Osteosarcopenia—The Role of Dual-Energy X-ray Absorptiometry (DXA) in Diagnostics
Abstract
:1. Introduction
2. The Role of DXA in Osteosarcopenia
2.1. Advantages of DXA
2.2. Technical Aspects of DXA
2.3. Bone
2.3.1. Bone Mineral Density
2.3.2. Bone Quality
2.3.3. Fracture Risk
2.4. Body Composition (BC)—The Role in the Diagnosis of Sarcopenia
2.4.1. Muscle Mass
2.4.2. Fat Tissue
2.5. Limitations
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clynes, M.A.; Gregson, C.L.; Bruyère, O.; Cooper, C.; Dennison, E.M. Osteosarcopenia: Where osteoporosis and sarcopenia collide. Rheumatology 2021, 60, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. WHO Study Group. Osteoporos. Int. 1994, 4, 368–381. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lim, S.; Choi, S.H.; Kim, K.M.; Yoon, J.W.; Kim, K.W.; Lim, J.Y.; Park, K.S.; Jang, H.C. Sarcopenia: An independent predictor of mortality in community-dwelling older Korean men. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 1244–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, B.K. Assessment of Muscle Quantity, Quality and Function. J. Obes. Metab. Syndr. 2022, 31, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Messina, C.; Albano, D.; Gitto, S.; Tofanelli, L.; Bazzocchi, A.; Ulivieri, F.M.; Guglielmi, G.; Sconfienza, L.M. Body composition with dual energy X-ray absorptiometry: From basics to new tools. Quant Imaging Med. Surg. 2020, 10, 1687–1698. [Google Scholar] [CrossRef]
- Adler, R.A. Osteoporosis in Men. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: http://www.ncbi.nlm.nih.gov/books/NBK558007/ (accessed on 18 October 2021).
- Bandirali, M.; Lanza, E.; Messina, C.; Sconfienza, L.M.; Brambilla, R.; Maurizio, R.; Marchelli, D.; Piodi, L.P.; Di Leo, G.; Ulivieri, F.M.; et al. Dose absorption in lumbar and femoral dual energy X-ray absorptiometry examinations using three different scan modalities: An anthropomorphic phantom study. J. Clin. Densitom. 2013, 16, 279–282. [Google Scholar] [CrossRef]
- Blake, G.M.; Naeem, M.; Boutros, M. Comparison of effective dose to children and adults from dual X-ray absorptiometry examinations. Bone 2006, 38, 935–942. [Google Scholar] [CrossRef]
- Camacho, P.M.; Petak, S.M.; Binkley, N.; Diab, D.L.; Eldeiry, L.S.; Farooki, A.; Harris, S.T.; Hurley, D.L.; Kelly, J.; Lewiecki, E.M.; et al. American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis—2020 Update. Endocr. Pract. 2020, 26, 1–46. [Google Scholar] [CrossRef]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.Y. Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF). European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2019, 30, 3–44. [Google Scholar] [CrossRef] [Green Version]
- Adult Positions. ISCD. Available online: https://iscd.org/learn/official-positions/adult-positions/ (accessed on 18 October 2021).
- Shepherd, J.A.; Ng, B.K.; Sommer, M.J.; Heymsfield, S.B. Body composition by DXA. Bone 2017, 104, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Albanese, C.V.; Diessel, E.; Genant, H.K. Clinical applications of body composition measurements using DXA. J. Clin. Densitom. 2003, 6, 75–85. [Google Scholar] [CrossRef]
- Cheung, Y.M.; Roff, G.; Grossmann, M. Precision of the Hologic Horizon A dual energy X-ray absorptiometry in the assessment of body composition. Obes. Res. Clin. Pract. 2020, 14, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Guglielmi, G.; Ponti, F.; Agostini, M.; Amadori, M.; Battista, G.; Bazzocchi, A. The role of DXA in sarcopenia. Aging Clin. Exp. Res. 2016, 28, 1047–1060. [Google Scholar] [CrossRef] [PubMed]
- Dual Energy X Ray Absorptiometry for Bone Mineral Density and Body Composition Assessment, Human Health Series No. 15. Vienna: International Atomic Energy Agency. 2011. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1479_web.pdf (accessed on 25 April 2022).
- Bazzocchi, A.; Ponti, F.; Albisinni, U.; Battista, G.; Guglielmi, G. DXA: Technical aspects and application. Eur. J. Radiol. 2016, 85, 1481–1492. [Google Scholar] [CrossRef]
- Laskey, M.A. Dual-energy X-ray absorptiometry and body composition. Nutrition 1996, 12, 45–51. [Google Scholar] [CrossRef]
- Kelly, T.L.; Berger, N.; Richardson, T.L. DXA body composition: Theory and practice. Appl. Radiat. Isot. 1998, 49, 511–513. [Google Scholar] [CrossRef]
- Cummings, S.R.; Melton, L.J. Epidemiology and outcomes of osteoporotic fractures. Lancet 2002, 359, 1761–1767. [Google Scholar] [CrossRef]
- Johnell, O.; Kanis, J.A. An estimate of the worldwide prevelance and disability associated with osteoporotic fractures. Osteoporos. Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef]
- Eftekhar-Sadat, B.; Ghavami, M.; Toopchizadeh, V.; Ghahvechi Akbari, M. Wrist bone mineral density utility in diagnosing hip osteoporosis in postmenopausal women. Ther. Adv. Endocrinol. Metab. 2016, 7, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Bani Hassan, E.; Phu, S.; Vogrin, S.; Escobedo Terrones, G.; Pérez, X.; Rodriguez-Sanchez, I.; Duque, G. Diagnostic Value of Mid-Thigh and Mid-Calf Bone, Muscle, and Fat Mass in Osteosarcopenia: A Pilot Study. Calcif. Tissue Int. 2019, 105, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Zlatkovic-Svenda, M.I.; Leitner, C.; Lazovic, B.; Petrovic, D.M. Complex Regional Pain Syndrome (Sudeck Atrophy) Prevention Possibility and Accelerated Recovery in Patients with Distal Radius at the Typical Site Fracture Using Polarized, Polychromatic Light Therapy. Photobiomodul. Photomed. Laser Surg. 2019, 37, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Lems, W.F.; Paccou, J.; Zhang, J.; Fuggle, N.R.; Chandran, M.; Harvey, N.C.; Cooper, C.; Javaid, K.; Ferrari, S.; Akesson, K.E. Vertebral fracture: Epidemiology, impact and use of DXA vertebral fracture assessment in fracture liaison services. Osteoporos. Int. 2021, 32, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Ulivieri, F.M.; Rinaudo, L. Beyond Bone Mineral Density: A New Dual X-Ray Absorptiometry Index of Bone Strength to Predict Fragility Fractures, the Bone Strain Index. Front. Med. 2020, 7, 590139. [Google Scholar] [CrossRef]
- Tabacco, G.; Naciu, A.M.; Messina, C.; Sanson, G.; Rinaudo, L.; Cesareo, R.; Falcone, S.; Manfrini, S.; Napoli, N.; Bilezikian, J.P.; et al. DXA-Based Bone Strain Index: A New Tool to Evaluate Bone Quality in Primary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2021, 106, 2304–2312. [Google Scholar] [CrossRef]
- Messina, C.; Piodi, L.P.; Grossi, E.; Eller-Vainicher, C.; Bianchi, M.L.; Ortolani, S.; Di Stefano, M.; Rinaudo, L.; Sconfienza, L.M.; Ulivieri, F.M. Artificial neural network analysis of bone quality DXA parameters response to teriparatide in fractured osteoporotic patients. PLoS ONE 2020, 15, e0229820. [Google Scholar] [CrossRef]
- Shevroja, E.; Cafarelli, F.P.; Guglielmi, G.; Hans, D. DXA parameters, Trabecular Bone Score (TBS) and Bone Mineral Density (BMD), in fracture risk prediction in endocrine-mediated secondary osteoporosis. Endocrine 2021, 74, 20–28. [Google Scholar] [CrossRef]
- Warzecha, M.; Czerwiński, E.; Amarowicz, J.; Berwecka, M. Trabecular Bone Score (TBS) in Clinical Practice—Rewiev. Ortop. Traumatol. Rehabil. 2018, 20, 347–359. [Google Scholar] [CrossRef]
- Rajan, R.; Cherian, K.E.; Kapoor, N.; Paul, T.V. Trabecular Bone Score-An Emerging Tool in the Management of Osteoporosis. Indian J. Endocrinol. Metab. 2020, 24, 237–243. [Google Scholar] [CrossRef]
- Silva, B.C.; Bilezikian, J.P. Trabecular bone score: Perspectives of an imaging technology coming of age. Arq. Bras. Endocrinol. Metabol. 2014, 58, 493–503. [Google Scholar] [CrossRef] [Green Version]
- Sandru, F.; Carsote, M.; Dumitrascu, M.C.; Albu, S.E.; Valea, A. Glucocorticoids and Trabecular Bone Score. J. Med. Life 2020, 13, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Harvey, N.C.; Glüer, C.C.; Binkley, N.; McCloskey, E.V.; Brandi, M.L.; Cooper, C.; Kendler, D.; Lamy, O.; Laslop, A.; Camargos, B.M.; et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 2015, 78, 216–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halupczok-Żyła, J.; Gojny, Ł.; Bolanowski, M. Trabecular bone score (TBS) as a noninvasive and complementary tool for clinical diagnosis of bone structure in endocrine disorders. Endokrynol. Pol. 2019, 70, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Lobos, S.; Cooke, A.; Simonett, G.; Ho, C.; Boyd, S.K.; Edwards, W.B. Trabecular Bone Score at the Distal Femur and Proximal Tibia in Individuals With Spinal Cord Injury. J. Clin. Densitom. 2019, 22, 249–256. [Google Scholar] [CrossRef]
- Lewiecki, E.M. Bone densitometry and vertebral fracture assessment. Curr. Osteoporos. Rep. 2010, 8, 123–130. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, Y.K.; Oh, S.H.; Ahn, J.; Lee, Y.E.; Pyo, J.H.; Choi, Y.Y.; Kim, D.; Bae, S.C.; Sung, Y.K.; et al. A systematic review of diagnostic accuracy of vertebral fracture assessment (VFA) in postmenopausal women and elderly men. Osteoporos Int. 2016, 27, 1691–1699. [Google Scholar] [CrossRef]
- Sornay-Rendu, E.; Duboeuf, F.; Ulivieri, F.M.; Rinaudo, L.; Chapurlat, R. The bone strain index predicts fragility fractures. The OFELY study. Bone 2022, 157, 116348. [Google Scholar] [CrossRef]
- Toth, E.; Banefelt, J.; Åkesson, K.; Spångeus, A.; Ortsäter, G.; Libanati, C. History of Previous Fracture and Imminent Fracture Risk in Swedish Women Aged 55 to 90 Years Presenting With a Fragility Fracture. J. Bone Miner. Res. 2020, 35, 861–868. [Google Scholar] [CrossRef] [Green Version]
- Gehlbach, S.; Saag, K.G.; Adachi, J.D.; Hooven, F.H.; Flahive, J.; Boonen, S.; Chapurlat, R.D.; Compston, J.E.; Cooper, C.; Díez-Perez, A.; et al. Previous Fractures at Multiple Sites Increase the Risk for Subsequent Fractures: The Global Longitudinal Study of Osteoporosis in Women. J. Bone Miner. Res. 2012, 27, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.H.; Moon, S.H.; Ha, Y.C.; Lee, D.Y.; Gong, H.S.; Park, S.Y.; Yang, K.H. Osteoporotic Fracture: 2015 Position Statement of the Korean Society for Bone and Mineral Research. J. Bone Metab. 2015, 22, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Arceo-Mendoza, R.M.; Camacho, P.M. Postmenopausal Osteoporosis: Latest Guidelines. Endocrinol. Metab. Clin. N. Am. 2021, 50, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; Johnell, O.; Oden, A.; Jonsson, B.; De Laet, C.; Dawson, A. Risk of hip fracture according to the World Health Organization criteria for osteopenia and osteoporosis. Bone 2000, 27, 585–590. [Google Scholar] [CrossRef]
- Kanis, J.A.; Harvey, N.C.; McCloskey, E.; Bruyère, O.; Veronese, N.; Lorentzon, M.; Cooper, C.; Rizzoli, R.; Adib, G.; Al-Daghri, N.; et al. Algorithm for the management of patients at low, high and very high risk of osteoporotic fractures. Osteoporos Int. 2020, 31, 1–12. [Google Scholar] [CrossRef]
- McCloskey, E.V.; Harvey, N.C.; Johansson, H.; Lorentzon, M.; Liu, E.; Vandenput, L.; Leslie, W.D.; Kanis, J.A. Fracture risk assessment by the FRAX model. Climacteric 2022, 25, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.Y. Executive summary of the European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Calcif. Tissue Int. 2019, 104, 235–238. [Google Scholar] [CrossRef]
- Litwic, A.; Compston, J.; Wyman, A.; Siris, E.S.; Gehlbach, S.H.; Adachi, J.D.; Chapurlat, R.; Díez-Pérez, A.; LaCroix, A.Z.; Nieves, J.W.; et al. Self-Perception of Fracture Risk: What Can it tell us? Osteoporos Int. 2017, 28, 3495–3500. [Google Scholar] [CrossRef]
- Gregson, C.L.; Dennison, E.M.; Compston, J.E.; Adami, S.; Adachi, J.D.; Anderson, F.A., Jr.; Boonen, S.; Chapurlat, R.; Díez-Pérez, A.; Greenspan, S.L.; et al. Disease-specific perception of fracture risk and incident fracture rates: GLOW cohort study. Osteoporos Int. 2014, 25, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Kanis, J.A.; Harvey, N.C.; Johansson, H.; Odén, A.; McCloskey, E.V.; Leslie, W.D. Overview of Fracture Prediction Tools. J. Clin. Densitom. 2017, 20, 444–450. [Google Scholar] [CrossRef] [Green Version]
- Lorenc, R.; Głuszko, P.; Franek, E.; Jabłoński, M.; Jaworski, M.; Kalinka-Warzocha, E.; Karczmarewicz, E.; Kostka, T.; Księzopolska-Orłowska, K.; Marcinowska-Suchowierska, E.; et al. Guidelines for the diagnosis and management of osteoporosis in Poland : Update 2017. Endokrynol. Pol. 2017, 68, 604–609. [Google Scholar] [CrossRef]
- Siris, E.S.; Adler, R.; Bilezikian, J.; Bolognese, M.; Dawson-Hughes, B.; Favus, M.J.; Harris, S.T.; Jan de Beur, S.M.; Khosla, S.; Lane, N.E.; et al. The clinical diagnosis of osteoporosis: A position statement from the National Bone Health Alliance Working Group. Osteoporos Int. 2014, 25, 1439–1443. [Google Scholar] [CrossRef] [Green Version]
- Krohn, K.; Schwartz, E.N.; Chung, Y.S.; Lewiecki, E.M. Dual-energy X-ray Absorptiometry Monitoring with Trabecular Bone Score: 2019 ISCD Official Position. J. Clin. Densitom. 2019, 22, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Broy, S.B.; Cauley, J.A.; Lewiecki, M.E.; Schousboe, J.T.; Shepherd, J.A.; Leslie, W.D. Fracture Risk Prediction by Non-BMD DXA Measures: The 2015 ISCD Official Positions Part 1: Hip Geometry. J. Clin. Densitom. 2015, 18, 287–308. [Google Scholar] [CrossRef] [PubMed]
- Marra, M.; Sammarco, R.; De Lorenzo, A.; Iellamo, F.; Siervo, M.; Pietrobelli, A.; Donini, L.M.; Santarpia, L.; Cataldi, M.; Pasanisi, F.; et al. Assessment of Body Composition in Health and Disease Using Bioelectrical Impedance Analysis (BIA) and Dual Energy X-Ray Absorptiometry (DXA): A Critical Overview. Contrast Media Mol. Imaging 2019, 2019, 3548284. [Google Scholar] [CrossRef]
- Dent, E.; Morley, J.E.; Cruz-Jentoft, A.J.; Arai, H.; Kritchevsky, S.B.; Guralnik, J.; Bauer, J.M.; Pahor, M.; Clark, B.C.; Cesari, M.; et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. J. Nutr. Health Aging 2018, 22, 1148–1161. [Google Scholar] [CrossRef] [PubMed]
- Sizoo, D.; de Heide, L.J.M.; Emous, M.; van Zutphen, T.; Navis, G.; van Beek, A.P. Measuring Muscle Mass and Strength in Obesity: A Review of Various Methods. Obes. Surg. 2021, 31, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Li, G.H.Y.; Lee, G.K.Y.; Au, P.C.M.; Chan, M.; Li, H.L.; Cheung, B.M.; Wong, I.C.; Lee, V.H.; Mok, J.; Yip, B.H.; et al. The effect of different measurement modalities in the association of lean mass with mortality: A systematic review and meta-analysis. Osteoporos. Sarcopenia 2021, 7 (Suppl. S1), S13–S18. [Google Scholar] [CrossRef]
- Bhasin, S.; Travison, T.G.; Manini, T.M.; Patel, S.; Pencina, K.M.; Fielding, R.A.; Magaziner, J.M.; Newman, A.B.; Kiel, D.P.; Cooper, C.; et al. Sarcopenia Definition: The Position Statements of the Sarcopenia Definition and Outcomes Consortium. J. Am. Geriatr. Soc. 2020, 68, 1410–1418. [Google Scholar] [CrossRef]
- Harvey, N.C.; Orwoll, E.; Kwok, T.; Karlsson, M.K.; Rosengren, B.E.; Ribom, E.; Cauley, J.A.; Cawthon, P.M.; Ensrud, K.; Liu, E.; et al. Sarcopenia Definitions as Predictors of Fracture Risk Independent of FRAX®, Falls, and BMD in the Osteoporotic Fractures in Men (MrOS) Study: A Meta-Analysis. J. Bone Miner. Res. 2021, 36, 1235–1244. [Google Scholar] [CrossRef]
- Mizera, Ł.; Halupczok-Żyła, J.; Kolačkov, K.; Zembska, A.; Grzegrzółka, J.; Jędrzejuk, D.; Bolanowski, M.; Daroszewski, J. Myokines in Acromegaly: An Altered Irisin Profile. Front. Endocrinol. 2021, 12, 728734. [Google Scholar] [CrossRef]
- Joshi, A.; Mancini, R.; Probst, S.; Abikhzer, G.; Langlois, Y.; Morin, J.F.; Rudski, L.G.; Afilalo, J. Sarcopenia in cardiac surgery: Dual X-ray absorptiometry study from the McGill frailty registry. Am. Heart J. 2021, 239, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Rush, B.; Binkley, N.; Krueger, D.; Yamada, Y.; Kuchnia, A.J. Combination of DXA and BIS Predicts Jump Power Better Than Traditional Measures of Sarcopenia. JBMR Plus 2021, 5, e10527. [Google Scholar] [CrossRef] [PubMed]
- Peltz, G.; Aguirre, M.T.; Sanderson, M.; Fadden, M.K. The role of fat mass index in determining obesity. Am. J. Hum. Biol. 2010, 22, 639–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radetti, G.; Fanolla, A.; Grugni, G.; Lupi, F.; Tamini, S.; Cicolini, S.; Sartorio, A. The Role of Different Indexes of Adiposity and Body Composition for the Identification of Metabolic Syndrome in Women with Obesity. J. Clin. Med. 2021, 10, 1975. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Walsh, J.P.; Murray, K.; Hunter, M.; Hui, J.; Hung, J. DXA-Derived vs Standard Anthropometric Measures for Predicting Cardiometabolic Risk in Middle-Aged Australian Men and Women. J. Clin. Densitom. 2022; in press. [Google Scholar] [CrossRef]
- Chen, G.C.; Arthur, R.; Iyengar, N.M.; Kamensky, V.; Xue, X.; Wassertheil-Smoller, S.; Allison, M.A.; Shadyab, A.H.; Wild, R.A.; Sun, Y.; et al. Association between regional body fat and cardiovascular disease risk among postmenopausal women with normal body mass index. Eur. Heart J. 2019, 40, 2849–2855. [Google Scholar] [CrossRef]
- Zong, G.; Zhang, Z.; Yang, Q.; Wu, H.; Hu, F.B.; Sun, Q. Total and regional adiposity measured by dual-energy X-ray absorptiometry and mortality in NHANES 1999-2006. Obesity 2016, 24, 2414–2421. [Google Scholar] [CrossRef] [Green Version]
- Bednarek-Tupikowska, G.; Stachowska, B.; Miazgowski, T.; Krzyżanowska-Świniarska, B.; Katra, B.; Jaworski, M.; Kuliczkowska-Płaksej, J.; Jokiel-Rokita, A.; Tupikowska, M.; Bolanowski, M.; et al. Evaluation of the prevalence of metabolic obesity and normal weight among the Polish population. Endokrynol. Pol. 2012, 63, 447–455. [Google Scholar] [PubMed]
- Miazgowski, T.; Krzyżanowska-Świniarska, B.; Dziwura-Ogonowska, J.; Dziwura-Ogonowska, J.; Widecka, K. The associations between cardiometabolic risk factors and visceral fat measured by a new dual-energy X-ray absorptiometry-derived method in lean healthy Caucasian women. Endocrine 2014, 47, 500–505. [Google Scholar] [CrossRef] [Green Version]
- Miazgowski, T.; Kucharski, R.; Sołtysiak, M.; Taszarek, A.; Miazgowski, B.; Widecka, K. Visceral fat reference values derived from healthy European men and women aged 20-30 years using GE Healthcare dual-energy x-ray absorptiometry. PLoS ONE 2017, 12, e0180614. [Google Scholar] [CrossRef] [Green Version]
- Bays, H.E.; Khera, A.; Blaha, M.J.; Budoff, M.J.; Toth, P.P. Ten things to know about ten imaging studies: A preventive cardiology perspective (“ASPC top ten imaging”). Am. J. Prev. Cardiol. 2021, 6, 100176. [Google Scholar] [CrossRef]
- da Rosa, S.E.; Costa, A.C.; Fortes, M.S.R.; Marson, R.A.; Neves, E.B.; Rodrigues, L.C.; Ferreira, P.F.; Filho, J.F. Cut-Off Points of Visceral Adipose Tissue Associated with Metabolic Syndrome in Military Men. Healthcare 2021, 9, 886. [Google Scholar] [CrossRef] [PubMed]
- Stratrova, S.S.; Mishevska, S.J.; Efremovska, L.; Bitoska, I.; Spasovski, D. New DXA Diagnostic Indexes of Abdominal Obesity. Prilozi 2021, 42, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Goossens, G.H. The Metabolic Phenotype in Obesity: Fat Mass, Body Fat Distribution, and Adipose Tissue Function. Obes. Facts 2017, 10, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Piché, M.E.; Poirier, P.; Lemieux, I.; Després, J.P. Overview of Epidemiology and Contribution of Obesity and Body Fat Distribution to Cardiovascular Disease: An Update. Prog. Cardiovasc. Dis. 2018, 61, 103–113. [Google Scholar] [CrossRef]
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Clin. Nutr. 2022, 41, 990–1000. [Google Scholar] [CrossRef]
- Atkins, J.L.; Wannamathee, S.G. Sarcopenic obesity in ageing: Cardiovascular outcomes and mortality. Br. J. Nutr. 2020, 124, 1102–1113. [Google Scholar] [CrossRef]
- Kelly, T.L.; Wilson, K.E.; Heymsfield, S.B. Dual Energy X-Ray Absorptiometry Body Composition Reference Values from NHANES. PLoS ONE 2009, 4, e7038. [Google Scholar] [CrossRef] [Green Version]
|
Female | Male | ||
---|---|---|---|
Fat Mass Index (kg/m²) | Normal | 5–9 | 3–6 |
Overweight | >9–13 | >6–9 | |
Obesity Class I | >13–17 | >9–12 | |
Obesity Class II | >17–21 | >12–15 | |
Obesity Class III | >21 | >15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonera-Furman, A.; Bolanowski, M.; Jędrzejuk, D. Osteosarcopenia—The Role of Dual-Energy X-ray Absorptiometry (DXA) in Diagnostics. J. Clin. Med. 2022, 11, 2522. https://doi.org/10.3390/jcm11092522
Gonera-Furman A, Bolanowski M, Jędrzejuk D. Osteosarcopenia—The Role of Dual-Energy X-ray Absorptiometry (DXA) in Diagnostics. Journal of Clinical Medicine. 2022; 11(9):2522. https://doi.org/10.3390/jcm11092522
Chicago/Turabian StyleGonera-Furman, Aleksandra, Marek Bolanowski, and Diana Jędrzejuk. 2022. "Osteosarcopenia—The Role of Dual-Energy X-ray Absorptiometry (DXA) in Diagnostics" Journal of Clinical Medicine 11, no. 9: 2522. https://doi.org/10.3390/jcm11092522