Circulating HDL and Non-HDL Associated Apolipoproteins and Breast Cancer Severity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Samples
2.2. Biological Analyses
2.3. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grundy, S.M. Metabolic Complications of Obesity. ENDO 2000, 13, 155–165. [Google Scholar] [CrossRef]
- Yung, R.L.; Ligibel, J.A. Obesity and Breast Cancer: Risk, Outcomes, and Future Considerations. Clin. Adv. Hematol. Oncol. 2016, 14, 790–797. [Google Scholar]
- Park, J.; Morley, T.S.; Kim, M.; Clegg, D.J.; Scherer, P.E. Obesity and Cancer--Mechanisms Underlying Tumour Progression and Recurrence. Nat. Rev. Endocrinol. 2014, 10, 455–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cedó, L.; Reddy, S.T.; Mato, E.; Blanco-Vaca, F.; Escolà-Gil, J.C. HDL and LDL: Potential New Players in Breast Cancer Development. J. Clin. Med. 2019, 8, 853. [Google Scholar] [CrossRef] [Green Version]
- Alaupovic, P. Significance of Apolipoproteins for Structure, Function, and Classification of Plasma Lipoproteins. Methods Enzym. 1996, 263, 32–60. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, G. Apolipoproteins, as the Carrier Proteins for Lipids, Are Involved in the Development of Breast Cancer. Clin. Transl. Oncol. 2020, 22, 1952–1962. [Google Scholar] [CrossRef]
- Lin, X.; Hong, S.; Huang, J.; Chen, Y.; Chen, Y.; Wu, Z. Plasma Apolipoprotein A1 Levels at Diagnosis Are Independent Prognostic Factors in Invasive Ductal Breast Cancer. Discov. Med. 2017, 23, 247–258. [Google Scholar]
- Opstal-van Winden, A.W.J.; Beijnen, J.H.; Loof, A.; van Heerde, W.L.; Vermeulen, R.; Peeters, P.H.M.; van Gils, C.H. Search for Breast Cancer Biomarkers in Fractionated Serum Samples by Protein Profiling With SELDI-TOF MS: Protein Profiling in Fractionated Serum Samples. J. Clin. Lab. Anal. 2012, 26, 1–9. [Google Scholar] [CrossRef]
- Haagensen, D.E.; Mazoujian, G.; Holder, W.D.; Kister, S.J.; Wells, S.A. Evaluation of a Breast Cyst Fluid Protein Detectable in the Plasma of Breast Carcinoma Patients. Ann. Surg. 1977, 185, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wan, J.; Yuan, L.; Ba, J.; Feng, P.; Long, W.; Huang, H.; Liu, P.; Cai, Y.; Liu, M.; et al. Serum Levels of Apolipoprotein E Correlates with Disease Progression and Poor Prognosis in Breast Cancer. Tumour. Biol. 2016, 37, 15959–15966. [Google Scholar] [CrossRef]
- Saadat, M. Apolipoprotein E (APOE) Polymorphisms and Susceptibility to Breast Cancer: A Meta-Analysis. Cancer Res. Treat. 2012, 44, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Heymann, D.; Kerdraon, O.; Verriele, V.; Verhille, E.; Veron, V.; Vitre, M.; Delmas, F.; Henry, C.; Gouy, Y.; Amiand, M.; et al. Centre de Ressources Biologiques-Tumorothèque: Bioresources and Associated Clinical Data Dedicated to Translational Research in Oncology at the Institut de Cancérologie de l’Ouest, France. Open J. Bioresour. 2020, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, V.; Garçon, D.; Jaunet, C.; Chemello, K.; Billon-Crossouard, S.; Aguesse, A.; Garfa, A.; Famchon, G.; Torres, A.; Le May, C.; et al. A High-Throughput Mass Spectrometry-Based Assay for Large-Scale Profiling of Circulating Human Apolipoproteins. J. Lipid Res. 2020, 61, 1128–1139. [Google Scholar] [CrossRef] [PubMed]
- Melvin, J.C.; Garmo, H.; Holmberg, L.; Hammar, N.; Walldius, G.; Jungner, I.; Lambe, M.; Van Hemelrijck, M. Glucose and Lipoprotein Biomarkers and Breast Cancer Severity Using Data from the Swedish AMORIS Cohort. BMC Cancer 2017, 17, 246. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhang, J.; Guo, F.; Zhao, W.; Zhan, Y.; Liu, C.; Fan, Y.; Wang, J. Identification of Apolipoprotein C-I Peptides as a Potential Biomarker and Its Biological Roles in Breast Cancer. Med. Sci. Monit. 2016, 22, 1152–1160. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Yue, L.; Zhang, J.; Ma, S.; Zhao, W.; Guo, F.; Fan, Y.; Yang, H.; Liu, Q.; Zhang, D.; et al. Diagnostic and Prognostic Significance of Serum Apolipoprotein C-I in Triple-Negative Breast Cancer Based on Mass Spectrometry. Cancer Biol. 2016, 17, 635–647. [Google Scholar] [CrossRef]
- Simard, J.; de Launoit, Y.; Haagensen, D.E.; Labrie, F. Additive Stimulatory Action of Glucocorticoids and Androgens on Basal and Estrogen-Repressed Apolipoprotein-D Messenger Ribonucleic Acid Levels and Secretion in Human Breast Cancer Cells. Endocrinology 1992, 130, 1115–1121. [Google Scholar] [CrossRef]
- Simard, J.; Dauvois, S.; Haagensen, D.E.; Lévesque, C.; Mérand, Y.; Labrie, F. Regulation of Progesterone-Binding Breast Cyst Protein GCDFP-24 Secretion by Estrogens and Androgens in Human Breast Cancer Cells: A New Marker of Steroid Action in Breast Cancer. Endocrinology 1990, 126, 3223–3231. [Google Scholar] [CrossRef]
- Sivaraman, V.S.; Wang, H.; Nuovo, G.J.; Malbon, C.C. Hyperexpression of Mitogen-Activated Protein Kinase in Human Breast Cancer. J. Clin. Investig. 1997, 99, 1478–1483. [Google Scholar] [CrossRef]
- Sarjeant, J.M.; Lawrie, A.; Kinnear, C.; Yablonsky, S.; Leung, W.; Massaeli, H.; Prichett, W.; Veinot, J.P.; Rassart, E.; Rabinovitch, M. Apolipoprotein D Inhibits Platelet-Derived Growth Factor-BB-Induced Vascular Smooth Muscle Cell Proliferated by Preventing Translocation of Phosphorylated Extracellular Signal Regulated Kinase 1/2 to the Nucleus. Arter. Thromb. Vasc. Biol. 2003, 23, 2172–2177. [Google Scholar] [CrossRef]
- Romano, M.; Claria, J. Cyclooxygenase-2 and 5-Lipoxygenase Converging Functions on Cell Proliferation and Tumor Angiogenesis: Implications for Cancer Therapy. FASEB J. 2003, 17, 1986–1995. [Google Scholar] [CrossRef] [Green Version]
- Matsuyama, M.; Yoshimura, R.; Mitsuhashi, M.; Tsuchida, K.; Takemoto, Y.; Kawahito, Y.; Sano, H.; Nakatani, T. 5-Lipoxygenase Inhibitors Attenuate Growth of Human Renal Cell Carcinoma and Induce Apoptosis through Arachidonic Acid Pathway. Oncol. Rep. 2005, 14, 73–79. [Google Scholar] [PubMed]
- Lamelas, M.L.; Vázquez, J.; Enguita, M.I.; Rodríguez, J.C.; González, L.O.; Merino, A.M.; Vizoso, F. Apolipoprotein D Expression in Metastasic Lymph Nodes of Breast Cancer. Int. J. Surg. Investig. 2000, 2, 285–293. [Google Scholar]
- Carreño, G.; Del Casar, J.M.; Corte, M.D.; González, L.O.; Bongera, M.; Merino, A.M.; Juan, G.; Obregón, R.; Martínez, E.; Vizoso, F.J. Local Recurrence after Mastectomy for Breast Cancer: Analysis of Clinicopathological, Biological and Prognostic Characteristics. Breast Cancer Res. Treat. 2007, 102, 61–73. [Google Scholar] [CrossRef]
- Díez-Itza, I.; Vizoso, F.; Merino, A.M.; Sánchez, L.M.; Tolivia, J.; Fernández, J.; Ruibal, A.; López-Otín, C. Expression and Prognostic Significance of Apolipoprotein D in Breast Cancer. Am. J. Pathol. 1994, 144, 310–320. [Google Scholar] [PubMed]
- Do Carmo, S.; Levros, L.-C.; Rassart, E. Modulation of Apolipoprotein D Expression and Translocation under Specific Stress Conditions. Biochim. Biophys. Acta 2007, 1773, 954–969. [Google Scholar] [CrossRef] [Green Version]
- Søiland, H.; Skaland, I.; Varhaug, J.E.; Kørner, H.; Janssen, E.A.M.; Gudlaugsson, E.; Baak, J.P.A.; Søreide, J.A. Co-Expression of Estrogen Receptor Alpha and Apolipoprotein D in Node Positive Operable Breast Cancer—Possible Relevance for Survival and Effects of Adjuvant Tamoxifen in Postmenopausal Patients. Acta Oncol. 2009, 48, 514–521. [Google Scholar] [CrossRef] [Green Version]
- Søreide, J.A.; Kolnes, J.; Skarstein, A.; Aas, T.; Kvinnsland, S. Progesterone Binding Cyst Protein in Hormone Receptor Positive Breast Cancer; a Predictive Factor for Effect of Adjuvant Tamoxifen Treatment. Anticancer Res. 1994, 14, 2105–2108. [Google Scholar]
- Klebaner, D.; Hamilton-Dutoit, S.; Ahern, T.; Crawford, A.; Jakobsen, T.; Cronin-Fenton, D.P.; Damkier, P.; Janssen, E.; Kjaersgaard, A.; Ording, A.G.; et al. Apolipoprotein D Expression Does Not Predict Breast Cancer Recurrence among Tamoxifen-Treated Patients. PLoS ONE 2017, 12, e0171453. [Google Scholar] [CrossRef] [Green Version]
- Lea, O.A.; Kvinnsland, S.; Thorsen, T. Progesterone-Binding Cyst Protein in Human Breast Tumor Cytosol. Cancer Res. 1987, 47, 6189–6192. [Google Scholar] [PubMed]
- Campo, G.M.; Avenoso, A.; D’Ascola, A.; Scuruchi, M.; Prestipino, V.; Nastasi, G.; Calatroni, A.; Campo, S. The Inhibition of Hyaluronan Degradation Reduced Pro-Inflammatory Cytokines in Mouse Synovial Fibroblasts Subjected to Collagen-Induced Arthritis. J. Cell. Biochem. 2012, 113, 1852–1867. [Google Scholar] [CrossRef]
- El Roz, A.; Bard, J.-M.; Valin, S.; Huvelin, J.-M.; Nazih, H. Macrophage Apolipoprotein E and Proliferation of MCF-7 Breast Cancer Cells: Role of LXR. Anticancer Res. 2013, 33, 3783–3789. [Google Scholar]
- Zunarelli, E.; Nicoll, J.A.; Migaldi, M.; Trentini, G.P. Apolipoprotein E Polymorphism and Breast Carcinoma: Correlation with Cell Proliferation Indices and Clinical Outcome. Breast Cancer Res. Treat. 2000, 63, 193–198. [Google Scholar] [CrossRef]
- Moysich, K.B.; Freudenheim, J.L.; Baker, J.A.; Ambrosone, C.B.; Bowman, E.D.; Schisterman, E.F.; Vena, J.E.; Shields, P.G. Apolipoprotein E Genetic Polymorphism, Serum Lipoproteins, and Breast Cancer Risk. Mol. Carcinog. 2000, 27, 2–9. [Google Scholar] [CrossRef]
- Porrata-Doria, T.; Matta, J.L.; Acevedo, S.F. Apolipoprotein E Allelic Frequency Altered in Women with Early-Onset Breast Cancer. Breast Cancer 2010, 4, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Braeckman, L.; De Bacquer, D.; Rosseneu, M.; De Backer, G. Apolipoprotein E Polymorphism in Middle-Aged Belgian Men: Phenotype Distribution and Relation to Serum Lipids and Lipoproteins. Atherosclerosis 1996, 120, 67–73. [Google Scholar] [CrossRef]
- Steinmetz, A.; Jakobs, C.; Motzny, S.; Kaffarnik, H. Differential Distribution of Apolipoprotein E Isoforms in Human Plasma Lipoproteins. Arteriosclerosis 1989, 9, 405–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
HR− | HR+ | |||||
---|---|---|---|---|---|---|
Ki-67 ≤ 20% (n = 19) | Ki-67 ≥ 30% (n = 29) | p | Ki-67 ≤ 20% (n = 51) | Ki-67 ≥ 30% (n = 41) | p | |
Age (years) | 62.5 [56.0–69.0] | 54.4 [43.0–66.0] | 0.08 | 64.1 [56.0–72.5] | 56.2 [48–66.0] | 0.003 |
BMI (Kg/m2) | 24.7 [21.8–27.3] | 25.2 [22.2–27.1] | 0.66 | 25.4 [22.7–27.5] | 26.1 [21.9–28.8] | 0.67 |
Menopause | 0.15 | 0.006 | ||||
Yes | 17 (89%) | 21 (72%) | 43 (84.3%) | 24 (58.8%) | ||
No | 2 (11%) | 8 (28%) | 8 (15.7%) | 17 (41.2%) | ||
Normolipidemic Treatment | 0.85 | 0.71 | ||||
Yes | 3 (16%) | 4 (14%) | 5 (9.8%) | 5 (12%) | ||
No | 16 (84%) | 25 (86%) | 46 (90.2%) | 36 (88%) | ||
Type of cancer | 0.29 | 0.01 | ||||
Inflitrating duct carcinoma | 16 (84%) | 28 (97%) | 51 (100%) | 36 (88%) | ||
Invasive lobular carcinoma | 2 (11%) | 1 (3%) | 0 (0%) | 5 (12%) | ||
Histopronostic grade | <0.001 | <0.001 | ||||
Grade I | 0 (0%) | 0 (0%) | 21 (41.2%) | 0 (0%) | ||
Grade II | 17 (89%) | 3 (10.3%) | 26 (51%) | 6 (14.6%) | ||
Grade III | 2 (11%) | 26 (89.7%) | 4 (7.8%) | 35 (85.4%) | ||
Molecular sub-types | ||||||
Luminal B HER2+ | 5 (9.8%) | 15 (36.6%) | ||||
Luminal B HER2− | 0 (0%) | 26 (63.4%) | <0.001 | |||
Luminal A | 46 (90.2%) | 0 (0%) | ||||
TNBC | 16 (84.2%) | 21 (72.4%) | 0.488 | |||
HER2 Type | 3 (15.8%) | 8 (27.6%) |
HR− | HR+ | |||||
---|---|---|---|---|---|---|
Parameters | Ki-67 ≤ 20% (n = 19) | Ki-67 ≥ 30% (n = 29) | p | Ki-67 ≤ 20% (n = 51) | Ki-67 ≥ 30% (n = 41) | p |
Plasma Cholesterol (mmol/L) | 5.30 [4.53–5.93] | 5.25 [4.07–5.75] | 0.770 | 5.03 [4.17–5.83] | 5.36 [4.44–5.91] | 0.297 |
Plasma Triglycerides (mmol/L) | 1.23 [0.91–1.74] | 1.11 [0.79–1.37] | 0.381 | 0.90 [0.71–1.25] | 0.92 [0.74–1.12] | 0.835 |
LDL Cholesterol (mmol/L | 3.30 [2.47–3.82] | 3.39 [2.39–4.01] | 0.770 | 3.18 [2.49–3.90] | 3.38 [2.60–3.97] | 0.297 |
HDL Cholesterol (mmol/L) | 1.48 [1.10–1.66] | 1.39 [1.07–1.51] | 0.144 | 1.30 [1.09–1.62] | 1.38 [1.14–1.57] | 0.297 |
Non HDL Cholesterol (mmol/L) | 3.90 [3.19–4.65] | 3.79 [2.82–4.46] | 0.770 | 3.57 [2.94–4.39] | 3.84 [3.17–4.50] | 0.531 |
HR− | HR+ | |||||
---|---|---|---|---|---|---|
Parameters | Ki-67 ≤ 20% (n = 19) | Ki-67 ≥ 30% (n = 29) | p | Ki-67 ≤ 20% (n = 51) | Ki-67 ≥ 30% (n = 41) | p |
Plasma apoA-I (mg/dL) | 148.60 [133.1–159.0] | 160.0 [137.0–170.0] | 0.381 | 152.40 [128.3–168.4] | 148.84 [133.7–163.6] | 0.531 |
Plasma apoB100 (mg/dL) | 79.86 [68.3–104.4] | 96.60 [78.1–117.0] | 0.144 | 95.67 [76.5–118.8] | 88.40 [75.9–108.8] | 0.297 |
Plasma apoC-I (mg/dL) | 2.15 [2.00–2.89] | 2.46 [1.78–2.82] | 0.381 | 1.99 [1.64–2.58] | 2.30 [1.97–3.06] | 0.060 |
HDL apoC-I (mg/dL) | 1.61 [1.32–2.04] | 1.34 [1.02–1.80] | 0.041 | 1.35 [1.10–1.62] | 1.56 [1.20–1.95] | 0.022 |
Non-HDL apoC-I (mg/dL) | 0.62 [0.11–1.29] | 0.87 [0.43–1.37] | 0.381 | 0.58 [0.26–1.07] | 0.77 [0.43–0.98] | 0.060 |
Plasma apoC-II (mg/dL) | 1.97 [1.43–2.45] | 2.00 [1.60–2.30] | 0.770 | 2.00 [1.56–2.55] | 2.00 [1.49–2.70] | 0.835 |
HDL apoC-II (mg/dL) | 1.31 [1.00–1.72] | 1.48 [1.19–2.01] | 0.381 | 1.67 [1.16–1.85] | 1.73 [1.10–2.06] | 0.531 |
Non-HDL apoC-II (mg/dL) | 0.63 [0.39–1.02] | 0.31 [0.18–0.65] | 0.009 | 0.47 [ 0.17–0.74] | 0.48 [0.23–0.71] | 0.835 |
Plasma apoC-III (mg/dL) | 4.54 [3.77–5.31] | 4.20 [3.70–5.10] | 0.144 | 4.49 [3.80–5.33] | 4.94 [3.92–6.04] | 0.297 |
HDL apoC-III (mg/dL) | 2.66 [2.22–3.12] | 2.60 [2.00–3.30] | 0.381 | 2.38 [1.69–2.96] | 2.80 [2.42–3.64] | 0.022 |
Non-HDL apoC-III (mg/dL) | 1.98 [1.31–3.13] | 1.87 [1.07–2.71] | 0.381 | 2.14 [1.29–2.95] | 1.99 [1.40–2.74] | 0.835 |
Plasma apoD (mg/dL) | 3.07 [2.39–3.51] | 3.24 [2.99–4.16] | 0.042 | 3.61 [3.09–4.27] | 3.40 [2.69–4.06] | 0.233 |
HDL apoD (mg/dL) | 2.45 [2.01–2.99] | 2.74 [2.36–3.35] | 0.035 | 2.88 [2.48–3.43] | 2.63 [2.22–3.21] | 0.156 |
Non-HDL apoD (mg/dL) | 0.48 [0.38–0.65] | 0.57 [0.37–0.69] | 0.300 | 0.64 [0.51–0.91] | 0.73 [0.49–0.96] | 0.903 |
Plasma apoE (mg/dL) | 6.07 [ 5.20–7.54] | 5.71 [4.64–7.48] | 0.770 | 6.11 [5.06–7.68] | 6.30 [5.07–7.95] | 0.835 |
HDL apoE (mg/dL) | 2.75 [2.18–4.08] | 2.99 [1.96–3.50] | 0.144 | 2.80 [2.25–4.82] | 3.32 [1.78–4.64] | 0.297 |
Non-HDL apoE (mg/dL) | 3.68 [2.31–4.42] | 3.10 [2.40–4.70] | 0.381 | 3.11 [1.90–4.23] | 3.17 [2.63–3.96] | 0.531 |
HR− | HR+ | |||||
---|---|---|---|---|---|---|
Molar Ratio | Ki-67 ≤20% (n = 19) | Ki-67 ≥30% (n = 29) | p | Ki-67 ≤20% (n = 51) | Ki-67 ≥30% (n = 41) | p |
HDL apoC-I/apoA-I | 0.045 [0.040–0.054] | 0.030 [0.027–0.042] | 0.001 | 0.031 [0.028–0.039] | 0.039 [0.031–0.050] | 0.007 |
Non-HDL apoC-I/ apoB100 | 0.56 [0.12–0.99] | 0.64 [0.30–1.03] | 0.381 | 0.46 [0.24–0.72] | 0.64 [0.32–0.88] | 0.144 |
HDL apoC-II/apoA-I | 0.029 [0.024–0.037] | 0.033 [0.027–0.036] | 0.381 | 0.032 [0.027–0.038] | 0.034 [0.025–0.042] | 0.531 |
Non HDL apoC-II/ apoB100 | 0.51 [0.36–0.78] | 0.21 [0.13–0.48] | 0.001 | 0.28 [0.13–0.40] | 0.34 [0.21–0.45] | 0.531 |
HDL apoC-III/apoA-I | 0.065 [0.055–0.074] | 0.055 [0.046–0.066] | 0.041 | 0.054 [0.038–0.063] | 0.060 [0.052–0.084] | 0.060 |
Non HDL apoC-III/ apoB100 | 1.44 [1.11–2.21] | 1.15 [0.82–1.92] | 0.381 | 1.32 [0.99–1.93] | 1.47 [1.18–1.88] | 0.297 |
HDL apoD/apoA-I | 0.017 [0.015–0.021] | 0.017 [0.016–0.019] | 0.593 | 0.018 [0.015–0.024] | 0.018 [0.015–0.021] | 0.481 |
Non HDL apoD/ apoB100 | 0.14 [0.09–0.15] | 0.11 [0.07–0.16] | 0.821 | 0.12 [0.09–0.19] | 0.16 [0.10–0.21] | 0.537 |
HDL apoE/apoA-I | 0.018 [0.014–0.023] | 0.016 [0.010–0.019] | 0.144 | 0.018 [0.012–0.023] | 0.018 [0.013–0.023] | 0.835 |
Non HDL apoE/ apoB100 | 0.66 [0.43–0.83] | 0.51 [0.41–0.64] | 0.144 | 0.48 [0.36–0.60] | 0.58 [0.38–0.72] | 0.022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobin-Dubigeon, C.; Nazih, H.; Blanchard, V.; Croyal, M.; Bard, J.-M. Circulating HDL and Non-HDL Associated Apolipoproteins and Breast Cancer Severity. J. Clin. Med. 2022, 11, 1345. https://doi.org/10.3390/jcm11051345
Bobin-Dubigeon C, Nazih H, Blanchard V, Croyal M, Bard J-M. Circulating HDL and Non-HDL Associated Apolipoproteins and Breast Cancer Severity. Journal of Clinical Medicine. 2022; 11(5):1345. https://doi.org/10.3390/jcm11051345
Chicago/Turabian StyleBobin-Dubigeon, Christine, Hassan Nazih, Valentin Blanchard, Mikaël Croyal, and Jean-Marie Bard. 2022. "Circulating HDL and Non-HDL Associated Apolipoproteins and Breast Cancer Severity" Journal of Clinical Medicine 11, no. 5: 1345. https://doi.org/10.3390/jcm11051345
APA StyleBobin-Dubigeon, C., Nazih, H., Blanchard, V., Croyal, M., & Bard, J.-M. (2022). Circulating HDL and Non-HDL Associated Apolipoproteins and Breast Cancer Severity. Journal of Clinical Medicine, 11(5), 1345. https://doi.org/10.3390/jcm11051345