Acute Kidney Injury Following Transcatheter Aortic Valve Implantation: Association with Contrast Media Dosage and Contrast Media Based Risk Predication Models
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gargiulo, G.; Sannino, A.; Capodanno, D.; Perrino, C.; Capranzano, P.; Barbanti, M.; Stabile, E.; Trimarco, B.; Tamburino, C.; Esposito, G. Impact of postoperative acute kidney injury on clinical outcomes after transcatheter aortic valve implantation: A meta-analysis of 5,971 patients. Catheter. Cardiovasc. Interv. 2015, 86, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, G.; Capodanno, D.; Sannino, A.; Perrino, C.; Capranzano, P.; Stabile, E.; Trimarco, B.; Tamburino, C.; Esposito, G. Moderate and severe preoperative chronic kidney disease worsen clinical outcomes after transcatheter aortic valve implantation: Me-ta-analysis of 4992 patients. Circ. Cardiovasc. Interv. 2015, 8, e002220. [Google Scholar] [CrossRef] [PubMed]
- Nunes Filho, A.C.; Katz, M.; Campos, C.M.; Carvalho, L.A.; Siqueira, D.A.; Tumelero, R.T.; Portella, A.L.F.; Esteves, V.; Perin, M.A.; Sarmento-Leite, R.; et al. Impact of Acute Kidney Injury on Short- and Long-term Outcomes After Transcatheter Aortic Valve Implantation. Rev. Esp. Cardiol. Engl. Ed. 2019, 72, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Barbash, I.M.; Ben-Dor, I.; Dvir, D.; Maluenda, G.; Xue, Z.; Torguson, R.; Satler, L.F.; Pichard, A.D.; Waksman, R. Incidence and predictors of acute kidney injury after transcatheter aortic valve replacement. Am. Hear. J. 2012, 163, 1031–1036. [Google Scholar] [CrossRef]
- Elhmidi, Y.; Bleiziffer, S.; Deutsch, M.-A.; Krane, M.; Mazzitelli, D.; Lange, R.; Piazza, N. Acute kidney injury after transcatheter aortic valve implantation: Incidence, predictors and impact on mortality. Arch. Cardiovasc. Dis. 2014, 107, 133–139. [Google Scholar] [CrossRef]
- Zungur, M.; Gul, I.; Tastan, A.; Damar, E.; Tavli, T. Predictive Value of the Mehran Score for Contrast-Induced Nephropathy after Transcatheter Aortic Valve Implantation in Patients with Aortic Stenosis. Cardiorenal Med. 2016, 6, 279–288. [Google Scholar] [CrossRef]
- Venturi, G.; Pighi, M.; Pesarini, G.; Ferrero, V.; Lunardi, M.; Castaldi, G.; Setti, M.; Benini, A.; Scarsini, R.; Ribichini, F.L. Contrast-Induced Acute Kidney Injury in Patients Undergoing TAVI Compared with Coronary Interventions. J. Am. Heart Assoc. 2020, 9, e017194. [Google Scholar] [CrossRef]
- Wang, J.; Yu, W.; Zhou, Y.; Yang, Y.; Li, C.; Liu, N.; Hou, X.; Wang, L. Independent Risk Factors Contributing to Acute Kidney Injury According to Updated Valve Academic Research Consortium-2 Criteria After Transcatheter Aortic Valve Implantation: A Meta-analysis and Meta-regression of 13 Studies. J. Cardiothorac. Vasc. Anesth. 2017, 31, 816–826. [Google Scholar] [CrossRef]
- Madershahian, N.; Scherner, M.; Liakopoulos, O.; Rahmanian, P.; Kuhn, E.; Hellmich, M.; Mueller-Ehmsen, J.; Wahlers, T. Renal impairment and transapical aortic valve implantation: Impact of contrast medium dose on kidney function and survival. Eur. J. Cardio-Thorac. Surg. 2012, 41, 1225–1232. [Google Scholar] [CrossRef][Green Version]
- Yamamoto, M.; Hayashida, K.; Mouillet, G.; Chevalier, B.; Meguro, K.; Watanabe, Y.; Dubois-Rande, J.-L.; Morice, M.-C.; Lefèvre, T.; Teiger, E. Renal Function–Based Contrast Dosing Predicts Acute Kidney Injury Following Transcatheter Aortic Valve Implantation. JACC Cardiovasc. Interv. 2013, 6, 479–486. [Google Scholar] [CrossRef]
- Laskey, W.K.; Jenkins, C.; Selzer, F.; Marroquin, O.C.; Wilensky, R.L.; Glaser, R.; Holmes, D.R., Jr.; Cohen, H.A. Volume-to-Creatinine Clearance Ratio: A Pharmacokinetically Based Risk Factor for Prediction of Early Creatinine Increase After Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2007, 50, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Freeman, R.V.; O’Donnell, M.; Share, D.; Meengs, W.L.; Kline-Rogers, E.; Clark, V.L.; DeFranco, A.C.; Eagle, K.A.; McGinnity, J.; Patel, K.; et al. Nephropathy requiring dialysis after percutaneous coronary intervention and the critical role of an adjusted contrast dose. Am. J. Cardiol. 2002, 90, 1068–1073. [Google Scholar] [CrossRef]
- Mehran, R.; Aymong, E.D.; Nikolsky, E.; Lasic, Z.; Iakovou, I.; Fahy, M.; Mintz, G.S.; Lansky, A.J.; Moses, J.W.; Stone, G.W. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: Development and initial validation. J. Am. Coll. Cardiol. 2004, 44, 1393–1399. [Google Scholar] [PubMed]
- Fu, N.; Li, X.; Yang, S.; Chen, Y.; Li, Q.; Jin, D.; Cong, H. Risk Score for the Prediction of Contrast-Induced Nephropathy in Elderly Patients Undergoing Percutaneous Coronary Intervention. Angiology 2012, 64, 188–194. [Google Scholar] [CrossRef]
- Rosa, V.E.; Campos, C.M.; Bacelar, A.; Abizaid, A.A.; Mangione, J.A.; Lemos, P.A.; Esteves, V.; Caramori, P.; Sampaio, R.O.; Tarasoutchi, F.; et al. Performance of Prediction Models for Contrast-Induced Acute Kidney Injury after Transcutaneous Aortic Valve Replacement. Cardiorenal Med. 2021, 11, 166–173. [Google Scholar] [CrossRef]
- Mach, M.; Hasan, W.; Andreas, M.; Winkler, B.; Weiss, G.; Adlbrecht, C.; Delle-Karth, G.; Grabenwöger, M. Evaluating the Association between Contrast Medium Dosage and Acute Kidney Injury in Transcatheter Aortic Valve Replacement Using Different Pre-dictive Models. J. Clin. Med. 2020, 9, 3476. [Google Scholar] [CrossRef]
- VARC-3 Writing Committee; Généreux, P.; Piazza, N.; Alu, M.C.; Nazif, T.; Hahn, R.T.; Pibarot, P.; Bax, J.J.; Leipsic, J.A.; Blanke, P.; et al. Valve Academic Research Consortium 3: Updated endpoint definitions for aortic valve clinical research. Eur. Heart J. 2021, 42, 1825–1857. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Stevens, P.E.; Levin, A. Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern Med. 2013, 158, 825–830. [Google Scholar] [CrossRef]
- Adamo, M.; Provini, M.; Fiorina, C.; Giannini, C.; Angelillis, M.; Testa, L.; Barbanti, M.; Merlanti, B.; Poli, A.; Ferrara, E.; et al. Interaction between severe chronic kidney disease and acute kidney injury in predicting mortality after transcatheter aortic valve implantation: Insights from the Italian Clinical Service Project. Catheter. Cardiovasc. Interv. 2020, 96, 1500–1508. [Google Scholar] [CrossRef]
- Bagur, R.; Webb, J.G.; Nietlispach, F.; Dumont, E.; De Larochellière, R.; Doyle, D.; Masson, J.-B.; Gutiérrez, M.J.; Clavel, M.-A.; Bertrand, O.F.; et al. Acute kidney injury following transcatheter aortic valve implantation: Predictive factors, prognostic value, and comparison with surgical aortic valve replacement. Eur. Hear. J. 2010, 31, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Nuis, R.-J.M.; Van Mieghem, N.M.; Tzikas, A.; Piazza, N.; Otten, A.M.; Cheng, J.; van Domburg, R.T.; Betjes, M.; Serruys, P.W.; De Jaegere, P.P. Frequency, determinants, and prognostic effects of acute kidney injury and red blood cell transfusion in patients undergoing transcatheter aortic valve implantation. Catheter. Cardiovasc. Interv. 2011, 77, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Pyxaras, S.A.; Zhang, Y.; Wolf, A.; Schmitz, T.; Naber, C.K. Effect of Varying Definitions of Contrast-Induced Acute Kidney Injury and Left Ventricular Ejection Fraction on One-Year Mortality in Patients Having Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2015, 116, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Arai, T.; Morice, M.; O’Connor, S.A.; Yamamoto, M.; Eltchaninoff, H.; Leguerrier, A.; Leprince, P.; Laskar, M.; Iung, B.; Fajadet, J.; et al. Impact of pre- and post-procedural anemia on the incidence of acute kidney injury and 1-year mortality in patients undergoing transcatheter aortic valve implantation (from the French Aortic National CoreValve and Edwards 2 [FRANCE 2] Registry). Catheter. Cardiovasc. Interv. 2015, 85, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Ram, P.; Mezue, K.; Pressman, G.; Rangaswami, J. Acute kidney injury post-transcatheter aortic valve replacement. Clin. Cardiol. 2017, 40, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Uygur, B.; Celik, O.; Demir, A.R.; Sahin, A.A.; Guner, A.; Avci, Y.; Bulut, U.; Tasbulak, O.; Demirci, G.; Uzun, F.; et al. A simplified acute kidney injury predictor following transcatheter aortic valve implantation: The ACEF score. Kardiol. Pol. 2021, 79, 662–668. [Google Scholar] [CrossRef]
- Zivkovic, N.; Elbaz-Greener, G.; Qiu, F.; Arbel, Y.; Cheema, A.N.; Dvir, D.; Fefer, P.; Finkelstein, A.; Fremes, S.E.; Radhakrishnan, S.; et al. Bedside risk score for prediction of acute kidney injury after transcatheter aortic valve replacement. Open Heart 2018, 5, e000777. [Google Scholar] [CrossRef]
- Davenport, M.S.; Khalatbari, S.; Cohan, R.H.; Dillman, J.R.; Myles, J.D.; Ellis, J.H. Contrast material-induced nephrotoxicity and in-travenous low-osmolality iodinated contrast material: Risk stratification by using estimated glomerular filtration rate. Radiology 2013, 268, 719–728. [Google Scholar] [CrossRef]
- McDonald, J.S.; McDonald, R.J.; Carter, R.E.; Katzberg, R.W.; Kallmes, D.F.; Williamson, E.E. Risk of intravenous contrast material-mediated acute kidney injury: A propensity score-matched study stratified by baseline-estimated glomerular filtration rate. Radiology 2014, 271, 65–73. [Google Scholar] [CrossRef]
- Aycock, R.D.; Westafer, L.M.; Boxen, J.L.; Majlesi, N.; Schoenfeld, E.M.; Bannuru, R.R. Acute Kidney Injury After Computed Tomography: A Meta-analysis. Ann. Emerg. Med. 2018, 71, 44–53.e4. [Google Scholar] [CrossRef]
- Davenport, M.S.; Perazella, M.A.; Yee, J.; Dillman, J.R.; Fine, D.; McDonald, R.J.; Rodby, R.A.; Wang, C.L.; Weinreb, J.C. Use of Intravenous Iodinated Contrast Media in Patients with Kidney Disease: Consensus Statements from the American College of Radiology and the National Kidney Foundation. Kidney Med. 2020, 2, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Schönenberger, E.; Martus, P.; Bosserdt, M.; Zimmermann, E.; Tauber, R.; Laule, M.; Dewey, M. Kidney Injury after Intravenous versus Intra-arterial Contrast Agent in Patients Suspected of Having Coronary Artery Disease: A Randomized Trial. Radiology 2019, 292, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Moideen, A.; Sajgure, A.; Dighe, T.; Bale, C. Sun-001 A Comparative Study on The Incidence of Contrast Induced Nephropathy and Its Risk Factors Following Intra-Arterial Versus Intravenous Contrast Administration. Kidney Int. Rep. 2020, 5, S205. [Google Scholar] [CrossRef][Green Version]
- McDonald, J.S.; Leake, C.B.; McDonald, R.J.; Gulati, R.; Katzberg, R.W.; Williamson, E.E.; Kallmes, D.F. Acute kidney injury after intra-venous versus intra-Arterial contrast material administration in a paired cohort. Investig. Radiol. 2016, 51, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Chaudhury, P.; Armanyous, S.; Harb, S.C.; Provenzano, L.F.; Ashour, T.; Jolly, S.E.; Arrigain, S.; Konig, V.; Schold, J.D.; Navaneethan, S.D.; et al. Intra-Arterial versus Intravenous Contrast and Renal Injury in Chronic Kidney Disease: A Propensity-Matched Analysis. Nephron Karger Publ. 2019, 141, 31–40. [Google Scholar] [CrossRef]
- Nyman, U.; Almén, T.; Jacobsson, B.; Aspelin, P. Are intravenous injections of contrast media really less nephrotoxic than in-tra-arterial injections? Eur. Radiol. 2012, 22, 1366–1371. [Google Scholar] [CrossRef][Green Version]
- Wang, Z.; Ren, K. Evaluation of iodine contrast-induced acute kidney injury via different injection routes using BOLD-MRI. Ren Fail Taylor Fr. 2019, 41, 341–353. [Google Scholar] [CrossRef]
- Murphy, S.W.; Barrett, B.J.; Parfrey, P.S. Contrast nephropathy. J. Am. Soc. Nephrol. JASN 2000, 11, 177–182. [Google Scholar] [CrossRef]
- Dangas, G.; Iakovou, I.; Nikolsky, E.; Aymong, E.D.; Mintz, G.S.; Kipshidze, N.N.; Lansky, A.J.; Moussa, I.; Stone, G.W.; Moses, J.W.; et al. Contrast-Induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables. Am. J. Cardiol. 2005, 95, 13–19. [Google Scholar] [CrossRef]
- McCullough, P.A.; Wolyn, R.; Rocher, L.L.; Levin, R.N.; O’Neill, W.W. Acute Renal Failure After Coronary Intervention: Incidence, Risk Factors, and Relationship to Mortality. Am. J. Med. 1997, 103, 368–375. [Google Scholar] [CrossRef]
- Rihal, C.S.; Textor, S.C.; Grill, D.E.; Berger, P.B.; Ting, H.H.; Best, P.J.; Singh, M.; Bell, M.R.; Barsness, G.W.; Mathew, V.; et al. Incidence and Prognostic Importance of Acute Renal Failure After Percutaneous Coronary Intervention. Circulation 2002, 105, 2259–2264. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, M.; Zahn, R.; Horack, M.; Gerckens, U.; Schuler, G.; Sievert, H.; Naber, C.; Voehringer, M.; Schäfer, U.; Senges, J.; et al. Transcatheter aortic valve implantation in patients with and without concomitant coronary artery disease: Comparison of characteristics and early outcome in the German multicenter TAVI registry. Clin. Res. Cardiol. 2012, 101, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Hahn, R.T.; Pibarot, P.; Stewart, W.J.; Weissman, N.J.; Gopalakrishnan, D.; Keane, M.G.; Anwaruddin, S.; Wang, Z.; Bilsker, M.; Lindman, B.R.; et al. Comparison of transcatheter and surgical aortic valve replacement in severe aortic stenosis: A longitudinal study of echocardiog-raphy parameters in cohort A of the PARTNER trial (placement of aortic transcatheter valves). J. Am. Coll. Cardiol. 2013, 61, 2514–2521. [Google Scholar] [CrossRef] [PubMed]
- Michail, M.; Hughes, A.; Comella, A.; Cameron, J.; Gooley, R.P.; McCormick, L.M.; Mathur, A.; Parker, K.H.; Brown, A.J. Acute Effects of Transcatheter Aortic Valve Replacement on Central Aortic Hemodynamics in Patients with Severe Aortic Stenosis. Hypertension 2020, 75, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Anjan, V.Y.; Herrmann, H.C.; Pibarot, P.; Stewart, W.J.; Kapadia, S.; Tuzcu, E.M.; Babaliaros, V.; Thourani, V.H.; Szeto, W.Y.; Bavaria, J.E.; et al. Evaluation of Flow After Transcatheter Aortic Valve Re-placement in Patients with Low-Flow Aortic Stenosis: A Secondary Analysis of the PARTNER Randomized Clinical Trial. JAMA Cardiol. 2016, 1, 584–592. [Google Scholar] [CrossRef]
- Kliuk-Ben Bassat, O.; Sadon, S.; Sirota, S.; Steinvil, A.; Konigstein, M.; Halkin, A.; Bazan, S.; Grupper, A.; Banai, S.; Finkelstein, A.; et al. Assessment of Kidney Function After Transcatheter Aortic Valve Replacement. Can. J. Kidney Health Dis. 2021, 8, 1–9. [Google Scholar] [CrossRef]
- Sudarsky, D.; Naami, R.; Shehadeh, F.; Elias, A.; Kerner, A.; Aronson, D. Risk of Worsening Renal Function Following Repeated Exposures to Contrast Media During Percutaneous Coronary Interventions. J. Am. Hear. Assoc. 2021, 10, e021473. [Google Scholar] [CrossRef]
- Ranucci, M.; Castelvecchio, S.; Menicanti, L.; Frigiola, A.; Pelissero, G. Reply to Letters Regarding Article, “Risk of Assessing Mortality Risk in Elective Cardiac Operations: Age, Creatinine, Ejection Fraction, and the Law of Parsimony”. Circulation 2010, 121, e227–e228. [Google Scholar] [CrossRef]
- Cigarroa, R.G.; Lange, R.A.; Williams, R.H.; Hillis, D. Dosing of contrast material to prevent contrast nephropathy in patients with renal disease. Am. J. Med. 1989, 86, 649–652. [Google Scholar] [CrossRef]
- Denegri, A.; Mehran, R.; Holy, E.; Taramasso, M.; Pasotti, E.; Pedrazzini, G.; Moccetti, T.; Maisano, F.; Nietlispach, F.; Obeid, S. Post procedural risk assessment in patients undergoing trans aortic valve implantation according to the age, creatinine, and ejection fraction-7 score: Advantages of age, creatinine, and ejection fraction-7 in stratification of post-procedural outcome. Catheter. Cardiovasc. Interv. 2019, 93, 141–148. [Google Scholar] [CrossRef]
AKI (−) (n = 172) | AKI (+) (n = 38) | p Value | |||
---|---|---|---|---|---|
Clinical data | Age; Years | 79 ± 7.9 | 81.8 ± 8.2 | 0.1 | |
Female; n (%) | 97 (56.4) | 21 (55.3) | 0.9 | ||
Body mass index; (kg/m2) | 28.92 ± 5.17 | 28.2 ± 5.97 | 0.46 | ||
Hypertension; n (%) | 151 (87.8) | 34 (89.5) | 0.77 | ||
Dyslipidemia; n (%) | 133 (77.3) | 23 (60.5) | 0.032 | ||
Diabetes mellitus; n (%) | 76 (44.2) | 20 (52.6) | 0.34 | ||
Smoking history; n (%) | 26 (15.1) | 6 (15.8) | 0.92 | ||
Cardio-vascular disease; n (%) | 96 (55.8) | 23 (60.5) | 0.596 | ||
Coronary artery disease; n (%) | 91 (52.9) | 23 (60.5) | 0.728 | ||
Peripheral arterial disease; n (%) | 19 (11) | 7 (18.4) | 0.211 | ||
Past PCI; n (%) | 70 (40.4) | 15 (41.7) | 0.98 | ||
Past CABG; n (%) | 20 (11.6) | 3 (7.9) | 0.51 | ||
Past CVA/TIA; n (%) | 12 (7) | 7 (18.4) | 0.026 | ||
Chronic obstructive pulmonary disease; n (%) | 22 (12.8) | 8 (21.1) | 0.19 | ||
Atrial fibrillation/atrial flutter; n (%) | 43 (25) | 15 (39.5) | 0.071 | ||
Pacemaker/CRT/ICD; n (%) | 23 (13.4) | 4 (10.5) | 0.64 | ||
NYHA functional class; n (%) | 1 | 5 (2.9) | 1 (2.6) | 0.727 | |
2 | 133 (77.3) | 29 (76.3) | |||
≥3 | 8 (4.7) | 3 (7.9) | |||
Urgent TAVI; n (%) | 40 (23.4) | 10 (26.3) | 0.7 | ||
Surgical risk | STS, mortality; % | 3.79 ± 2.37 | 4.91 ± 2.27 | 0.009 | |
EuroScore II; % | 3.83 ± 3.71 | 4.7 ± 3.48 | 0.22 | ||
Laboratory data | Hemoglobin; g/dL | 11.55 ± 1.71 | 10.77 ± 1.4 | 0.01 | |
Creatinine; mg/dL | 1.07 ± 0.48 | 1.35 ± 0.58 | 0.002 | ||
eGFR; mL/min/1.73 m2 | 64.5 ± 19 | 51 ± 19.3 | <0.001 | ||
CKD category; n (%) | 1–2 | 109 (63.4) | 15 (39.5) | <0.001 | |
3a–3b | 54 (31.4) | 17 (44.7) | |||
≥4 | 9 (5.2) | 6 (15.8) | |||
Echo- cardiography data | Left ventricle ejection fraction; % | 58 ± 10.5 | 58 ± 11.1 | 0.917 | |
Aortic valve area; cm2, | 0.77 ± 0.16 | 0.82 ± 0.19 | 0.166 | ||
Aortic valve area index; cm2/m2 | 0.43 ± 0.07 | 0.46 ± 0.06 | 0.081 | ||
Aortic valve mean pressure gradient; mmHg | 43 ± 12 | 41 ± 14.8 | 0.58 | ||
Severe mitral regurgitation; n (%) | 11 (6.9) | 3 (8.1) | 0.737 | ||
Severe tricuspid regurgitation; n (%) | 6 (4) | 1 (2.7) | 0.79 | ||
Severe pulmonary hypertension; n (%) | 14 (9.5) | 4 (11.4) | 0.634 | ||
Procedural data | Trans-femoral access; n (%) | 170 (98.8) | 38 (100) | 0.99 | |
THV type; n (%) | Evolut-R™ (Medtronic) | 124 (72.5) | 27 (71.1) | 0.676 | |
SAPIEN-3™ (Edwards Lifesciences) | 28 (16.4) | 5 (13.2) | |||
ACURATE-Neo™ (Boston Scientific) | 19 (11.1) | 6 (15.8) | |||
Anesthesia Type; n (%) | General anesthesia | 72 (51.4) | 16 (48.5) | 0.12 | |
Local anesthesia with sedation | 68 (48.6) | 17 (51.5) |
AKI (−) (n = 172) | AKI (+) (n = 38) | p Value | ||
---|---|---|---|---|
Creatinine; mg/dL | Highest (In-hospital) | 1.08 ± 0.31 | 2 ± 1 | <0.001 |
30-day | 1.12 ± 0.42 | 1.45 ± 0.55 | 0.011 | |
12-month | 1.21 ± 0.5 | 2 ± 1 | 0.014 | |
eGFR; mL/min/1.73 m2 | Lowest (In-hospital) | 62 ± 20 | 27 ± 12 | <0.001 |
30-day | 60.9 ± 20.6 | 44.9 ± 19.2 | 0.005 | |
12-month | 58.4 ± 21.3 | 44 ± 20.9 | 0.035 |
Within 30 Days | Within 7 Days | During TAVI | |||||||
---|---|---|---|---|---|---|---|---|---|
AKI (−) (n = 38) | AKI (+) (n = 172) | p Value | AKI (−) (n = 38) | AKI (+) (n = 172) | p Value | AKI (−) (n = 38) | AKI (+) (n = 172) | p Value | |
CM volume; mL | 319 ± 92 | 320 ± 105 | 0.97 | 246 ± 89 | 259 ± 111 | 0.54 | 187 ± 53 | 201 ± 83 | 0.316 |
CM volume prior to TAVI; mL | 133 ± 74 | 119 ± 65 | 0.41 | 59 ± 73 | 58 ± 71 | 0.93 | NR | NR | NR |
Mehran score | 13.52 ± 4.15 | 16.07 ± 3.63 | 0.004 | 12.76 ± 4.06 | 15.46 ± 3.73 | 0.025 | 12.2 ± 4.05 | 14.72 ± 3.75 | 0.004 |
Modified Mehran score ^ | NR | NR | NR | NR | NR | NR | 10.33 ± 3.97 | 12.87 ± 3.87 | 0.004 |
CR4EATME3AD3 | 10.09 ± 3.88 | 12.03 ± 3.75 | 0.007 | 9.56 ± 3.87 | 11.55 ± 3.63 | 0.004 | 9.09 ± 3.87 | 11.13 ± 3.78 | 0.004 |
Modified CR4EATME3AD ^ | NR | NR | NR | NR | NR | NR | 8.45 ± 3.81 | 10.45 ± 3.85 | 0.006 |
(CM × SCr)/BMI | 11.83 ± 6.27 | 15.52 ± 9.8 | 0.004 | 9.1 ± 5.25 | 12.36 ± 9.78 | 0.005 | 7.02 ± 4.29 | 9.33 ± 5.6 | 0.005 |
(CM × SCr)/BW | 4.5 ± 2.41 | 5.85 ± 3.44 | 0.005 | 3.48 ± 2.04 | 4.69 ± 3.48 | 0.005 | 2.66 ± 1.61 | 3.58 ± 2.13 | 0.004 |
CM/CrCl | 5.45 ± 2.66 | 7.04 ± 3.6 | 0.002 | 4.18 ± 2.25 | 5.71 ± 3.56 | <0.001 | 3.24 ± 1.95 | 4.41 ± 2.56 | 0.002 |
n = 210 | ||||
---|---|---|---|---|
OR | 95% CI | p Value | ||
eGFR reduction by 1 mL/min/1.73 m2 | 1.036 | 1.017–1.056 | <0.001 | |
eGFR <45 mL/min/1.73 m2 | 4.14 | 1.93–8.9 | 0.003 | |
Hemoglobin reduction by 1 g/dL | 1.33 | 1.06–1.66 | 0.013 | |
STS score for mortality | 1.0387 | 1.009–1.069 | 0.009 | |
Diabetes Mellitus | 1.4 | 0.694–2.835 | 0.345 | |
Hypertension | 1.18 | 0.381–3.66 | 0.772 | |
Body mass index | 0.974 | 0.91–1.04 | 0.458 | |
Gender | 0.955 | 0.471–1.936 | 0.9 | |
Age | 1.041 | 0.992–1.094 | 0.1 | |
Left ventricle ejection fraction | 0.998 | 0.965–1.032 | 0.917 | |
NYHA functional class | 1.252 | 0.474–3.303 | 0.65 | |
Coronary artery disease | 1.836 | 0.881–3.824 | 0.105 | |
Peripheral arterial disease | 1.818 | 0.704–4.695 | 0.217 | |
Within 30 Days | CM volume | 1.001 | 0.997–1.003 | 0.971 |
CM/CrCl | 1.182 | 1.058–1.321 | 0.004 | |
(CM × Scr)/BMI | 1.062 | 1.014–1.113 | 0.011 | |
(CM × Scr)/BW | 1.169 | 1.036–1.139 | 0.012 | |
Mehran Score | 1.109 | 1.03–1.195 | 0.006 | |
CR4EATME3AD3 score | 1.137 | 1.035–1.249 | 0.007 | |
Within 7 Days | Volume of CM | 1.009 | 0.998–1.004 | 0.538 |
CM/CrCl | 1.216 | 1.073–1.379 | 0.002 | |
(CM × Scr)/BMI | 1.069 | 1.012–1.128 | 0.017 | |
(CM × Scr)/BW | 1.19 | 1.036–1.367 | 0.014 | |
Mehran Score | 1.118 | 1.037–1.205 | 0.004 | |
CR4EATME3AD3 score | 1.146 | 1.041–1.262 | 0.005 | |
TAVI | Volume of CM | 1.002 | 0.998–1.007 | 0.295 |
CM/CrCl | 1.237 | 1.069–1.43 | 0.004 | |
(CM × SCr)/BMI | 1.092 | 1.021–1.167 | <0.001 | |
(CM × SCr)/BW | 1.275 | 1.069–1.521 | 0.007 | |
Mehran Score | 1.102 | 1.013–1.2 | 0.025 | |
CR4EATME3AD3 score | 1.147 | 1.043–1.261 | 0.005 | |
Modified Mehran score ^ | 1.11 | 1.028–1.199 | 0.008 | |
Modified CR4EATME3AD3 score ^ | 1.146 | 1.041–1.261 | 0.005 |
STS Score | Hemoglobin | eGFR ≤ 45 mL/min/1.73 m2 | |||||||
---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | ||
Within 30 Days | Mehran risk score | 1.02 (0.93–1.12) | 0.63 | 1.1 (0.94–1.29) | 0.24 | 0.83 (0.63–1.08) | 0.165 | 2.67 (1.1–6.5) | 0.03 |
CR4EATME3AD3 | 1.04 (0.92–1.17) | 0.514 | 1.08 (0.92–1.27) | 0.355 | 0.84 (0.65–1.08) | 0.168 | 2.5 (1.01–6.28) | 0.049 | |
CM/CrCl | 1.05 (0.9–1.26) | 0.539 | 1.08 (0.91–1.27) | 0.345 | 0.83 (0.64–1.06) | 0.137 | 2.35 (0.85–6.49) | 0.099 | |
(CM× SCr)/BMI | 1.02 (0.97–1.08) | 0.397 | 1.09 (0.92–1.29) | 0.302 | 0.84 (0.65–1.08) | 0.163 | 2.48 (0.99–6.19) | 0.053 | |
(CM × SCr)/BW | 1.04 (0.91–1.2) | 0.548 | 1.09 (0.92–1.28) | 0.328 | 0.84 (0.65–1.08) | 0.163 | 2.61 (1.04–6.56) | 0.041 | |
Within 7 Days | Mehran risk score | 1.03 (0.94–1.13) | 0.518 | 1.07 (0.91–1.26) | 0.41 | 0.84 (0.65–1.09) | 0.194 | 2.62 (1.07–6.39) | 0.034 |
CR4EATME3AD3 | 1.05 (0.93–1.18) | 0.417 | 1.08 (0.92–1.27) | 0.364 | 0.84 (0.65–1.08) | 0.17 | 2.46 (0.98–6.15) | 0.054 | |
CM/CrCl | 1.01 (0.94–1.28) | 0.216 | 1.08 (0.91–1.27) | 0.364 | 0.83 (0.64–1.06) | 0.123 | 2.15 (0.8–5.7) | 0.125 | |
(CM × SCr)/BMI | 1.02 (0.97–1.09) | 0.313 | 1.09 (0.92–1.28) | 0.323 | 0.83 (0.64–1.07) | 0.151 | 2.44 (1.0–6.1) | 0.049 | |
(CM × SCr)/BW | 1.07 (0.92–1.24) | 0.377 | 1.08 (0.92–1.28) | 0.361 | 0.83 (0.64–1.07) | 0.15 | 2.54 (1.03–6.28) | 0.044 | |
TAVI | Mehran risk score | 1.02 (0.92–1.12) | 0.761 | 1.1 (0.94–1.29) | 0.228 | 0.83 (0.64–1.08) | 0.173 | 2.76 (1.11–6.82) | 0.028 |
CR4EATME3AD3 | 1.05 (0.93–1.18) | 0.429 | 1.08 (0.92–1.26) | 0.357 | 0.84 (0.65–1.08) | 0.175 | 2.46 (0.98–6.19) | 0.054 | |
CM/CrCl | 1.08 (0.89–1.31) | 0.43 | 1.09 (0.92–1.28) | 0.309 | 0.83 (0.64–1.06) | 0.134 | 2.39 (0.85–6.7) | 0.1 | |
(CM × SCr)/BMI | 1.03 (0.97–1.12) | 0.406 | 1.1 (0.93–1.29) | 0.262 | 0.83 (0.65–1.07) | 0.156 | 2.48 (0.93–6.45) | 0.07 | |
(CM × SCr)/BW | 1.09 (0.88–1.35) | 0.414 | 1.09 (0.93–1.29) | 0.287 | 0.83 (0.64–1.07) | 0.159 | 2.47 (0.94–6.55) | 0.067 | |
Modif-ied ^ | Mehran risk score | 1.00 (0.91–1.11) | 0.888 | 1.08 (0.92–1.27) | 0.373 | 0.83 (0.64–1.08) | 0.161 | 2.8 (1.13–6.93) | 0.026 |
CR4EATME3AD3 | 1.03 (0.91–1.17) | 0.62 | 1.08 (0.92–1.26) | 0.362 | 0.83 (0.65–1.08) | 0.163 | 2.55 (1.0–6.11) | 0.051 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sudarsky, D.; Drutin, Y.; Kusniec, F.; Grosman-Rimon, L.; Lubovich, A.; Kinany, W.; Hazanov, E.; Gelbstein, M.; Birati, E.Y.; Marai, I. Acute Kidney Injury Following Transcatheter Aortic Valve Implantation: Association with Contrast Media Dosage and Contrast Media Based Risk Predication Models. J. Clin. Med. 2022, 11, 1181. https://doi.org/10.3390/jcm11051181
Sudarsky D, Drutin Y, Kusniec F, Grosman-Rimon L, Lubovich A, Kinany W, Hazanov E, Gelbstein M, Birati EY, Marai I. Acute Kidney Injury Following Transcatheter Aortic Valve Implantation: Association with Contrast Media Dosage and Contrast Media Based Risk Predication Models. Journal of Clinical Medicine. 2022; 11(5):1181. https://doi.org/10.3390/jcm11051181
Chicago/Turabian StyleSudarsky, Doron, Yarden Drutin, Fabio Kusniec, Liza Grosman-Rimon, Ala Lubovich, Wadia Kinany, Evgeni Hazanov, Michael Gelbstein, Edo Y. Birati, and Ibrahim Marai. 2022. "Acute Kidney Injury Following Transcatheter Aortic Valve Implantation: Association with Contrast Media Dosage and Contrast Media Based Risk Predication Models" Journal of Clinical Medicine 11, no. 5: 1181. https://doi.org/10.3390/jcm11051181
APA StyleSudarsky, D., Drutin, Y., Kusniec, F., Grosman-Rimon, L., Lubovich, A., Kinany, W., Hazanov, E., Gelbstein, M., Birati, E. Y., & Marai, I. (2022). Acute Kidney Injury Following Transcatheter Aortic Valve Implantation: Association with Contrast Media Dosage and Contrast Media Based Risk Predication Models. Journal of Clinical Medicine, 11(5), 1181. https://doi.org/10.3390/jcm11051181