Beneficial Effects of Adjusted Perfusion and Defibrillation Strategies on Rhythm Control within Controlled Automated Reperfusion of the Whole Body (CARL) for Refractory Out-of-Hospital Cardiac Arrest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anaesthesia and Surgical Procedures
2.2. Cardiac Arrest
2.3. Basic Life Support
2.4. Advanced Life Support
2.5. Animal Groups
2.5.1. Conventional Extracorporeal Cardiopulmonary Resuscitation (ECPR)
2.5.2. Controlled Automated Reperfusion of the Whole Body (CARL)
2.6. Statistical Analyses
3. Results
3.1. Haemoperfusion
3.2. Haemodynamics
3.3. Arterial Blood Gases
3.4. Effects on Rhythm Conversion and Cardiac Arrhythmias during Reperfusion
3.4.1. Termination of Ventricular Fibrillation
3.4.2. Number of Defibrillations
3.4.3. Cardiac Arrhythmias
4. Discussion
4.1. High Pressure and Pulsatile, High-Flow Reperfusion
4.2. Impact on Rhythm Conversion and Cardiac Arrhythmias
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Atwood, C.; Eisenberg, M.S.; Herlitz, J.; Rea, T.D. Incidence of EMS-Treated out-of-Hospital Cardiac Arrest in Europe. Resuscitation 2005, 67, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Gräsner, J.-T.; Lefering, R.; Koster, R.W.; Masterson, S.; Böttiger, B.W.; Herlitz, J.; Wnent, J.; Tjelmeland, I.B.M.; Ortiz, F.R.; Maurer, H.; et al. EuReCa ONE-27 Nations, ONE Europe, ONE Registry: A Prospective One Month Analysis of out-of-Hospital Cardiac Arrest Outcomes in 27 Countries in Europe. Resuscitation 2016, 105, 188–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, M.; Wnent, J.; Gräsner, J.-T.; Seewald, S.; Brenner, S.; Bein, B.; Ristau, P.; Bohn, A. Die teilnehmenden Rettungsdienste am Deut- schen Reanimationsregister Öffentlicher Jahresbericht 2020 Des Deutschen Reanimationsregisters: Außerklinische Reanimation 2020. 2020. Available online: https://www.reanimationsregister.de/downloads (accessed on 12 January 2022).
- Gräsner, J.-T.; Wnent, J.; Herlitz, J.; Perkins, G.D.; Lefering, R.; Tjelmeland, I.; Koster, R.W.; Masterson, S.; Rossell-Ortiz, F.; Maurer, H.; et al. Survival after Out-of-Hospital Cardiac Arrest in Europe—Results of the EuReCa TWO Study. Resuscitation 2020, 148, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.C.; Frisch, A.; Rittenberger, J.C.; Callaway, C.W. Duration of Resuscitation Efforts and Functional Outcome after Out-of-Hospital Cardiac Arrest: When Should We Change to Novel Therapies? Circulation 2013, 128, 2488–2494. [Google Scholar] [CrossRef] [PubMed]
- Soar, J.; Böttiger, B.W.; Carli, P.; Couper, K.; Deakin, C.D.; Djärv, T.; Lott, C.; Olasveengen, T.; Paal, P.; Pellis, T.; et al. European Resuscitation Council Guidelines 2021: Adult Advanced Life Support. Resuscitation 2021, 161, 115–151. [Google Scholar] [CrossRef] [PubMed]
- Yannopoulos, D.; Bartos, J.; Raveendran, G.; Walser, E.; Connett, J.; Murray, T.A.; Collins, G.; Zhang, L.; Kalra, R.; Kosmopoulos, M.; et al. Advanced Reperfusion Strategies for Patients with Out-of-Hospital Cardiac Arrest and Refractory Ventricular Fibrillation (ARREST): A Phase 2, Single Centre, Open-Label, Randomised Controlled Trial. Lancet 2020, 396, 1807–1816. [Google Scholar] [CrossRef]
- Abrams, D.; MacLaren, G.; Lorusso, R.; Price, S.; Yannopoulos, D.; Vercaemst, L.; Bělohlávek, J.; Taccone, F.S.; Aissaoui, N.; Shekar, K.; et al. Extracorporeal Cardiopulmonary Resuscitation in Adults: Evidence and Implications. Intensive Care Med. 2021, 48, 1–15. [Google Scholar] [CrossRef]
- Daniele, S.G.; Trummer, G.; Hossmann, K.A.; Vrselja, Z.; Benk, C.; Gobeske, K.T.; Damjanovic, D.; Andrijevic, D.; Pooth, J.-S.; Dellal, D.; et al. Brain Vulnerability and Viability after Ischaemia. Nat. Rev. Neurosci. 2021, 22, 553–572. [Google Scholar] [CrossRef]
- Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Cell Biology of Ischemia/Reperfusion Injury. In International Review of Cell and Molecular Biology; Elsevier: Amsterdam, The Netherlands, 2012; Volume 298, pp. 229–317. [Google Scholar]
- Bingol Tanriverdi, T.; Patmano, G.; Bozkurt, F.T.; Kaya, B.C.; Tercan, M. Prognostic Value of C-reactive Protein to Albumin Ratio in Patients Resuscitated from Out-of-hospital Cardiac Arrest. Int. J. Clin. Pract. 2021, 75, e14227. [Google Scholar] [CrossRef]
- Kern, K.B.; Garewal, H.S.; Sanders, A.B.; Janas, W.; Nelson, J.; Sloan, D.; Tacker, W.A.; Ewy, G.A. Depletion of Myocardial Adenosine Triphosphate during Prolonged Untreated Ventricular Fibrillation: Effect on Defibrillation Success. Resuscitation 1990, 20, 221–229. [Google Scholar] [CrossRef]
- Kusuoka, H.; Chacko, V.P.; Marban, E. Myocardial Energetics during Ventricular Fibrillation Investigated by Magnetization Transfer Nuclear Magnetic Resonance Spectroscopy. Circ. Res. 1992, 71, 1111–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, C.; Deppe, A.-C.; Sabashnikov, A.; Slottosch, I.; Kuhn, E.; Eghbalzadeh, K.; Scherner, M.; Choi, Y.-H.; Madershahian, N.; Wahlers, T. Left Ventricular Thrombus Formation in Patients Undergoing Femoral Veno-Arterial Extracorporeal Membrane Oxygenation. Perfusion 2018, 33, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Reis, R.L.; Cohn, L.H.; Morrow, A.G. Effects of Induced Ventricular Fibrillation on Ventricular Performance and Cardiac Metabolism. Circulation 1967, 35, I-234. [Google Scholar] [CrossRef] [PubMed]
- Beyersdorf, F.; Trummer, G.; Benk, C.; Pooth, J.-S. Application of Cardiac Surgery Techniques to Improve the Results of Cardiopulmonary Resuscitation after Cardiac Arrest: Controlled Automated Reperfusion of the Whole Body. JTCVS Open 2021, S2666273621003569. [Google Scholar] [CrossRef]
- Taunyane, I.C.; Benk, C.; Beyersdorf, F.; Foerster, K.; Cristina Schmitz, H.; Wittmann, K.; Mader, I.; Doostkam, S.; Heilmann, C.; Trummer, G. Preserved Brain Morphology after Controlled Automated Reperfusion of the Whole Body Following Normothermic Circulatory Arrest Time of up to 20 Minutes. Eur. J. Cardiothorac. Surg. 2016, 50, 1025–1034. [Google Scholar] [CrossRef] [Green Version]
- Kreibich, M.; Trummer, G.; Beyersdorf, F.; Scherer, C.; Förster, K.; Taunyane, I.; Benk, C. Improved Outcome in an Animal Model of Prolonged Cardiac Arrest Through Pulsatile High Pressure Controlled Automated Reperfusion of the Whole Body: Animal Model of Prolonged Ca through Pulsatile High Pressure Carl. Artif. Organs 2018, 42, 992–1000. [Google Scholar] [CrossRef]
- Watanabe, G.; Yashiki, N.; Tomita, S.; Yamaguchi, S. Potassium-Induced Cardiac Resetting Technique for Persistent Ventricular Tachycardia and Fibrillation After Aortic Declamping. Ann. Thorac. Surg. 2011, 91, 619–620. [Google Scholar] [CrossRef]
- Almdahl, S.M.; Damstuen, J.; Eide, M.; Mølstad, P.; Halvorsen, P.; Veel, T. Potassium-Induced Conversion of Ventricular Fibrillation after Aortic Declamping. Interact. CardioVascular Thorac. Surg. 2013, 16, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Wollborn, J.; Ruetten, E.; Schlueter, B.; Haberstroh, J.; Goebel, U.; Schick, M.A. Standardized Model of Porcine Resuscitation Using a Custom-Made Resuscitation Board Results in Optimal Hemodynamic Management. Am. J. Emerg. Med. 2018, 36, 1738–1744. [Google Scholar] [CrossRef]
- Otlewski, M.P.; Geddes, L.A.; Pargett, M.; Babbs, C.F. Methods for Calculating Coronary Perfusion Pressure During CPR. Cardiovasc. Eng. 2009, 9, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Olasveengen, T.M.; Semeraro, F.; Ristagno, G.; Castren, M.; Handley, A.; Kuzovlev, A.; Monsieurs, K.G.; Raffay, V.; Smyth, M.; Soar, J.; et al. European Resuscitation Council Guidelines 2021: Basic Life Support. Resuscitation 2021, 161, 98–114. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.P.; Sandroni, C.; Böttiger, B.W.; Cariou, A.; Cronberg, T.; Friberg, H.; Genbrugge, C.; Haywood, K.; Lilja, G.; Moulaert, V.R.M.; et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: Post-Resuscitation Care. Resuscitation 2021, 161, 220–269. [Google Scholar] [CrossRef] [PubMed]
- Trummer, G.; Benk, C.; Beyersdorf, F. Controlled Automated Reperfusion of the Whole Body after Cardiac Arrest. J. Thorac. Dis. 2019, 11, S1464–S1470. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Hadley Wickham. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009; ISBN 978-0-387-98140-6. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Soft. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. LmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Soft. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Wengenmayer, T.; Rombach, S.; Ramshorn, F.; Biever, P.; Bode, C.; Duerschmied, D.; Staudacher, D.L. Influence of Low-Flow Time on Survival after Extracorporeal Cardiopulmonary Resuscitation (ECPR). Crit. Care 2017, 21, 157. [Google Scholar] [CrossRef]
- Fischer, E.G.; Ames, A.; Lorenzo, A.V. Cerebral Blood Flow Immediately Following Brief Circulatory Stasis. Stroke 1979, 10, 423–427. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E.G.; Ames, A. Studies on Mechanisms of Impairment of Cerebral Circulation Following Ischemia: Effect of Hemodilution and Perfusion Pressure. Stroke 1972, 3, 538–542. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.C.; Salcido, D.D.; Menegazzi, J.J. Conceptual Models of Coronary Perfusion Pressure and Their Relationship to Defibrillation Success in a Porcine Model of Prolonged Out-of-Hospital Cardiac Arrest. Resuscitation 2012, 83, 900–906. [Google Scholar] [CrossRef] [Green Version]
- Maryam, Y.; Sutton, R.M.; Friess, S.H.; Bratinov, G.; Bhalala, U.; Kilbaugh, T.J.; Lampe, J.; Nadkarni, V.M.; Becker, L.B.; Berg, R.A. Blood Pressure and Coronary Perfusion Pressure Targeted Cardiopulmonary Resuscitation Improves 24-Hour Survival from Ventricular Fibrillation Cardiac Arrest. Crit. Care Med. 2016, 44, e1111–e1117. [Google Scholar]
- Bhate, T.D.; McDonald, B.; Sekhon, M.S.; Griesdale, D.E.G. Association between Blood Pressure and Outcomes in Patients after Cardiac Arrest: A Systematic Review. Resuscitation 2015, 97, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sundgreen, C.; Larsen, F.S.; Herzog, T.M.; Knudsen, G.M.; Boesgaard, S.; Aldershvile, J. Autoregulation of Cerebral Blood Flow in Patients Resuscitated From Cardiac Arrest. Stroke 2001, 32, 128–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jehle, D.; Fiorello, A.B.; Brader, E.; Cottington, E.; Kozak, R.J. Hemoconcentration during Cardiac Arrest and CPR. Am. J. Emerg. Med. 1994, 12, 524–526. [Google Scholar] [CrossRef]
- Kodama, I.; Shibata, N.; Sakuma, I.; Mitsui, K.; Iida, M.; Suzuki, R.; Fukui, Y.; Hosoda, S.; Toyama, J. Aftereffects of High-Intensity DC Stimulation on the Electromechanical Performance of Ventricular Muscle. Am. J. Physiol. Heart Circ. Physiol. 1994, 267, H248–H258. [Google Scholar] [CrossRef] [PubMed]
- Al-Khadra, A.; Nikolski, V.; Efimov, I.R. The Role of Electroporation in Defibrillation. Circ. Res. 2000, 87, 797–804. [Google Scholar] [CrossRef] [Green Version]
- Efimov, I.; Ripplinger, C.M. Virtual Electrode Hypothesis of Defibrillation. Heart Rhythm. 2006, 3, 1100–1102. [Google Scholar] [CrossRef]
- Lee, H.Y.; Lee, B.K.; Jeung, K.W.; Lee, S.M.; Jung, Y.H.; Lee, G.S.; Heo, T.; Min, Y.I. Potassium Induced Cardiac Standstill during Conventional Cardiopulmonary Resuscitation in a Pig Model of Prolonged Ventricular Fibrillation Cardiac Arrest: A Feasibility Study. Resuscitation 2013, 84, 378–383. [Google Scholar] [CrossRef]
- Kook Lee, B.; Joon Lee, S.; Woon Jeung, K.; Youn Lee, H.; Jeong, I.S.; Lim, V.; Hun Jung, Y.; Heo, T.; Il Min, Y. Effects of Potassium/Lidocaine-induced Cardiac Standstill During Cardiopulmonary Resuscitation in a Pig Model of Prolonged Ventricular Fibrillation. Acad. Emerg. Med. 2014, 21, 392–400. [Google Scholar] [CrossRef] [Green Version]
Mean ± SD | |||
---|---|---|---|
n | Norepinephrine (µg/kg/min) | Fluid (mL) | |
CARL | 8 * | 1.15 ± 0.70 | 1556 ± 687 |
ECPR | 10 | 1.82 ± 1.33 | 430 ± 286 |
p-Value | 0.22 | 0.002 |
ECPR | CARL | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BL | ALS | 3’ | 30’ | 60’ | 90’ | BL | ALS | 3’ | 30’ | 60’ | 90’ | ||
pH | 7.45 ± 0.02 | 7.09 ± 0.16 | 7.01 ± 0.09 | 7.08 * ± 0.06 | 7.11 *** ± 0.08 | 7.29 ± 0.05 | 7.45 ± 0.02 | 7.07 ± 0.10 | 7.01 ± 0.05 | 7.17 * ± 0.08 | 7.29 *** ± 0.08 | 7.33 ± 0.06 | |
Base excess, mmol/L | 3.6 ± 1.2 | −14.4 ± 2.9 | −15.1 * ± 3.5 | −13.5 ± 1.9 | −13.0 * ± 2.4 | −5.8 ± 1.2 | 3.8 ± 1.3 | −15.8 ± 3.3 | −18.4 * ± 1.6 | −14.9 ± 4.1 | −9.1 * ± 4.2 | −6.2 ± 2.9 | |
Arterial PO2, mmHg | 93 ± 17 | 110 ± 140 | 207 ± 82 | 233 *** ± 71 | 255 *** ± 94 | 424 *** ± 104 | 91 ± 7 | 71 ± 30 | 224 ± 64 | 118 *** ± 31 | 103 *** ± 29 | 115 *** ± 41 | |
Arterial PCO2, mmHg | 40 ± 1 | 56 ± 24 | 64 ** ± 9 | 58 *** ± 10 | 55 ** ± 10 | 43 ± 7 | 41 ± 2 | 54 ± 25 | 53 ** ± 6 | 39 *** ± 7 | 37 ** ± 8 | 38 ± 5 | |
Glucose, mg/dL | 98 ± 20 | 276 ± 168 | 305 ± 164 | 238 ± 163 | 201 ± 140 | 171 ± 141 | 102 ± 9 | 381 ± 79 | 296 ± 76 | 234 ± 68 | 226 ± 61 | 219 ± 52 | |
Lactate, mmol/L | 1.6 ± 0.4 | 10.7 ± 2.5 | 12.0 ± 2.1 | 12.0 ± 1.2 | 12.1 ± 1.6 | 14.7 ± 1.7 | 1.5 ± 0.5 | 10.9 ± 1.6 | 10.2 ± 1.2 | 11.4 ± 1.6 | 13.2 ± 1.7 | 14.0 ± 1.7 |
Spontaneous Rhythm Conversion | Secondary Cardioplegia | Electric Defibrillation | ||||
---|---|---|---|---|---|---|
Group | With Reperfusion (n) | Sustained (n) | Required (n) | Attempts Median (min, max) | Required (n) | No. of Shocks Median (min, max) |
CARL | 4/10 | 2/4 | 8/10 | 2 (1,2) | 7/10 | 5 (1,8) |
ECPR | 0/10 | 0/0 | 4/10 | 1 (1,1) | 10/10 | 8 (3,14) |
Bradyarrhythmia | Tachyarrhythmia | |||
---|---|---|---|---|
Group | n | Therapy-Needed | n | Therapy-Needed |
CARL | 1/10 | 1/1 | 1/10 | 1/1 |
ECPR | 4 */10 | 3/4 | 2 */10 | 1/2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brixius, S.J.; Pooth, J.-S.; Haberstroh, J.; Damjanovic, D.; Scherer, C.; Greiner, P.; Benk, C.; Beyersdorf, F.; Trummer, G. Beneficial Effects of Adjusted Perfusion and Defibrillation Strategies on Rhythm Control within Controlled Automated Reperfusion of the Whole Body (CARL) for Refractory Out-of-Hospital Cardiac Arrest. J. Clin. Med. 2022, 11, 2111. https://doi.org/10.3390/jcm11082111
Brixius SJ, Pooth J-S, Haberstroh J, Damjanovic D, Scherer C, Greiner P, Benk C, Beyersdorf F, Trummer G. Beneficial Effects of Adjusted Perfusion and Defibrillation Strategies on Rhythm Control within Controlled Automated Reperfusion of the Whole Body (CARL) for Refractory Out-of-Hospital Cardiac Arrest. Journal of Clinical Medicine. 2022; 11(8):2111. https://doi.org/10.3390/jcm11082111
Chicago/Turabian StyleBrixius, Sam Joé, Jan-Steffen Pooth, Jörg Haberstroh, Domagoj Damjanovic, Christian Scherer, Philipp Greiner, Christoph Benk, Friedhelm Beyersdorf, and Georg Trummer. 2022. "Beneficial Effects of Adjusted Perfusion and Defibrillation Strategies on Rhythm Control within Controlled Automated Reperfusion of the Whole Body (CARL) for Refractory Out-of-Hospital Cardiac Arrest" Journal of Clinical Medicine 11, no. 8: 2111. https://doi.org/10.3390/jcm11082111
APA StyleBrixius, S. J., Pooth, J.-S., Haberstroh, J., Damjanovic, D., Scherer, C., Greiner, P., Benk, C., Beyersdorf, F., & Trummer, G. (2022). Beneficial Effects of Adjusted Perfusion and Defibrillation Strategies on Rhythm Control within Controlled Automated Reperfusion of the Whole Body (CARL) for Refractory Out-of-Hospital Cardiac Arrest. Journal of Clinical Medicine, 11(8), 2111. https://doi.org/10.3390/jcm11082111