
PROMIS F-SF | Patient-Reported Outcomes Measurement Information System Fatigue-Short Form |
GCI-I | Clinical Global Impression-Improvement |
VAS-F | Fatigue Visual Analog Scale |
RPE | Rate of Perceived Exertion |
NMJ | Neuromuscular Junction |
CSF | Cerebrospinal Fluid |
NCS-RNS | Nerve Conduction Study—Repetitive Nerve Stimulation |
ATP | Adenosine Triphosphate |
6MWT | Six-Minute Walk Test |
6MMT | Six-Minute Mastication Test |
ESTs | Endurance Shuttle Tests |
ESWT | Endurance Shuttle Walk Test |
ESNHPT | Endurance Shuttle Nine Hole Peg Test |
ESBBT | Endurance Shuttle Box and Block Test |
PFS | Pittsburgh Fatigability Scale |
References
- Kolb, S.J.; Coffey, C.S.; Yankey, J.W.; Krosschell, K.; Arnold, W.D.; Rutkove, S.B.; Swoboda, K.J.; Reyna, S.P.; Sakonju, A.; Darras, B.T.; et al. Natural history of infantile-onset spinal muscular atrophy. Ann. Neurol. 2017, 82, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Kolb, S.J.; Kissel, J.T. Spinal muscular atrophy: A timely review. Ann. Neurol. 2011, 68, 979–984. [Google Scholar] [CrossRef]
- Mercuri, E.; Bertini, E.; Iannaccone, S.T. Childhood spinal muscular atrophy: Controversies and challenges. Lancet Neurol. 2012, 11, 443–452. [Google Scholar] [CrossRef]
- Mercuri, E.; Finkel, R.S.; Muntoni, F.; Wirth, B.; Montes, J.; Main, M.; Mazzone, E.S.; Vitale, M.; Snyder, B.; Quijano-Roy, S.; et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul. Disord. NMD 2018, 28, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Pane, M.; Coratti, G.; Sansone, V.A.; Messina, S.; Catteruccia, M.; Bruno, C.; Sframeli, M.; Albamonte, E.; Pedemonte, M.; D’Amico, A.; et al. Type I SMA “new natural history”: Long-term data in nusinersen-treated patients. Ann. Clin. Transl. Neurol. 2021, 8, 548–557. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.H. New and Developing Therapies in Spinal Muscular Atrophy: From Genotype to Phenotype to Treatment and Where Do We Stand? Int. J. Mol. Sci. 2020, 21, 3297. [Google Scholar] [CrossRef]
- Hjartarson, H.T.; Nathorst-Böös, K.; Sejersen, T. Disease Modifying Therapies for the Management of Children with Spinal Muscular Atrophy (5q SMA): An Update on the Emerging Evidence. Drug Des. Dev. Ther. 2022, 16, 1865–1883. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, E.; Darras, B.T.; Chiriboga, C.A.; Day, J.W.; Campbell, C.; Connolly, A.M.; Iannaccone, S.T.; Kirschner, J.; Kuntz, N.L.; Saito, K.; et al. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. N. Engl. J. Med. 2018, 378, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Klotz, J.; Rocha, C.T.; Young, S.D.; Duong, T.; Buu, M.; Sampson, J.; Day, J.W. Advances in the therapy of Spinal Muscular Atrophy. J. Pediatr. 2021, 236, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Chiriboga, C.A.; Bruno, C.; Duong, T.; Fischer, D.; Mercuri, E.; Kirschner, J.; Kostera-Pruszczyk, A.; Jaber, B.; Gorni, K.; Kletzl, H.; et al. Risdiplam in Patients Previously Treated with Other Therapies for Spinal Muscular Atrophy: An Interim Analysis from the JEWELFISH Study. Neurol. Ther. 2023, 12, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Dangouloff, T.; Servais, L. Clinical Evidence Supporting Early Treatment Of Patients With Spinal Muscular Atrophy: Current Perspectives. Ther. Clin. Risk Manag. 2019, 15, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Dunaway Young, S.; Montes, J.; Kramer, S.S.; Podwika, B.; Rao, A.K.; De Vivo, D.C. Perceived Fatigue in Spinal Muscular Atrophy: A Pilot Study. J. Neuromuscul. Dis. 2019, 6, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Noto, Y.; Misawa, S.; Mori, M.; Kawaguchi, N.; Kanai, K.; Shibuya, K.; Isose, S.; Nasu, S.; Sekiguchi, Y.; Beppu, M.; et al. Prominent fatigue in spinal muscular atrophy and spinal and bulbar muscular atrophy: Evidence of activity-dependent conduction block. Clin. Neurophysiol. 2013, 124, 1893–1898. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, A.; Behan, P.O. Fatigue in neurological disorders. Lancet 2004, 363, 978–988. [Google Scholar] [CrossRef]
- Binz, C.; Schreiber-Katz, O.; Kumpe, M.; Ranxha, G.; Siegler, H.; Wieselmann, G.; Petri, S.; Osmanovic, A. An observational cohort study on impact, dimensions and outcome of perceived fatigue in adult 5q-spinal muscular atrophy patients receiving nusinersen treatment. J. Neurol. 2021, 268, 950–962. [Google Scholar] [CrossRef]
- Kizina, K.; Stolte, B.; Totzeck, A.; Bolz, S.; Schlag, M.; Ose, C.; von Velsen, O.; Kleinschnitz, C.; Hagenacker, T. Fatigue in adults with spinal muscular atrophy under treatment with nusinersen. Sci. Rep. 2020, 10, 11069. [Google Scholar] [CrossRef]
- Osmanovic, A.; Ranxha, G.; Kumpe, M.; Wurster, C.D.; Stolte, B.; Cordts, I.; Günther, R.; Freigang, M.; Müschen, L.H.; Binz, C.; et al. Treatment satisfaction in 5q-spinal muscular atrophy under nusinersen therapy. Ther. Adv. Neurol. Disord. 2021, 14, 1756286421998902. [Google Scholar] [CrossRef]
- Torri, F.; Lopriore, P.; Montano, V.; Siciliano, G.; Mancuso, M.; Ricci, G. Pathophysiology and Management of Fatigue in Neuromuscular Diseases. Int. J. Mol. Sci. 2023, 24, 5005. [Google Scholar] [CrossRef]
- Mercuri, E.; Messina, S.; Montes, J.; Muntoni, F.; Sansone, V.A. Patient and parent oriented tools to assess health-related quality of life, activity of daily living and caregiver burden in SMA. Rome, 13 July 2019. Neuromuscul. Disord. NMD 2020, 30, 431–436. [Google Scholar] [CrossRef]
- Madruga-Garrido, M.; Vázquez-Costa, J.F.; Medina-Cantillo, J.; Brañas, M.; Cattinari, M.G.; de Lemus, M.; Díaz-Abós, P.; Sánchez-Menéndez, V.; Terrancle, Á.; Rebollo, P.; et al. Design of a Non-Interventional Study to Validate a Set of Patient- and Caregiver-Oriented Measurements to Assess Health Outcomes in Spinal Muscular Atrophy (SMA-TOOL Study). Neurol. Ther. 2021, 10, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Binz, C.; Osmanovic, A.; Thomas, N.H.; Stolte, B.; Freigang, M.; Cordts, I.; Griep, R.; Uzelac, Z.; Wurster, C.D.; Kamm, C.; et al. Validity and reliability of the German multidimensional fatigue inventory in spinal muscular atrophy. Ann. Clin. Transl. Neurol. 2022, 9, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Mongiovi, P.; Dilek, N.; Garland, C.; Hunter, M.; Kissel, J.T.; Luebbe, E.; McDermott, M.P.; Johnson, N.; Heatwole, C. Patient Reported Impact of Symptoms in Spinal Muscular Atrophy (PRISM-SMA). Neurology 2018, 91, e1206–e1214. [Google Scholar] [CrossRef] [PubMed]
- McGraw, S.; Qian, Y.; Henne, J.; Jarecki, J.; Hobby, K.; Yeh, W.S. A qualitative study of perceptions of meaningful change in spinal muscular atrophy. BMC Neurol. 2017, 17, 68. [Google Scholar] [CrossRef]
- Billones, R.; Liwang, J.K.; Butler, K.; Graves, L.; Saligan, L.N. Dissecting the fatigue experience: A scoping review of fatigue definitions, dimensions, and measures in non-oncologic medical conditions. Brain Behav. Immun. Health 2021, 15, 100266. [Google Scholar] [CrossRef]
- Pattyn, N.; Van Cutsem, J.; Dessy, E.; Mairesse, O. Bridging Exercise Science, Cognitive Psychology, and Medical Practice: Is “Cognitive Fatigue” a Remake of “The Emperor’s New Clothes”? Front. Psychol 2018, 9, 1246. [Google Scholar] [CrossRef]
- Kluger, B.M.; Krupp, L.B.; Enoka, R.M. Fatigue and fatigability in neurologic illnesses: Proposal for a unified taxonomy. Neurology 2013, 80, 409–416. [Google Scholar] [CrossRef]
- Dittner, A.J.; Wessely, S.C.; Brown, R.G. The assessment of fatigue: A practical guide for clinicians and researchers. J. Psychosom. Res. 2004, 56, 157–170. [Google Scholar] [CrossRef]
- Gollie, J.M.; Patel, S.S.; Harris-Love, M.O.; Cohen, S.D.; Blackman, M.R. Fatigability and the Role of Neuromuscular Impairments in Chronic Kidney Disease. Am. J. Nephrol. 2022, 53, 253–263. [Google Scholar] [CrossRef]
- Enoka, R.M.; Almuklass, A.M.; Alenazy, M.; Alvarez, E.; Duchateau, J. Distinguishing between Fatigue and Fatigability in Multiple Sclerosis. Neurorehabilit. Neural Repair 2021, 35, 960–973. [Google Scholar] [CrossRef]
- Enoka, R.M.; Duchateau, J. Translating Fatigue to Human Performance. Med. Sci. Sport. Exerc. 2016, 48, 2228–2238. [Google Scholar] [CrossRef] [PubMed]
- Gandevia, S.C.; Enoka, R.M.; McComas, A.J.; Stuart, D.G.; Thomas, C.K. Neurobiology of muscle fatigue. Advances and issues. Adv. Exp. Med. Biol. 1995, 384, 515–525. [Google Scholar] [CrossRef]
- Glynn, N.W.; Santanasto, A.J.; Simonsick, E.M.; Boudreau, R.M.; Beach, S.R.; Schulz, R.; Newman, A.B. The Pittsburgh Fatigability scale for older adults: Development and validation. J. Am. Geriatr. Soc. 2015, 63, 130–135. [Google Scholar] [CrossRef]
- Montes, J.; Dunaway Young, S.; Mazzone, E.S.; Pasternak, A.; Glanzman, A.M.; Finkel, R.S.; Darras, B.T.; Muntoni, F.; Mercuri, E.; De Vivo, D.C.; et al. Nusinersen improves walking distance and reduces fatigue in later-onset spinal muscular atrophy. Muscle Nerve 2019, 60, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Stam, M.; Wijngaarde, C.A.; Bartels, B.; Asselman, F.L.; Otto, L.A.M.; Habets, L.E.; van Eijk, R.P.A.; Middelkoop, B.M.; Goedee, H.S.; de Groot, J.F.; et al. Randomized double-blind placebo-controlled crossover trial with pyridostigmine in spinal muscular atrophy types 2–4. Brain Commun. 2023, 5, fcac324. [Google Scholar] [CrossRef]
- Slayter, J.; Casey, L.; O’Connell, C. Patient Reported Outcome Measures in Adult Spinal Muscular Atrophy: A Scoping Review and Graphical Visualization of the Evidence. J. Neuromuscul. Dis. 2022, 10, 239–250. [Google Scholar] [CrossRef]
- Vázquez-Costa, J.F.; Branas-Pampillón, M.; Medina-Cantillo, J.; Povedano, M.; Pitarch-Castellano, I.; López-Lobato, M.; Fernández-Ramos, J.A.; Lafuente-Hidalgo, M.; Rojas-García, R.; Caballero-Caballero, J.M.; et al. Validation of a Set of Instruments to Assess Patient- and Caregiver-Oriented Measurements in Spinal Muscular Atrophy: Results of the SMA-TOOL Study. Neurol. Ther. 2022, 12, 89–105. [Google Scholar] [CrossRef]
- Domine, M.C.; Cattinari, M.G.; de Lemus, M.; Castellano, I.P.; Ñungo-Garzón, N.C.; Sevilla-Mantecón, T.; Vázquez-Costa, J.F. Physical fatigue and perceived fatigability in adolescents and adults with spinal muscular atrophy: A pilot study. Neurol. Perspect. 2022, 2, 199–208. [Google Scholar] [CrossRef]
- Werlauff, U.; Højberg, A.; Firla-Holme, R.; Steffensen, B.F.; Vissing, J. Fatigue in patients with spinal muscular atrophy type II and congenital myopathies: Evaluation of the fatigue severity scale. Qual. Life Res. 2014, 23, 1479–1488. [Google Scholar] [CrossRef] [PubMed]
- Belter, L.; Cruz, R.; Jarecki, J. Quality of life data for individuals affected by spinal muscular atrophy: A baseline dataset from the Cure SMA Community Update Survey. Orphanet J. Rare Dis. 2020, 15, 217. [Google Scholar] [CrossRef] [PubMed]
- Fatigue. A Brief Guide to the PROMIS Fatigue Instruments. Patient-Reported Outcomes Measurement Information System 2019. Available online: https://www.healthmeasures.net/explore-measurement-systems/promis (accessed on 15 January 2023).
- Iannaccone, S.T.; Hynan, L.S.; Morton, A.; Buchanan, R.; Limbers, C.A.; Varni, J.W. The PedsQL in pediatric patients with Spinal Muscular Atrophy: Feasibility, reliability, and validity of the Pediatric Quality of Life Inventory Generic Core Scales and Neuromuscular Module. Neuromuscul. Disord. NMD 2009, 19, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Krupp, L.B.; LaRocca, N.G.; Muir-Nash, J.; Steinberg, A.D. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch. Neurol. 1989, 46, 1121–1123. [Google Scholar] [CrossRef] [PubMed]
- Montes, J.; Garber, C.E.; Kramer, S.S.; Montgomery, M.J.; Dunaway, S.; Kamil-Rosenberg, S.; Carr, B.; Cruz, R.; Strauss, N.E.; Sproule, D.; et al. Single-Blind, Randomized, Controlled Clinical Trial of Exercise in Ambulatory Spinal Muscular Atrophy: Why are the Results Negative? J. Neuromuscul. Dis. 2015, 2, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, A.M.; Pasanisi, M.B.; Černiauskaitė, M.; Bussolino, C.; Leonardi, M.; Morandi, L. Perceived efficacy of salbutamol by persons with spinal muscular atrophy: A mixed methods study. Muscle Nerve 2016, 54, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Varni, J.W.; Burwinkle, T.M.; Katz, E.R.; Meeske, K.; Dickinson, P. The PedsQL in pediatric cancer: Reliability and validity of the Pediatric Quality of Life Inventory Generic Core Scales, Multidimensional Fatigue Scale, and Cancer Module. Cancer 2002, 94, 2090–2106. [Google Scholar] [CrossRef]
- Varni, J.W.; Limbers, C.A. The PedsQL Multidimensional Fatigue Scale in young adults: Feasibility, reliability and validity in a University student population. Qual. Life Res. 2008, 17, 105–114. [Google Scholar] [CrossRef]
- Robert, R.S.; Paxton, R.J.; Palla, S.L.; Yang, G.; Askins, M.A.; Joy, S.E.; Ater, J.L. Feasibility, reliability, and validity of the Pediatric Quality of Life Inventory™ generic core scales, cancer module, and multidimensional fatigue scale in long-term adult survivors of pediatric cancer. Pediatr. Blood Cancer 2012, 59, 703–707. [Google Scholar] [CrossRef]
- Smets, E.M.; Garssen, B.; Bonke, B.; De Haes, J.C. The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J. Psychosom. Res. 1995, 39, 315–325. [Google Scholar] [CrossRef]
- Cella, D.; Riley, W.; Stone, A.; Rothrock, N.; Reeve, B.; Yount, S.; Amtmann, D.; Bode, R.; Buysse, D.; Choi, S.; et al. The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. J. Clin. Epidemiol. 2010, 63, 1179–1194. [Google Scholar] [CrossRef]
- Utter, A.C.; Robertson, R.J.; Green, J.M.; Suminski, R.R.; McAnulty, S.R.; Nieman, D.C. Validation of the Adult OMNI Scale of perceived exertion for walking/running exercise. Med. Sci. Sport. Exerc. 2004, 36, 1776–1780. [Google Scholar] [CrossRef]
- Utter, A.C.; Robertson, R.J.; Nieman, D.C.; Kang, J. Children’s OMNI Scale of Perceived Exertion: Walking/running evaluation. Med. Sci. Sport. Exerc. 2002, 34, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Bartels, B.; de Groot, J.F.; Habets, L.E.; Wijngaarde, C.A.; Vink, W.; Stam, M.; Asselman, F.L.; van Eijk, R.P.A.; van der Pol, W.L. Fatigability in spinal muscular atrophy: Validity and reliability of endurance shuttle tests. Orphanet J. Rare Dis. 2020, 15, 75. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Feng, J.; Goodwin, A.M.; Uher, D.; Rao, A.K.; McDermott, M.P.; De Vivo, D.C.; Ewing Garber, C.; Montes, J. Perceived Exertion is not a Substitute for Fatiguability in Spinal Muscular Atrophy. Muscle Nerve 2022. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.A.; Hicks, G.; Nino-Murcia, G. Validity and reliability of a scale to assess fatigue. Psychiatry Res. 1991, 36, 291–298. [Google Scholar] [CrossRef]
- van der Heul, A.M.B.; van Eijk, R.P.A.; Wadman, R.I.; Asselman, F.; Cuppen, I.; Nievelstein, R.A.J.; Gerrits, E.; van der Pol, W.L.; van den Engel-Hoek, L. Mastication in Patients with Spinal Muscular Atrophy Types 2 and 3 is Characterized by Abnormal Efficiency, Reduced Endurance, and Fatigue. Dysphagia 2022, 37, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Sansone, V.A.; Pirola, A.; Lizio, A.; Greco, L.C.; Coratti, G.; Casiraghi, J.; Pane, M.; Pera, M.C.; Italiano, C.; Messina, S.; et al. The Spinal Muscular Atrophy Health Index: Italian validation of a disease-specific outcome measure. Neuromuscul. Disord. NMD 2021, 31, 409–418. [Google Scholar] [CrossRef]
- Mazzella, A.; Cruz, R.; Belter, L.; Curry, M.; Dilek, N.; Zizzi, C.; Heatwole, C.; Jarecki, J. Assessing perspectives of disease burden and clinically meaningful changes using the Spinal Muscular Atrophy Health Index in adolescents and young adults. Muscle Nerve 2022, 66, 276–281. [Google Scholar] [CrossRef]
- Zizzi, C.E.; Luebbe, E.; Mongiovi, P.; Hunter, M.; Dilek, N.; Garland, C.; Ciafaloni, E.; Zaidman, C.M.; Kissel, J.T.; McDermott, M.P.; et al. The Spinal Muscular Atrophy Health Index: A novel outcome for measuring how a patient feels and functions. Muscle Nerve 2021, 63, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Thimm, A.; Brakemeier, S.; Kizina, K.; Munoz Rosales, J.; Stolte, B.; Totzeck, A.; Deuschl, C.; Kleinschnitz, C.; Hagenacker, T. Assessment of Health-Related Quality of Life in Adult Spinal Muscular Atrophy Under Nusinersen Treatment-A Pilot Study. Front. Neurol. 2021, 12, 812063. [Google Scholar] [CrossRef]
- Varni, J.W.; Limbers, C.A.; Bryant, W.P.; Wilson, D.P. The PedsQL multidimensional fatigue scale in pediatric obesity: Feasibility, reliability and validity. Int. J. Pediatr. Obes. 2010, 5, 34–42. [Google Scholar] [CrossRef]
- Dobryakova, E.; Hulst, H.E.; Spirou, A.; Chiaravalloti, N.D.; Genova, H.M.; Wylie, G.R.; DeLuca, J. Fronto-striatal network activation leads to less fatigue in multiple sclerosis. Mult. Scler. J. 2018, 24, 1174–1182. [Google Scholar] [CrossRef]
- van den Engel-Hoek, L.; Knuijt, S.; van Gerven, M.H.; Lagarde, M.L.; Groothuis, J.T.; de Groot, I.J.; Janssen, M.C. The 6-min mastication test: A unique test to assess endurance of continuous chewing, normal values, reliability, reproducibility and usability in patients with mitochondrial disease. J. Oral Rehabil. 2017, 44, 155–162. [Google Scholar] [CrossRef]
- Cella, D.; Lai, J.S.; Nowinski, C.J.; Victorson, D.; Peterman, A.; Miller, D.; Bethoux, F.; Heinemann, A.; Rubin, S.; Cavazos, J.E.; et al. Neuro-QOL: Brief measures of health-related quality of life for clinical research in neurology. Neurology 2012, 78, 1860–1867. [Google Scholar] [CrossRef]
- Montes, J.; Dunaway, S.; Garber, C.E.; Chiriboga, C.A.; De Vivo, D.C.; Rao, A.K. Leg muscle function and fatigue during walking in spinal muscular atrophy type 3. Muscle Nerve 2014, 50, 34–39. [Google Scholar] [CrossRef]
- Montes, J.; Dunaway, S.; Montgomery, M.J.; Sproule, D.; Kaufmann, P.; De Vivo, D.C.; Rao, A.K. Fatigue leads to gait changes in spinal muscular atrophy. Muscle Nerve 2011, 43, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Montes, J.; McDermott, M.P.; Martens, W.B.; Dunaway, S.; Glanzman, A.M.; Riley, S.; Quigley, J.; Montgomery, M.J.; Sproule, D.; Tawil, R.; et al. Six-Minute Walk Test demonstrates motor fatigue in spinal muscular atrophy. Neurology 2010, 74, 833–838. [Google Scholar] [CrossRef]
- Wadman, R.I.; Vrancken, A.F.; van den Berg, L.H.; van der Pol, W.L. Dysfunction of the neuromuscular junction in spinal muscular atrophy types 2 and 3. Neurology 2012, 79, 2050–2055. [Google Scholar] [CrossRef] [PubMed]
- Pera, M.C.; Luigetti, M.; Pane, M.; Coratti, G.; Forcina, N.; Fanelli, L.; Mazzone, E.S.; Antonaci, L.; Lapenta, L.; Palermo, C.; et al. 6MWT can identify type 3 SMA patients with neuromuscular junction dysfunction. Neuromuscul. Disord. NMD 2017, 27, 879–882. [Google Scholar] [CrossRef] [PubMed]
- Kariya, S.; Park, G.H.; Maeno-Hikichi, Y.; Leykekhman, O.; Lutz, C.; Arkovitz, M.S.; Landmesser, L.T.; Monani, U.R. Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy. Hum. Mol. Genet. 2008, 17, 2552–2569. [Google Scholar] [CrossRef] [PubMed]
- Ripolone, M.; Ronchi, D.; Violano, R.; Vallejo, D.; Fagiolari, G.; Barca, E.; Lucchini, V.; Colombo, I.; Villa, L.; Berardinelli, A.; et al. Impaired Muscle Mitochondrial Biogenesis and Myogenesis in Spinal Muscular Atrophy. JAMA Neurol. 2015, 72, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Montes, J.; Goodwin, A.M.; McDermott, M.P.; Uher, D.; Hernandez, F.M.; Coutts, K.; Cocchi, J.; Hauschildt, M.; Cornett, K.M.; Rao, A.K.; et al. Diminished muscle oxygen uptake and fatigue in spinal muscular atrophy. Ann. Clin. Transl. Neurol. 2021, 8, 1086–1095. [Google Scholar] [CrossRef]
- Montes, J.; Blumenschine, M.; Dunaway, S.; Alter, A.S.; Engelstad, K.; Rao, A.K.; Chiriboga, C.A.; Sproule, D.M.; De Vivo, D.C. Weakness and fatigue in diverse neuromuscular diseases. J. Child Neurol. 2013, 28, 1277–1283. [Google Scholar] [CrossRef]
- Stam, M.; Wadman, R.I.; Wijngaarde, C.A.; Bartels, B.; Asselman, F.L.; Otto, L.A.M.; Goedee, H.S.; Habets, L.E.; de Groot, J.F.; Schoenmakers, M.; et al. Protocol for a phase II, monocentre, double-blind, placebo-controlled, cross-over trial to assess efficacy of pyridostigmine in patients with spinal muscular atrophy types 2–4 (SPACE trial). BMJ Open 2018, 8, e019932. [Google Scholar] [CrossRef]
- Fischer, M.J.; Ketelaar, M.; van der Veere, P.J.; Verhoef, M.; Wadman, R.I.; Visser-Meily, J.M.A.; van der Pol, W.L.; Schröder, C.D. Illness Perceptions in Pediatric Spinal Muscular Atrophy: Agreement between Children and their Parents, and its Association with Quality of Life. J. Dev. Phys. Disabil. 2021, 33, 297–310. [Google Scholar] [CrossRef]
- Falk, K.; Swedberg, K.; Gaston-Johansson, F.; Ekman, I. Fatigue is a prevalent and severe symptom associated with uncertainty and sense of coherence in patients with chronic heart failure. Eur. J. Cardiovasc. Nurs. 2007, 6, 99–104. [Google Scholar] [CrossRef]
- Friedman, J.H.; Brown, R.G.; Comella, C.; Garber, C.E.; Krupp, L.B.; Lou, J.S.; Marsh, L.; Nail, L.; Shulman, L.; Taylor, C.B. Fatigue in Parkinson’s disease: A review. Mov. Disord. Off. J. Mov. Disord. Soc. 2007, 22, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.H.; Chou, K.L. Sleep and fatigue in Parkinson’s disease. Park. Relat. Disord. 2004, 10 (Suppl. S1), S27–S35. [Google Scholar] [CrossRef] [PubMed]
- Alves, G.; Wentzel-Larsen, T.; Larsen, J.P. Is fatigue an independent and persistent symptom in patients with Parkinson disease? Neurology 2004, 63, 1908–1911. [Google Scholar] [CrossRef] [PubMed]
- Barone, P.; Antonini, A.; Colosimo, C.; Marconi, R.; Morgante, L.; Avarello, T.P.; Bottacchi, E.; Cannas, A.; Ceravolo, G.; Ceravolo, R.; et al. The PRIAMO study: A multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2009, 24, 1641–1649. [Google Scholar] [CrossRef]
- Havlikova, E.; van Dijk, J.P.; Rosenberger, J.; Nagyova, I.; Middel, B.; Dubayova, T.; Gdovinova, Z.; Groothoff, J.W. Fatigue in Parkinson’s disease is not related to excessive sleepiness or quality of sleep. J. Neurol. Sci. 2008, 270, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Hameau, S.; Zory, R.; Latrille, C.; Roche, N.; Bensmail, D. Relationship between neuromuscular and perceived fatigue and locomotor performance in patients with multiple sclerosis. Eur. J. Phys. Rehabil. Med. 2017, 53, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Kalkman, J.S.; Zwarts, M.J.; Schillings, M.L.; van Engelen, B.G.; Bleijenberg, G. Different types of fatigue in patients with facioscapulohumeral dystrophy, myotonic dystrophy and HMSN-I. Experienced fatigue and physiological fatigue. Neurol. Sci. 2008, 29 (Suppl. S2), S238–S240. [Google Scholar] [CrossRef] [PubMed]
- Campbell, R.; Gordon, P.; Ward, K.; Reilly, C.; Scott, D.L.; Rafferty, G.F. Nonvolitional assessment of muscle endurance in idiopathic inflammatory myopathies: There is no relationship between patient-reported fatigue and muscle fatigability. Muscle Nerve 2014, 50, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Errico, F.; Marino, C.; Grimaldi, M.; Nuzzo, T.; Bassareo, V.; Valsecchi, V.; Panicucci, C.; Di Schiavi, E.; Mazza, T.; Bruno, C.; et al. Nusinersen Induces Disease-Severity-Specific Neurometabolic Effects in Spinal Muscular Atrophy. Biomolecules 2022, 12, 1431. [Google Scholar] [CrossRef] [PubMed]
- Mentis, G.Z.; Blivis, D.; Liu, W.; Drobac, E.; Crowder, M.E.; Kong, L.; Alvarez, F.J.; Sumner, C.J.; O’Donovan, M.J. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron 2011, 69, 453–467. [Google Scholar] [CrossRef] [PubMed]
- Habets, L.E.; Bartels, B.; de Groot, J.F.; van der Pol, W.L.; Jeneson, J.A.L.; Asselman, F.L.; van Eijk, R.P.A.; Stegeman, D.F. Motor unit reserve capacity in spinal muscular atrophy during fatiguing endurance performance. Clin. Neurophysiol. 2021, 132, 800–807. [Google Scholar] [CrossRef]
- Yeo, C.J.J.; Darras, B.T. Overturning the Paradigm of Spinal Muscular Atrophy as Just a Motor Neuron Disease. Pediatr. Neurol. 2020, 109, 12–19. [Google Scholar] [CrossRef]
- Li, Y.-J.; Chen, T.-H.; Wu, Y.-Z.; Tseng, Y.-H. Metabolic and Nutritional Issues Associated with Spinal Muscular Atrophy. Nutrients 2020, 12, 3842. [Google Scholar] [CrossRef]
- Boyd, P.J.; Tu, W.Y.; Shorrock, H.K.; Groen, E.J.N.; Carter, R.N.; Powis, R.A.; Thomson, S.R.; Thomson, D.; Graham, L.C.; Motyl, A.A.L.; et al. Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy. PLoS Genet. 2017, 13, e1006744. [Google Scholar] [CrossRef]
- Chali, F.; Desseille, C.; Houdebine, L.; Benoit, E.; Rouquet, T.; Bariohay, B.; Lopes, P.; Branchu, J.; Della Gaspera, B.; Pariset, C.; et al. Long-term exercise-specific neuroprotection in spinal muscular atrophy-like mice. J. Physiol. 2016, 594, 1931–1952. [Google Scholar] [CrossRef]
- Kim, J.-K.; Jha, N.N.; Feng, Z.; Faleiro, M.R.; Chiriboga, C.A.; Wei-Lapierre, L.; Dirksen, R.T.; Ko, C.-P.; Monani, U.R. Muscle-specific SMN reduction reveals motor neuron–independent disease in spinal muscular atrophy models. J. Clin. Investig. 2020, 130, 1271–1287. [Google Scholar] [CrossRef] [PubMed]
Clinical Measure (Scale Type) | Target Population | Author(s) in SMA | Dimension(s) of Fatigue | Population(s) | Statistical Findings (SMA) |
---|---|---|---|---|---|
FSS (M) [43] | MS and SLE | GF PF MoF | Adults | Test–retest in SMA II, r = 0.98 (Werlauff et al., 2014 [39]) | |
PedsQL™ MFS (M) PedsQL.org (accessed on 1 February 2023) [46,47,48] | Pediatric Patients | GF CF S/R-F | Pediatrics and Adults (5–49 years) Parent-proxy (2–18 years) | N/A | |
MFI (M) [49] | Oncology and Chronic Fatigue Syndrome | GF PF MoF MF | Adults | General and Physical Fatigue combined scale scores, Cronbach α = 0.84 (Binz et al., 2022 [22]) General Fatigue convergent validity with VAS, ρ = 0.7 (Binz et al., 2022 [22]) | |
PROMIS (F-SF) (M) NIHpromis.org (accessed on 1 February 2023) [50] | Non-Disease Specific |
| GF PF MoF MF | Pediatrics and Adults (8–18+ years) Parent-proxy for younger patients | N/A |
OMNI (RPE) (U) [51,52] | Non-Disease Specific | PF | Adolescents and Adults (13–57 years) | N/A | |
Fatigue Visual Analog Scale (VAS-F) (U) [55] | Non-Disease Specific | PF | Adults (18+ years) | Test–retest in SMA II, r = 0.99 (Werlauff et al., 2014 [39]) | |
SMA-HI (M) [57,58,59] | SMA | GF PF | Adolescents and Adults (12–79 years) | Fatigue subscale, Cronbach’s α = 0.92 (Zizzi et al., 2021 [59]) Total score ICC = 0.86, Fatigue subscale ICC = 0.91 (Zizzi et al., 2021 [59]) | |
PROfuture (U) [38] | SMA |
| PF | Adolescents and Adults (14+ years) | N/A |
SMA-TOOL (U) [21] | SMA | PF | Pediatric and Adults (8+ years) Parent-proxy (2–8 years) | Perceived fatigability subscale, Cronbach’s α = 0.92 (Vazquez-Costa et al., 2022 [37]) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Torres, R.S.; Uher, D.; Gay, E.L.; Coratti, G.; Dunaway Young, S.; Rohwer, A.; Muni Lofra, R.; De Vivo, D.C.; Hirano, M.; Glynn, N.W.; et al. Measuring Fatigue and Fatigability in Spinal Muscular Atrophy (SMA): Challenges and Opportunities. J. Clin. Med. 2023, 12, 3458. https://doi.org/10.3390/jcm12103458
Rodriguez-Torres RS, Uher D, Gay EL, Coratti G, Dunaway Young S, Rohwer A, Muni Lofra R, De Vivo DC, Hirano M, Glynn NW, et al. Measuring Fatigue and Fatigability in Spinal Muscular Atrophy (SMA): Challenges and Opportunities. Journal of Clinical Medicine. 2023; 12(10):3458. https://doi.org/10.3390/jcm12103458
Chicago/Turabian StyleRodriguez-Torres, Rafael S., David Uher, Emma L. Gay, Giorgia Coratti, Sally Dunaway Young, Annemarie Rohwer, Robert Muni Lofra, Darryl C. De Vivo, Michio Hirano, Nancy W. Glynn, and et al. 2023. "Measuring Fatigue and Fatigability in Spinal Muscular Atrophy (SMA): Challenges and Opportunities" Journal of Clinical Medicine 12, no. 10: 3458. https://doi.org/10.3390/jcm12103458
APA StyleRodriguez-Torres, R. S., Uher, D., Gay, E. L., Coratti, G., Dunaway Young, S., Rohwer, A., Muni Lofra, R., De Vivo, D. C., Hirano, M., Glynn, N. W., & Montes, J. (2023). Measuring Fatigue and Fatigability in Spinal Muscular Atrophy (SMA): Challenges and Opportunities. Journal of Clinical Medicine, 12(10), 3458. https://doi.org/10.3390/jcm12103458