Clinical Characteristics and Predictors of In-Hospital Mortality of Patients Hospitalized with COVID-19 Infection
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Statistical Analyses
3. Results
3.1. Population Characteristics
3.2. Biochemical Biomarkers and Clinical Features as Independent Predictors of In-Hospital Mortality
3.3. Medications Associated with In-Hospital Mortality
3.4. Risk Factors for Death in COVID-19 Patients
4. Discussion
5. Conclusions
- age over 70 years old;
- decreased saturation at admission without oxygen below 87%;
- the advancement of lung involvement by typical COVID-19-related abnormalities in CT of the chest above 40%;
- and a concomitant diagnosis of CAD.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorbalenya, A.E.; Baker, S.C.; Baric, R.C.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; et al. The species severe acute respiratory syndrome- related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar]
- Regina, J.; Papadymitriou-Olivgeris, M.; Burger, R.; le Pogam, M.A.; Niemi, T.; Filippidis, P.; Tschopp, J.; Desgranges, F.; Viala, B.; Kampouri, E.; et al. Epidemiology, risk factors and clinical course of SARS-CoV-2 infected patients in a Swiss University Hospital: An observational retrospective study. PLoS ONE 2020, 15, e0240781. [Google Scholar] [CrossRef] [PubMed]
- Docherty, A.B.; Harrison, E.M.; Green, C.A.; Hardwick, H.E.; Pius, R.; Norman, L.; Holden, K.A.; Read, J.M.; Dondelinger, F.; Carson, G.; et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO clinical characterisation protocol: Prospective observational cohort study. BMJ 2020, 369, m1985. [Google Scholar] [CrossRef]
- Galloway, J.B.; Norton, S.; Barker, R.D.; Brookes, A.; Carey, I.; Clarke, B.D.; Jina, R.; Reid, C.; Russell, M.D.; Sneep, R.; et al. A clinical risk score to identify patients with COVID-19 at high risk of critical care admission or death: An observational cohort study. J. Infect. 2020, 81, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Ruscica, M.; Macchi, C.; Iodice, S.; Tersalvi, G.; Rota, I.; Ghidini, S.; Terranova, L.; Valenti, L.; Amati, F.; Aliberti, S.; et al. Prognostic parameters of in-hospital mortality in COVID-19 patients—An Italian experience. Eur. J. Clin. Investig. 2021, 51, e13629. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Chen, B.; Wang, Y.; Yang, Y.; Zeng, J.; Deng, G.; Zeng, F. Prognostic value of liver biochemical parameters for COVID-19 mortality. Ann Hepatol. 2021, 21, 100279. [Google Scholar] [CrossRef]
- Mesas, A.E.; Cavero-Redondo, I.; Álvarez-Bueno, C.; Cabrera, M.A.S.; de Andrade, S.M.; Sequí-Dominguez, I.; Martínez-Vizcaíno, V. Predictors of in-hospital COVID-19 mortality: A comprehensive systematic review and meta-analysis exploring differences by age, sex and health conditions. PLoS ONE 2020, 15, e0241742. [Google Scholar] [CrossRef] [PubMed]
- Barman, R.D.; Gupta, V.; Tomar, S.; Gupta, G.; Biswas, A.; Ranjan, P.; Baitha, U.; Pandey, S.; Prakash, B.; Wig, N. Epidemiology and Risk Factors of COVID-19-Related Mortality. Cureus 2021, 13, e20072. [Google Scholar] [CrossRef]
- Zinellu, A.; Arru, F.; de Vito, A.; Sassu, A.; Valdes, G.; Scano, V.; Zinellu, E.; Perra, R.; Madeddu, G.; Carru, C.; et al. The De Ritis ratio as prognostic biomarker of in-hospital mortality in COVID-19 patients. Eur. J. Clin. Investig. 2020, 51, e13427. [Google Scholar] [CrossRef]
- Bellan, M.; Azzolina, D.; Hayden, E.; Gaidano, G.; Pirisi, M.; Acquaviva, A.; Aimaretti, G.; Valletti, P.A.; Angilletta, R.; Arioli, R.; et al. Simple Parameters from Complete Blood Count Predict In-Hospital Mortality in COVID-19. Dis. Markers 2021, 2021, 8863053. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Qi, T.; Liu, L.; Ling, Y.; Qian, Z.; Li, T.; Li, F.; Xu, Q.; Zhang, Y.; Xu, S.; et al. Clinical progression of patients with COVID-19 in Shanghai, China. J. Infect. 2020, 80, e1–e6. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, D.Q.; Zou, B.; Yang, H.; Hui, W.Z.; Rui, F.; Yee, N.T.S.; Liu, C.; Nerurkar, S.N.; Kai, J.C.Y.; et al. Epidemiology of COVID-19: A systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes. J. Med Virol. 2020, 93, 1449–1458. [Google Scholar] [CrossRef]
- Argenziano, M.G.; Bruce, S.L.; Slater, C.L.; Tiao, J.R.; Baldwin, M.R.; Barr, R.G.; Chang, B.P.; Chau, K.H.; Choi, J.J.; Gavin, N.; et al. Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: Retrospective case series. BMJ 2020, 369, m1996. [Google Scholar] [CrossRef] [PubMed]
- Bertsimas, D.; Lukin, G.; Mingardi, L.; Nohadani, O.; Orfanoudaki, A.; Stellato, B.; Wiberg, H.; Gonzalez-Garcia, S.; Parra-Calderón, C.L.; Robinson, K.; et al. COVID-19 mortality risk assessment: An international multi-center study. PLoS ONE 2020, 15, e0243262. [Google Scholar] [CrossRef] [PubMed]
- Cummings, M.J.; Baldwin, M.R.; Abrams, D.; Jacobson, S.D.; Meyer, B.J.; Balough, E.M.; Aaron, J.G.; Claassen, J.; Rabbani, L.E.; Hastie, J.; et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: A prospective cohort study. Lancet 2020, 395, 1763–1770. [Google Scholar] [CrossRef] [PubMed]
- Cigno, E.; Magagnoli, C.; Pierce, M.; Iglesias, P. Lubricating ability of two phosphonium-based ionic liquids as additives of a bio-oil for use in wind turbines gearboxes. Wear 2017, 376, 756–765. [Google Scholar] [CrossRef]
- Jakka, S.; Chandra, S.; Chaudhry, D.; Manjuunath, B.G.; Tyagi, D.; Thulasi, A. Oxygen saturation index as a surrogate to oxygenation index in predicting outcomes in ARDS. Eur. Respir. J. 2020, 56, 3437. [Google Scholar] [CrossRef]
- Booth, A.; Reed, A.B.; Ponzo, S.; Yassaee, A.; Aral, M.; Plans, D.; Labrique, A.; Mohan, D. Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis. PLoS ONE 2021, 16, e0247461. [Google Scholar] [CrossRef]
- Nowak, B.; Szymański, P.; Pańkowski, I.; Szarowska, A.; Życińska, K.; Rogowski, W.; Gil, R.; Furmanek, M.; Tatur, J.; Zaczyński, A.; et al. Clinical characteristics and short-term outcomes of coronavirus disease 2019: Retrospective, single-center experience of designated hospital in Poland. Pol. Arch. Intern. Med. 2020, 130, 407–411. [Google Scholar] [CrossRef]
- Kovács, A.; Palásti, P.; Veréb, D.; Bozsik, B.; Palkó, A.; Kincses, Z.T. The sensitivity and specificity of chest CT in the diagnosis of COVID-19. Eur. Radiol. 2021, 31, 2819–2824. [Google Scholar] [CrossRef] [PubMed]
- Orsi, M.A.; Oliva, G.; Toluian, T.; Pittino, C.V.; Panzeri, M.; Cellina, M. Feasibility, reproducibility, and clinical validity of a quantitative chest X-Ray assessment for COVID-19. Am. J. Trop. Med. Hyg. 2020, 103, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Francone, M.; Iafrate, F.; Masci, G.M.; Coco, S.; Cilia, F.; Manganaro, L.; Panebianco, V.; Andreoli, C.; Colaiacomo, M.C.; Zingaropoli, M.A.; et al. Chest CT score in COVID-19 patients: Correlation with disease severity and short-term prognosis. Eur. Radiol. 2020, 30, 6808–6817. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, E.; Soulat, G.; Fayol, A.; Hernigou, A.; Livrozet, M.; Grand, T.; Reverdito, G.; al Haddad, J.; Tran, K.D.D.; Charpentier, A.; et al. Visual lung damage CT score at hospital admission of COVID-19 patients and 30-day mortality. Eur. Radiol. 2021, 31, 8354–8363. [Google Scholar] [CrossRef] [PubMed]
- Colombi, D.; Villani, G.D.; Maffi, G.; Risoli, C.; Bodini, F.C.; Petrini, M.; Morelli, N.; Anselmi, P.; Milanese, G.; Silva, M.; et al. Qualitative and quantitative chest CT parameters as predictors of specific mortality in COVID-19 patients. Emerg. Radiol. 2020, 27, 701–710. [Google Scholar] [CrossRef]
- Gold, M.S.; Sehayek, D.; Gabrielli, S.; Zhang, X.; McCusker, C.; Ben-Shoshan, M. COVID-19 and comorbidities: A systematic review and meta-analysis. Postgrad. Med. 2020, 132, 749–755. [Google Scholar] [CrossRef]
- Wolff, D.; Nee, S.; Hickey, N.S.; Marschollek, M. Risk factors for COVID-19 severity and fatality: A structured literature review. Infection 2020, 49, 15–28. [Google Scholar] [CrossRef]
- Grasselli, G.; Greco, M.; Zanella, A.; Albano, G.; Antonelli, M.; Bellani, G.; Bonanomi, E.; Cabrini, L.; Carlesso, E.; Castelli, G.; et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy, Italy. JAMA Intern. Med. 2020, 180, 1345–1355. [Google Scholar] [CrossRef]
- Reddy, R.K.; Charles, W.N.; Sklavounos, A.; Dutt, A.; Seed, P.T.; Khajuria, A. The effect of smoking on COVID-19 severity: A systematic review and meta-analysis. J. Med. Virol. 2021, 93, 1045–1056. [Google Scholar] [CrossRef]
- Alqahtani, J.S.; Oyelade, T.; Aldhahir, A.M.; Alghamdi, S.M.; Almehmadi, M.; Alqahtani, A.S.; Quaderi, S.; Mandal, S.; Hurst, J.R. Prevalence, Severity and Mortality associated with COPD and Smoking in patients with COVID-19: A Rapid Systematic Review and Meta-Analysis. PLoS ONE 2020, 15, e0233147. [Google Scholar] [CrossRef]
- Ho, K.S.; Narasimhan, B.; Sheehan, J.; Wu, L.; Fung, J.Y. Controversy over smoking in COVID-19—A real world experience in New York city. J. Med. Virol. 2021, 93, 4537–4543. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.; Barbouni, A.; Niaura, R. Systematic review of the prevalence of current smoking among hospitalized COVID-19 patients in China: Could nicotine be a therapeutic option? Intern. Emerg. Med. 2020, 15, 845–852. [Google Scholar] [CrossRef] [PubMed]
Parameter (n (%) or Mean ± SD) | Total (n = 1040) | Survivors (n = 770) | Non-Survivors (n = 270) | |
---|---|---|---|---|
Age (years) | 68.8 ± 15.4 | 65.7 ± 15.5 | 77.5 ± 11.1 | |
Sex (n, %) | Female | 487 (46.8) | 362 (47) | 125 (46.3) |
Male | 553 (53.2) | 408 (53) | 145 (53.7) | |
Days of hospitalization (n) | 13.9 ± 9.4 | 14.5 ± 8.5 | 12.3 ± 11.2 | |
Hypertension (n, %) | 643 (61.8) | 454 (59) | 189 (70) | |
CAD (n, %) | 182 (17.5) | 124 (16.1) | 58 (21.5) | |
HF (n, %) | 168 (16.1) | 91 (11.8) | 77 (28.5) | |
Diabetes (n, %) | 329 (31.6) | 222 (28.8) | 107 (39.6) | |
Asthma, COPD (n, %) | 116 (11.1) | 84 (10.9) | 32 (11.8) | |
Cancer (n, %) | 48 (4.6) | 30 (4.0) | 18 (6.7) | |
Smoking (n, %) | 50 | 44 | 6 | |
Heart rate (n/min) | 85.5 ± 16.5 | 86 ± 15.8 | 84.1 ± 18.2 | |
SBP (mmHg) | 130.1 ± 20.9 | 131.5 ± 19.6 | 126.1 ± 23.8 | |
DBP (mmHg) | 76.8 ± 12.8 | 78.1 ± 12.2 | 73 ± 13.6 |
Parameter {Mean ± SD or Median (IQR)}, (n) | Total (n = 1040) | Survivors (n = 770) | Non-Survivors (n = 270) | p-Value |
---|---|---|---|---|
CRP (mg/L) (1036) | 61.9 (24.2–126.7) | 54.4 (19.4–119.3) | 84.2 (47–164.5) | <0.0001 |
D-dimer (µg/L) (1001) | 1030 (580–2120) | 907 (510–1820) | 1480.5 (860–2906) | <0.0001 |
ALT (U/L) (1003) | 31 (19–51) | 30 (20–50) | 31 (18–53) | 0.9706 |
AST (U/L) (1003) | 39 (27–63) | 36 (26.5–56.5) | 51 (31–90) | <0.0001 |
APTT(s) (997) | 30.9 ± 11.9 | 31 ± 12.4 | 30.8 ± 10 | 0.2138 |
pH (650) | 7.43 ± 0.08 | 7.44 ± 0.07 | 7.40 ± 0.09 | <0.0001 |
pCO2 (mmHg) (631) | 34.95 ± 7.56 | 34.53 ± 6.01 | 35.75 ± 9.85 | 0.6865 |
pO2 (mmHg) (634) | 68.73 ± 30.44 | 67.64 ± 25.32 | 70.79 ± 38.35 | 0.1451 |
Glucose (mg/dL) (978) | 121 (102–153) | 115 (99–139) | 141 (114–189) | <0.0001 |
Creatinine (mg/dL) (1032) | 0.92 (0.72–1.23) | 0.86 (0.69–1.09) | 1.17 (0.83–1.7) | <0.0001 |
eGFR (mL/min/1.73 m2) (1032) | 72.81 ± 28.53 | 78.22 ± 26.86 | 57.15 ± 27.46 | <0.0001 |
Urea (mg/dL) (942) | 26.45 (16.6–44) | 22.2 (15.2–35.4) | 45.05 (29.3–75) | <0.0001 |
RBC (million/mm3) (1036) | 4.29 ± 0.72 | 4.32 ± 0.69 | 4.19 ± 0.77 | 0.0036 |
WBC (thousand/µL) (1036) | 6.72 (4.76–9.1) | 6.3 (4.61–8.51) | 7.97 (5.48–11.7) | <0.0001 |
Hemoglobin (g/dL) (1036) | 12.93 ± 2.17 | 12.99 ± 2.07 | 12.74 ± 2.44 | 0.1973 |
Hematocrit (%) (1036) | 38.02 ± 6.21 | 38.11 ± 5.96 | 37,76 ± 6,89 | 0.4113 |
MCV (fL) (1036) | 88.92 ± 6.75 | 88.51 ± 6.59 | 90.10 ± 7.05 | <0.0001 |
PLTx109 per L (1036) | 229.2 ± 105 | 235.3 ± 108.2 | 211.6 ± 93 | 0.0007 |
Neutrophils (%) (1021) | 73.42 ± 15.1 | 71.1 ± 14.84 | 80.18 ± 13.80 | <0.0001 |
Lymphocytes ×109 per L (822) | 12.95 (1.8–23.7) | 15.2 (4.8–25.2) | 5.3 (1–15.5) | <0.0001 |
RDW-CV% (1034) | 14.17 ± 3.84 | 13.98 ± 4.24 | 14.75 ± 2.2 | <0.0001 |
PDW% (1027) | 13.1 ± 3.53 | 13.01 ± 3.74 | 13.37 ± 2.80 | 0.0625 |
MPV% (1027) | 10.91 ± 3.07 | 10.91 ± 3.50 | 10.9 ± 1.16 | 0.1973 |
NT-proBNP (pg/mL) (855) | 632 (186.9–2372) | 438.9 (144.5–1596) | 2253.5 (641.1–7062) | <0.0001 |
INR (1013) | 1.15 (1.06–1.28) | 1.15 (1.06–1.26) | 1.2 (1.07–1.34) | 0.0029 |
PT(s) (1010) | 12.8 (11.5–14.2) | 12.7 (11.5–14) | 12.9 (11.5–14.7) | 0.0273 |
Potassium (mg/dL) (1033) | 4.06 ± 0.66 | 4 ± 0.61 | 4.22 ± 0.76 | <0.0001 |
Procalcitonin (µg/L) (891) | 0.11 (0.06–0.29) | 0.09 (0.05–0.2) | 0.29 (0.12–0.79) | <0.0001 |
Sodium (mg/dL) (1033) | 137.97 ± 5.64 | 137.69 ± 5.12 | 138.76 ± 6.88 | 0.1502 |
TSH (mlU/L) (548) | 0.96 (0.52–1.62) | 0.98 (0.58–1.63) | 0.83 (0.36–1.59) | 0.0735 |
Troponin T (ng/L) (315) | 20 (11–43) | 14 (9–27) | 38.5 (23–79) | <0.0001 |
Ferritin (µg/L) (535) | 411 (204–819) | 379.5 (192.5–755.5) | 551 (275–1500) | 0.0042 |
Computed tomography (%) (839) | 25 (10–45) | 20 (10–40) | 40 (15–70) | <0.0001 |
Serum ferritin (µg/L) (535) | 411 (204–819) | 379.5 (192.5–755.5) | 551 (275–1500) | 0.0042 |
SpO2 (%) (826) | 90.31 ± 8.44 | 91.63 ± 6.55 | 85.04 ± 12.29 | <0.0001 |
PaO2/FiO2 (mmHg) (1026) | 276.2 (166.7–380.9) | 304.8 (216.7–428.6) | 186.7 (76.8–276.2) | <0.0001 |
Parameter {n (%)} | Total (n = 1040) | Survivors (n = 770) | Non-Survivors (n = 270) | p-Value |
---|---|---|---|---|
Remdesivir (n, %) | 178 (17.1) | 154 (20) | 24 (8.9) | <0.0001 |
Tocilizumab (n, %) | 92 (8.8) | 65 (8.4) | 27 (10) | 0.4378 |
Antibiotic treatment (n, %) | 952 (91.5) | 684 (88.8) | 268 (99.2) | <0.0001 |
Anticoagulants (n, %) | 1006 (96.7) | 743 (96.5) | 263 (97.4) | 0.4675 |
Steroids (n, %) | 845 (81.3) | 599 (77.8) | 246 (91.1) | <0.0001 |
Convalescent plasma (n, %) | 315 (30.3) | 263 (34.2) | 52 (19.3) | <0.0001 |
Oxygen therapy (n, %) | 929 (89.3) | 661 (85.8) | 268 (99.2) | <0.0001 |
NIV (n, %) | 131 (12.6) | 64 (8.3) | 67 (24.8) | <0.0001 |
Ventilator therapy (n, %) | 160 (15.4) | 33 (4.3) | 127 (47) | <0.0001 |
Parameter | OR | −95% CI | +95% CI | p-Value |
---|---|---|---|---|
Age (for every year) | 1.066 | 1.053 | 1.08 | <0.0001 |
Age ≥ 70 | 4.408 | 3.232 | 6.011 | <0.0001 |
Days of hosp. (n) | 0.968 | 0.95 | 0.987 | 0.0008 |
AST (U/L) | 1.006 | 1.003 | 1.009 | <0.0001 |
CRP (mg/L) | 1.005 | 1.003 | 1.007 | <0.0001 |
D-dimer (µg/L) | 1.025 | 1.008 | 1.042 | 0.0035 |
pH | 0.0026 | 0.0002 | 0.029 | <0.0001 |
pCO2 (mmHg) | 1.021 | 0.999 | 1.043 | 0.0599 |
Glucose (mg/dL) | 1.007 | 1.005 | 1.009 | <0.0001 |
Creatinine (mg/dL) | 1.315 | 1.157 | 1.493 | <0.0001 |
eGFR (mL/min/1.73 m2) | 0.974 | 0.969 | 0.979 | <0.0001 |
Urea (mg/dL) | 1.027 | 1.022 | 1.033 | <0.0001 |
RBC (million/mm3) | 0.769 | 0.634 | 0.933 | 0.0078 |
WBC (thousand/µL) | 1.086 | 1.056 | 1.117 | <0.0001 |
MCV (fL) | 1.039 | 1.016 | 1.063 | 0.0009 |
PLT × 109 per L | 0.998 | 0.997 | 0.999 | 0.0065 |
Neutrophils (%) | 1.054 | 1.04 | 1.067 | <0.0001 |
Lymphocytes × 109 per L | 0.975 | 0.962 | 0.989 | 0.0003 |
RDW-CV% | 1.078 | 1.016 | 1.145 | 0.0134 |
NT-proBNP (pg/mL) | 1.097 | 1.067 | 1.128 | <0.0001 |
Potassium (mg/dL) | 1.64 | 1.328 | 2.025 | <0.0001 |
Procalcitonin (µg/L) | 1.017 | 0.997 | 1.038 | 0.0943 |
Sodium (mg/dL) | 1.035 | 1.009 | 1.061 | 0.0078 |
Computed tomography (%) | 1.027 | 1.02 | 1.034 | <0.0001 |
Computed tomography ≥ 40% | 3.295 | 2.336 | 4.649 | <0.0001 |
Serum ferritin (µg/L) | 1.00036 | 1.00015 | 1.00058 | 0.001 |
SBP (mmHg) | 0.988 | 0.982 | 0.995 | 0.0006 |
DBP (mmHg) | 0.969 | 0.958 | 0.98 | <0.0001 |
SpO2 (%) | 0.923 | 0.904 | 0.942 | <0.0001 |
SpO2 ≤ 87% | 4.625 | 3.152 | 6.786 | <0.0001 |
PaO2/FiO2 (mmHg) | 0.994 | 0.993 | 0.995 | <0.0001 |
Hypertension | 1.624 | 1.206 | 2.186 | 0.0014 |
CAD | 1.538 | 1.091 | 2.17 | 0.0141 |
HF | 3.198 | 2.281 | 4.483 | <0.0001 |
Type 2 diabetes | 1.735 | 1.31 | 2.298 | 0.0001 |
Oxygen therapy | 18.45 | 5.834 | 58.341 | <0.0001 |
Antibiotic treatment | 7.185 | 3.853 | 13.397 | <0.0001 |
Steroids | 2.556 | 1.629 | 4.01 | <0.0001 |
Convalescent plasma | 0.44 | 0.319 | 0.606 | <0.0001 |
Remdesivir | 0.341 | 0.223 | 0.522 | <0.0001 |
NIV | 4.089 | 2.812 | 5.945 | <0.0001 |
Ventilator therapy | 21.749 | 14.29 | 33.101 | <0.0001 |
Parameter | OR | −95% CL | +95% CL | p-Value |
---|---|---|---|---|
Age ≥ 70 | 7.824 | 3.168 | 19.321 | <0.001 |
CAD | 3.544 | 1.38 | 9.105 | 0.009 |
SpO2 ≤ 87% | 3.589 | 1.49 | 8.646 | 0.004 |
Computed tomography ≥ 40% | 2.567 | 1.056 | 6.236 | 0.037 |
Parameter | AUC | 95% CI | p |
---|---|---|---|
Age ≥ 70 years | 0.729 | 0.696–0.762 | p < 0.0001 |
SpO2 ≤ 87% | 0.69 | 0.642–0.738 | p < 0.0001 |
Computed tomography ≥ 40% | 0.672 | 0.626–0.718 | p < 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gromadziński, L.; Żechowicz, M.; Moczulska, B.; Kasprzak, M.; Grzelakowska, K.; Nowek, P.; Stępniak, D.; Jaje-Rykowska, N.; Kłosińska, A.; Pożarowszczyk, M.; et al. Clinical Characteristics and Predictors of In-Hospital Mortality of Patients Hospitalized with COVID-19 Infection. J. Clin. Med. 2023, 12, 143. https://doi.org/10.3390/jcm12010143
Gromadziński L, Żechowicz M, Moczulska B, Kasprzak M, Grzelakowska K, Nowek P, Stępniak D, Jaje-Rykowska N, Kłosińska A, Pożarowszczyk M, et al. Clinical Characteristics and Predictors of In-Hospital Mortality of Patients Hospitalized with COVID-19 Infection. Journal of Clinical Medicine. 2023; 12(1):143. https://doi.org/10.3390/jcm12010143
Chicago/Turabian StyleGromadziński, Leszek, Maciej Żechowicz, Beata Moczulska, Michał Kasprzak, Klaudyna Grzelakowska, Paulina Nowek, Dominika Stępniak, Natalia Jaje-Rykowska, Aleksandra Kłosińska, Mikołaj Pożarowszczyk, and et al. 2023. "Clinical Characteristics and Predictors of In-Hospital Mortality of Patients Hospitalized with COVID-19 Infection" Journal of Clinical Medicine 12, no. 1: 143. https://doi.org/10.3390/jcm12010143
APA StyleGromadziński, L., Żechowicz, M., Moczulska, B., Kasprzak, M., Grzelakowska, K., Nowek, P., Stępniak, D., Jaje-Rykowska, N., Kłosińska, A., Pożarowszczyk, M., Wochna, A., Kern, A., Romaszko, J., Sobacka, A., Podhajski, P., Kubica, A., Kryś, J., Piasecki, M., Lackowski, P., ... Kubica, J. (2023). Clinical Characteristics and Predictors of In-Hospital Mortality of Patients Hospitalized with COVID-19 Infection. Journal of Clinical Medicine, 12(1), 143. https://doi.org/10.3390/jcm12010143