Early Complications of Radioisotope Therapy with Lutetium-177 and Yttrium-90 in Patients with Neuroendocrine Neoplasms—A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- (a).
- well- and moderately-differentiated unresectable metastatic progressive neuroendocrine neoplasm (defined as Ki-67 < 20%, progression according to the RECIST 1.1 (Response Evaluation Criteria In Solid Tumours) criteria, over the previous 12 months);
- (b).
- good expression of somatostatin receptors in qualifying somatostatin receptor scintigraphy (SRS) (SPECT/CT) (radiotracer uptake in the majority of the lesions higher than in normal liver (Krenning scale ≥ 3)) or in Gallium-68-PET/CT (SUVmax in the majority of the lesions higher than SUVmax in normal liver);
- (c).
- exhausting all the possibilities of surgical treatment;
- (d).
- chronic treatment with long-acting somatostatin analogues.
- (a).
- no consent to the treatment;
- (b).
- pregnancy (a negative pregnancy test was required), lactation;
- (c).
- physical fitness assessment (PS, performance status) of the patient based on the WHO/ECOG classification: PS status 3 or 4, or based on the Karnofsky classification (<60);
- (d).
- no uptake of the radiotracer in somatostatin receptor imaging (SRI): SRS SPECT/CT or Ga-68-PET/CT;
- (e).
- bone marrow failure defined as: hemoglobin below 8 g/dL, platelets below 80 × 103/µL, leucocytes below 2 × 103/µL, lymphocytes below 0.5 × 103/µL, or neutrophils below 1 × 103/µL;
- (f).
- creatinine clearance <30 mL/min, blood urea nitrogen (BUN) over 45 mg/dL, and creatinine over 1.8 mg/dL;
- (g).
- three-fold increase in total bilirubin concentration;
- (h).
- systemic infections;
- (i).
- glomerulonephritis;
- (j).
- interstitial nephritis;
- (k).
- obstructive nephropathy;
- (l).
- urinary tract infection.
2.2. Methods
2.3. Morphology and Biochemistry
2.4. KIM-1 in the Serum
2.5. Urine
2.6. KIM-1, IL-18 in the Urine
2.7. Calculated Indices
2.8. Renal Tubule Function Assessment
2.9. Statistical Analysis
3. Results
3.1. Characteristics of the Study Group
3.2. Early Post-PRRT Complications
3.3. Early Post-PRRT Complications According to the CTCAE v. 5.0
4. Discussion
4.1. Strengths of the Study
4.2. Limitations of the Study
5. Conclusions
- PRRT caused acute hematologic complications, particularly in the white cell line, in grade 1 and 2 according to CTCAE criteria.
- Tandem treatment in such assessment revealed more severe hematologic complications.
- In the early evaluation, PRRT did not affect glomerular filtration.
- However, PRRT triggered acute renal tubule dysfunction, regardless of the treatment type.
- In the evaluation of the acute treatment complications, PRRT appeared to be a safe option.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Modlin, I.M.; Oberg, K.; Chung, D.C.; Jensen, R.T.; de Herder, W.W.; Thakker, R.V.; Caplin, M.; Delle Fave, G.; Kaltsas, G.A.; Krenning, E.P.; et al. Gastroenteropancreatic Neuroendocrine Tumours. Lancet Oncol. 2008, 9, 61–72. [Google Scholar] [CrossRef]
- Kunz, P.L. Carcinoid and Neuroendocrine Tumors: Building on Success. J. Clin. Oncol. 2015, 33, 1855–1863. [Google Scholar] [CrossRef] [PubMed]
- Modlin, I.M.; Lye, K.D.; Kidd, M. A 5-Decade Analysis of 13,715 Carcinoid Tumors. Cancer 2003, 97, 934–959. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, R.S.; Canes, D.; Brown, K.T.; Saltz, L.; Jarnagin, W.; Fong, Y.; Blumgart, L.H. Hepatic Neuroendocrine Metastases: Does Intervention Alter Outcomes? J. Am. Coll. Surg. 2000, 190, 432–445. [Google Scholar] [CrossRef]
- Yao, J.C.; Hassan, M.; Phan, A.; Dagohoy, C.; Leary, C.; Mares, J.E.; Abdalla, E.K.; Fleming, J.B.; Vauthey, J.-N.; Rashid, A.; et al. One Hundred Years after “Carcinoid”: Epidemiology of and Prognostic Factors for Neuroendocrine Tumors in 35,825 Cases in the United States. J. Clin. Oncol. 2008, 26, 3063–3072. [Google Scholar] [CrossRef] [Green Version]
- Niederle, B.; Pape, U.-F.; Costa, F.; Gross, D.; Kelestimur, F.; Knigge, U.; Öberg, K.; Pavel, M.; Perren, A.; Toumpanakis, C.; et al. ENETS Consensus Guidelines Update for Neuroendocrine Neoplasms of the Jejunum and Ileum. Neuroendocrinology 2016, 103, 125–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017, 3, 1335–1342. [Google Scholar] [CrossRef]
- Bednarczuk, T.; Bolanowski, M.; Zemczak, A.; Bałdys-Waligórska, A.; Blicharz-Dorniak, J.; Boratyn-Nowicka, A.; Borowska, M.; Cichocki, A.; Ćwikła, J.B.; Falconi, M.; et al. Neuroendocrine Neoplasms of the Small Intestine and Appendix—Management Guidelines (Recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol. Pol. 2017, 68, 223–236. [Google Scholar] [CrossRef] [Green Version]
- Kos-Kudła, B.; Rosiek, V.; Borowska, M.; Bałdys-Waligórska, A.; Bednarczuk, T.; Blicharz-Dorniak, J.; Bolanowski, M.; Boratyn-Nowicka, A.; Cichocki, A.; Ćwikła, J.B.; et al. Pancreatic Neuroendocrine Neoplasms—Management Guidelines (Recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol. Pol. 2017, 68, 169–197. [Google Scholar] [CrossRef]
- Kos-Kudła, B.; Blicharz-Dorniak, J.; Strzelczyk, J.; Bałdys-Waligórska, A.; Bednarczuk, T.; Bolanowski, M.; Boratyn-Nowicka, A.; Borowska, M.; Cichocki, A.; Ćwikła, J.B.; et al. Diagnostic and Therapeutic Guidelines for Gastro-Entero-Pancreatic Neuroendocrine Neoplasms (Recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol. Pol. 2017, 68, 79–110. [Google Scholar] [CrossRef]
- Kulke, M.H.; Siu, L.L.; Tepper, J.E.; Fisher, G.; Jaffe, D.; Haller, D.G.; Ellis, L.M.; Benedetti, J.K.; Bergsland, E.K.; Hobday, T.J.; et al. Future Directions in the Treatment of Neuroendocrine Tumors: Consensus Report of the National Cancer Institute Neuroendocrine Tumor Clinical Trials Planning Meeting. J. Clin. Oncol. 2011, 29, 934–943. [Google Scholar] [CrossRef] [Green Version]
- Johannessen, C.M.; Johnson, B.W.; Williams, S.M.G.; Chan, A.W.; Reczek, E.E.; Lynch, R.C.; Rioth, M.J.; McClatchey, A.; Ryeom, S.; Cichowski, K. TORC1 Is Essential for NF1-Associated Malignancies. Curr. Biol. CB 2008, 18, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Nagtegaal, I.D.; Odze, R.D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K.M.; Carneiro, F.; Cree, I.A. The WHO Classification of Tumours Editorial Board The 2019 WHO Classification of Tumours of the Digestive System. Histopathology 2020, 76, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raymond, E.; Dahan, L.; Raoul, J.-L.; Bang, Y.-J.; Borbath, I.; Lombard-Bohas, C.; Valle, J.; Metrakos, P.; Smith, D.; Vinik, A.; et al. Sunitinib Malate for the Treatment of Pancreatic Neuroendocrine Tumors. N. Engl. J. Med. 2011, 364, 501–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlsen, E.A.; Fazio, N.; Granberg, D.; Grozinsky-Glasberg, S.; Ahmadzadehfar, H.; Grana, C.M.; Zandee, W.T.; Cwikla, J.; Walter, M.A.; Oturai, P.S.; et al. Peptide Receptor Radionuclide Therapy in Gastroenteropancreatic NEN G3: A Multicenter Cohort Study. Endocr. Relat. Cancer 2019, 26, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Uri, I.; Avniel-Polak, S.; Gross, D.J.; Grozinsky-Glasberg, S. Update in the Therapy of Advanced Neuroendocrine Tumors. Curr. Treat. Options Oncol. 2017, 18, 72. [Google Scholar] [CrossRef] [PubMed]
- Leja, J.; Yu, D.; Nilsson, B.; Gedda, L.; Zieba, A.; Hakkarainen, T.; Åkerström, G.; Öberg, K.; Giandomenico, V.; Essand, M. Oncolytic Adenovirus Modified with Somatostatin Motifs for Selective Infection of Neuroendocrine Tumor Cells. Gene Ther. 2011, 18, 1052–1062. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Hijioka, S.; Masui, T.; Kasajima, A.; Nakamoto, Y.; Kobayashi, N.; Komoto, I.; Hijioka, M.; Lee, L.; Igarashi, H.; et al. Advances in the Diagnosis and Treatment of Pancreatic Neuroendocrine Neoplasms in Japan. J. Gastroenterol. 2017, 52, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolasińska-Ćwikła, A.; Łowczak, A.; Maciejkiewicz, K.M.; Ćwikła, J.B. Peptide Receptor Radionuclide Therapy for Advanced Gastroenteropancreatic Neuroendocrine Tumors—From Oncology Perspective. Nucl. Med. Rev. Cent. East. Eur. 2018, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef]
- Glinicki, P.; Jeske, W. Chromogranin A (CgA)--the Influence of Various Factors in Vivo and in Vitro, and Existing Disorders on It’s Concentration in Blood. Endokrynol. Pol. 2010, 61, 384–387. [Google Scholar]
- De Jong, M.; Breeman, W.A.P.; Valkema, R.; Bernard, B.F.; Krenning, E.P. Combination Radionuclide Therapy Using 177Lu- and 90Y-Labeled Somatostatin Analogs. J. Nucl. Med. 2005, 46, 13S–17S. [Google Scholar]
- Kunikowska, J.; Królicki, L.; Hubalewska-Dydejczyk, A.; Mikołajczak, R.; Sowa-Staszczak, A.; Pawlak, D. Clinical Results of Radionuclide Therapy of Neuroendocrine Tumours with 90Y-DOTATATE and Tandem 90Y/177Lu-DOTATATE: Which Is a Better Therapy Option? Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1788–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodei, L.; Kidd, M.; Paganelli, G.; Grana, C.M.; Drozdov, I.; Cremonesi, M.; Lepensky, C.; Kwekkeboom, D.J.; Baum, R.P.; Krenning, E.P.; et al. Long-Term Tolerability of PRRT in 807 Patients with Neuroendocrine Tumours: The Value and Limitations of Clinical Factors. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Sabet, A.; Haslerud, T.; Pape, U.-F.; Sabet, A.; Ahmadzadehfar, H.; Grünwald, F.; Guhlke, S.; Biersack, H.-J.; Ezziddin, S. Outcome and Toxicity of Salvage Therapy with 177Lu-Octreotate in Patients with Metastatic Gastroenteropancreatic Neuroendocrine Tumours. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 205–210. [Google Scholar] [CrossRef]
- Sabet, A.; Ezziddin, K.; Pape, U.-F.; Ahmadzadehfar, H.; Mayer, K.; Pöppel, T.; Guhlke, S.; Biersack, H.-J.; Ezziddin, S. Long-Term Hematotoxicity after Peptide Receptor Radionuclide Therapy with 177Lu-Octreotate. J. Nucl. Med. 2013, 54, 1857–1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodei, L.; Ferone, D.; Grana, C.M.; Cremonesi, M.; Signore, A.; Dierckx, R.A.; Paganelli, G. Peptide Receptor Therapies in Neuroendocrine Tumors. J. Endocrinol. Investig. 2009, 32, 360–369. [Google Scholar] [CrossRef]
- Imhof, A.; Brunner, P.; Marincek, N.; Briel, M.; Schindler, C.; Rasch, H.; Mäcke, H.R.; Rochlitz, C.; Müller-Brand, J.; Walter, M.A. Response, Survival, and Long-Term Toxicity after Therapy with the Radiolabeled Somatostatin Analogue [90Y-DOTA]-TOC in Metastasized Neuroendocrine Cancers. J. Clin. Oncol. 2011, 29, 2416–2423. [Google Scholar] [CrossRef]
- Pfeifer, A.K.; Gregersen, T.; Grønbæk, H.; Hansen, C.P.; Müller-Brand, J.; Herskind Bruun, K.; Krogh, K.; Kjær, A.; Knigge, U. Peptide Receptor Radionuclide Therapy with Y-DOTATOC and (177)Lu-DOTATOC in Advanced Neuroendocrine Tumors: Results from a Danish Cohort Treated in Switzerland. Neuroendocrinology 2011, 93, 189–196. [Google Scholar] [CrossRef]
- Waldherr, C.; Pless, M.; Maecke, H.R.; Schumacher, T.; Crazzolara, A.; Nitzsche, E.U.; Haldemann, A.; Mueller-Brand, J. Tumor Response and Clinical Benefit in Neuroendocrine Tumors after 7.4 GBq (90)Y-DOTATOC. J. Nucl. Med. 2002, 43, 610–616. [Google Scholar]
- Sabet, A.; Ezziddin, K.; Pape, U.-F.; Reichman, K.; Haslerud, T.; Ahmadzadehfar, H.; Biersack, H.-J.; Nagarajah, J.; Ezziddin, S. Accurate Assessment of Long-Term Nephrotoxicity after Peptide Receptor Radionuclide Therapy with (177)Lu-Octreotate. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Dale, R. Use of the Linear-Quadratic Radiobiological Model for Quantifying Kidney Response in Targeted Radiotherapy. Cancer Biother. Radiopharm. 2004, 19, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Barone, R.; Borson-Chazot, F.; Valkema, R.; Walrand, S.; Chauvin, F.; Gogou, L.; Kvols, L.K.; Krenning, E.P.; Jamar, F.; Pauwels, S. Patient-Specific Dosimetry in Predicting Renal Toxicity with (90)Y-DOTATOC: Relevance of Kidney Volume and Dose Rate in Finding a Dose-Effect Relationship. J. Nucl. Med. 2005, 46, 99S–106S. [Google Scholar] [PubMed]
- Bernard, B.F.; Krenning, E.P.; Breeman, W.A.; Rolleman, E.J.; Bakker, W.H.; Visser, T.J.; Mäcke, H.; de Jong, M. D-Lysine Reduction of Indium-111 Octreotide and Yttrium-90 Octreotide Renal Uptake. J. Nucl. Med. 1997, 38, 1929–1933. [Google Scholar] [PubMed]
- Bodei, L.; Cremonesi, M.; Grana, C.M.; Chinol, M.; Baio, S.M.; Severi, S.; Paganelli, G. Yttrium-Labelled Peptides for Therapy of NET. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, S93–S102. [Google Scholar] [CrossRef]
- Bodei, L.; Mueller-Brand, J.; Baum, R.P.; Pavel, M.E.; Hörsch, D.; O’Dorisio, M.S.; O’Dorisio, T.M.; O’Dorisiol, T.M.; Howe, J.R.; Cremonesi, M.; et al. The Joint IAEA, EANM, and SNMMI Practical Guidance on Peptide Receptor Radionuclide Therapy (PRRNT) in Neuroendocrine Tumours. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 800–816. [Google Scholar] [CrossRef]
- Kwekkeboom, D.J.; Mueller-Brand, J.; Paganelli, G.; Anthony, L.B.; Pauwels, S.; Kvols, L.K.; O’Dorisio, T.M.; Valkema, R.; Bodei, L.; Chinol, M.; et al. Overview of Results of Peptide Receptor Radionuclide Therapy with 3 Radiolabeled Somatostatin Analogs. J. Nucl. Med. 2005, 46, 62S–66S. [Google Scholar]
- Kwekkeboom, D.J.; Kam, B.L.; van Essen, M.; Teunissen, J.J.M.; van Eijck, C.H.J.; Valkema, R.; de Jong, M.; de Herder, W.W.; Krenning, E.P. Somatostatin-Receptor-Based Imaging and Therapy of Gastroenteropancreatic Neuroendocrine Tumors. Endocr. Relat. Cancer 2010, 17, R53–R73. [Google Scholar] [CrossRef] [Green Version]
- Valkema, R.; Pauwels, S.A.; Kvols, L.K.; Kwekkeboom, D.J.; Jamar, F.; de Jong, M.; Barone, R.; Walrand, S.; Kooij, P.P.M.; Bakker, W.H.; et al. Long-Term Follow-up of Renal Function after Peptide Receptor Radiation Therapy with (90)Y-DOTA(0),Tyr(3)-Octreotide and (177)Lu-DOTA(0), Tyr(3)-Octreotate. J. Nucl. Med. 2005, 46, 83S–91S. [Google Scholar]
- Bodei, L.; Cremonesi, M.; Ferrari, M.; Pacifici, M.; Grana, C.M.; Bartolomei, M.; Baio, S.M.; Sansovini, M.; Paganelli, G. Long-Term Evaluation of Renal Toxicity after Peptide Receptor Radionuclide Therapy with 90Y-DOTATOC and 177Lu-DOTATATE: The Role of Associated Risk Factors. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1847–1856. [Google Scholar] [CrossRef]
- Available online: https://www.Kidney.Org/Professionals/KDOQI/Gfr_calculator (accessed on 10 December 2021).
- Kwekkeboom, D.J.; Teunissen, J.J.; Bakker, W.H.; Kooij, P.P.; de Herder, W.W.; Feelders, R.A.; van Eijck, C.H.; Esser, J.-P.; Kam, B.L.; Krenning, E.P. Radiolabeled Somatostatin Analog [177Lu-DOTA0,Tyr3]Octreotate in Patients with Endocrine Gastroenteropancreatic Tumors. J. Clin. Oncol. 2005, 23, 2754–2762. [Google Scholar] [CrossRef] [Green Version]
- Bodei, L.; Cremonesi, M.; Grana, C.M.; Fazio, N.; Iodice, S.; Baio, S.M.; Bartolomei, M.; Lombardo, D.; Ferrari, M.E.; Sansovini, M.; et al. Peptide Receptor Radionuclide Therapy with 177Lu-DOTATATE: The IEO Phase I-II Study. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 2125–2135. [Google Scholar] [CrossRef] [PubMed]
- Swärd, C.; Bernhardt, P.; Ahlman, H.; Wängberg, B.; Forssell-Aronsson, E.; Larsson, M.; Svensson, J.; Rossi-Norrlund, R.; Kölby, L. [177Lu-DOTA 0-Tyr 3]-Octreotate Treatment in Patients with Disseminated Gastroenteropancreatic Neuroendocrine Tumors: The Value of Measuring Absorbed Dose to the Kidney. World J. Surg. 2010, 34, 1368–1372. [Google Scholar] [CrossRef] [PubMed]
- Garkavij, M.; Nickel, M.; Sjögreen-Gleisner, K.; Ljungberg, M.; Ohlsson, T.; Wingårdh, K.; Strand, S.-E.; Tennvall, J. 177Lu-[DOTA0,Tyr3] Octreotate Therapy in Patients with Disseminated Neuroendocrine Tumors: Analysis of Dosimetry with Impact on Future Therapeutic Strategy. Cancer 2010, 116, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Paganelli, G.; Sansovini, M.; Ambrosetti, A.; Severi, S.; Monti, M.; Scarpi, E.; Donati, C.; Ianniello, A.; Matteucci, F.; Amadori, D. 177 Lu-Dota-Octreotate Radionuclide Therapy of Advanced Gastrointestinal Neuroendocrine Tumors: Results from a Phase II Study. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1845–1851. [Google Scholar] [CrossRef] [PubMed]
- Delpassand, E.S.; Samarghandi, A.; Zamanian, S.; Wolin, E.M.; Hamiditabar, M.; Espenan, G.D.; Erion, J.L.; O’Dorisio, T.M.; Kvols, L.K.; Simon, J.; et al. Peptide Receptor Radionuclide Therapy with 177Lu-DOTATATE for Patients with Somatostatin Receptor-Expressing Neuroendocrine Tumors: The First US Phase 2 Experience. Pancreas 2014, 43, 518–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.K.; Singla, S.; Bal, C. Renal and Hematological Toxicity in Patients of Neuroendocrine Tumors after Peptide Receptor Radionuclide Therapy with 177Lu-DOTATATE. Cancer Biother. Radiopharm. 2012, 27, 593–599. [Google Scholar] [CrossRef]
- Benua, R.S.; Cicale, N.R.; Sonenberg, M.; Rawson, R.W. The Relation of Radioiodine Dosimetry to Results and Complications in the Treatment of Metastatic Thyroid Cancer. Am. J. Roentgenol. Radium Ther. Nucl. Med. 1962, 87, 171–182. [Google Scholar]
- Lassmann, M.; Hänscheid, H.; Chiesa, C.; Hindorf, C.; Flux, G.; Luster, M. EANM Dosimetry Committee EANM Dosimetry Committee Series on Standard Operational Procedures for Pre-Therapeutic Dosimetry I: Blood and Bone Marrow Dosimetry in Differentiated Thyroid Cancer Therapy. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Heylmann, D.; Ponath, V.; Kindler, T.; Kaina, B. Comparison of DNA Repair and Radiosensitivity of Different Blood Cell Populations. Sci. Rep. 2021, 11, 2478. [Google Scholar] [CrossRef]
- Belka, C.; Ottinger, H.; Kreuzfelder, E.; Weinmann, M.; Lindemann, M.; Lepple-Wienhues, A.; Budach, W.; Grosse-Wilde, H.; Bamberg, M. Impact of Localized Radiotherapy on Blood Immune Cells Counts and Function in Humans. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 1999, 50, 199–204. [Google Scholar] [CrossRef]
- Horn, S.; Barnard, S.; Brady, D.; Prise, K.M.; Rothkamm, K. Combined Analysis of Gamma-H2AX/53BP1 Foci and Caspase Activation in Lymphocyte Subsets Detects Recent and More Remote Radiation Exposures. Radiat. Res. 2013, 180, 603–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heylmann, D.; Badura, J.; Becker, H.; Fahrer, J.; Kaina, B. Sensitivity of CD3/CD28-Stimulated versus Non-Stimulated Lymphocytes to Ionizing Radiation and Genotoxic Anticancer Drugs: Key Role of ATM in the Differential Radiation Response. Cell Death Dis. 2018, 9, 1053. [Google Scholar] [CrossRef]
- Svensson, J.; Berg, G.; Wängberg, B.; Larsson, M.; Forssell-Aronsson, E.; Bernhardt, P. Renal Function Affects Absorbed Dose to the Kidneys and Haematological Toxicity during 177Lu-DOTATATE Treatment. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 947–955. [Google Scholar] [CrossRef] [Green Version]
- Bergsma, H.; Konijnenberg, M.W.; Kam, B.L.R.; Teunissen, J.J.M.; Kooij, P.P.; de Herder, W.W.; Franssen, G.J.H.; van Eijck, C.H.J.; Krenning, E.P.; Kwekkeboom, D.J. Subacute Haematotoxicity after PRRT with (177)Lu-DOTA-Octreotate: Prognostic Factors, Incidence and Course. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 453–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodei, L.; Cremonesi, M.; Grana, C.; Rocca, P.; Bartolomei, M.; Chinol, M.; Paganelli, G. Receptor Radionuclide Therapy with 90Y-[DOTA]0-Tyr3-Octreotide (90Y-DOTATOC) in Neuroendocrine Tumours. Eur. J. Nucl. Med. Mol. Imaging 2004, 31, 1038–1046. [Google Scholar] [CrossRef]
- Sabet, A.; Khalaf, F.; Yong-Hing, C.J.; Sabet, A.; Haslerud, T.; Ahmadzadehfar, H.; Guhlke, S.; Grünwald, F.; Biersack, H.-J.; Ezziddin, S. Can Peptide Receptor Radionuclide Therapy Be Safely Applied in Florid Bone Metastases? A Pilot Analysis of Late Stage Osseous Involvement. Nukl. Nucl. Med. 2014, 53, 54–59. [Google Scholar] [CrossRef]
- Kulkarni, H.R.; Prasad, V.; Schuchardt, C.; Baum, R.P. Is There a Correlation between Peptide Receptor Radionuclide Therapy-Associated Hematological Toxicity and Spleen Dose? In Theranostics, Gallium-68, and Other Radionuclides; Recent Results in Cancer Research; Springer: Berlin/Heidelberg, Germany, 2013; Volume 194, pp. 561–566. [Google Scholar] [CrossRef]
- Cohen, E.P.; Robbins, M.E.C. Radiation Nephropathy. Semin. Nephrol. 2003, 23, 486–499. [Google Scholar] [CrossRef]
- Cohen, E.P.; Lawton, C.A.; Moulder, J.E.; Becker, C.G.; Ash, R.C. Clinical Course of Late-Onset Bone Marrow Transplant Nephropathy. Nephron 1993, 64, 626–635. [Google Scholar] [CrossRef]
- Baradaran-Ghahfarokhi, M. Radiation-Induced Kidney Injury. J. Ren. Inj. Prev. 2012, 1, 49–50. [Google Scholar] [CrossRef]
- Ibrahimov, R.; Atasoy, B.M.; Dede, F.; Arikan, H.; Ozen, Z.; Ozgen, Z.; Dane, F.; Abacioglu, U. Functional and Clinical Evaluation of Renal Injury in Patients Treated with Adjuvant Chemoradiotherapy for Gastric Cancer: Low Dose and Comorbidity Considerations. J. Radiat. Res. Appl. Sci. 2016, 9, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Erbas, B.; Tuncel, M. Renal Function Assessment During Peptide Receptor Radionuclide Therapy. Semin. Nucl. Med. 2016, 46, 462–478. [Google Scholar] [CrossRef] [PubMed]
- Duncan, J.R.; Stephenson, M.T.; Wu, H.P.; Anderson, C.J. Indium-111-Diethylenetriaminepentaacetic Acid-Octreotide Is Delivered in Vivo to Pancreatic, Tumor Cell, Renal, and Hepatocyte Lysosomes. Cancer Res. 1997, 57, 659–671. [Google Scholar]
- Moulder, J.E.; Cohen, E.P. Radiation-Induced Multi-Organ Involvement and Failure: The Contribution of Radiation Effects on the Renal System. Br. J. Radiol. 2005, 78, 82–88. [Google Scholar] [CrossRef]
- Melnikov, V.Y.; Ecder, T.; Fantuzzi, G.; Siegmund, B.; Lucia, M.S.; Dinarello, C.A.; Schrier, R.W.; Edelstein, C.L. Impaired IL-18 Processing Protects Caspase-1-Deficient Mice from Ischemic Acute Renal Failure. J. Clin. Investig. 2001, 107, 1145–1152. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Krawczeski, C.D.; Zappitelli, M.; Devarajan, P.; Thiessen-Philbrook, H.; Coca, S.G.; Kim, R.W.; Parikh, C.R. TRIBE-AKI Consortium Incidence, Risk Factors, and Outcomes of Acute Kidney Injury after Pediatric Cardiac Surgery: A Prospective Multicenter Study. Crit. Care Med. 2011, 39, 1493–1499. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Cui, W.; Hankey, K.G.; Gibbs, A.M.; Smith, C.P.; Taylor-Howell, C.; Kearney, S.R.; MacVittie, T.J. Increased Expression of Connective Tissue Growth Factor (CTGF) in Multiple Organs After Exposure of Non-Human Primates (NHP) to Lethal Doses of Radiation. Health Phys. 2015, 109, 374–390. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M.; Bolduc, D.L.; Li, X.; Cui, W.; Hieber, K.P.; Bünger, R.; Ossetrova, N.I. Urine Interleukin-18 (IL-18) as a Biomarker of Total-Body Irradiation: A Preliminary Study in Nonhuman Primates. Radiat. Res. 2017, 188, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Kendi, A.T.; Halfdanarson, T.R.; Packard, A.; Dundar, A.; Subramaniam, R.M. Therapy With 177Lu-DOTATATE: Clinical Implementation and Impact on Care of Patients With Neuroendocrine Tumors. AJR Am. J. Roentgenol. 2019, 213, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Frilling, A.; Li, J.; Malamutmann, E.; Schmid, K.-W.; Bockisch, A.; Broelsch, C.E. Treatment of Liver Metastases from Neuroendocrine Tumours in Relation to the Extent of Hepatic Disease. Br. J. Surg. 2009, 96, 175–184. [Google Scholar] [CrossRef]
- Cremonesi, M.; Botta, F.; Di Dia, A.; Ferrari, M.; Bodei, L.; De Cicco, C.; Rossi, A.; Bartolomei, M.; Mei, R.; Severi, S.; et al. Dosimetry for Treatment with Radiolabelled Somatostatin Analogues. A Review. Q. J. Nucl. Med. Mol. Imaging 2010, 54, 37–51. [Google Scholar] [PubMed]
- Kunikowska, J.; Zemczak, A.; Kołodziej, M.; Gut, P.; Łoń, I.; Pawlak, D.; Mikołajczak, R.; Kamiński, G.; Ruchała, M.; Kos-Kudła, B.; et al. Tandem Peptide Receptor Radionuclide Therapy Using 90Y/177Lu-DOTATATE for Neuroendocrine Tumors Efficacy and Side-Effects—Polish Multicenter Experience. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 922–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunikowska, J.; Pawlak, D.; Bąk, M.I.; Kos-Kudła, B.; Mikołajczak, R.; Królicki, L. Long-Term Results and Tolerability of Tandem Peptide Receptor Radionuclide Therapy with 90Y/177Lu-DOTATATE in Neuroendocrine Tumors with Respect to the Primary Location: A 10-Year Study. Ann. Nucl. Med. 2017, 31, 347–356. [Google Scholar] [CrossRef] [PubMed]
Day | Procedure |
---|---|
Day 1 |
|
Day 2 |
|
Day 3 |
|
Day 4 |
|
Fractional Excretion | Formula |
---|---|
FE Na% | (UNa × Scr)/(SNa × Ucr) × 100% |
FE K% | (UK × Scr)/(SK × Ucr) × 100% |
FE Ca% | (UCa × Scr)/(SCa × Ucr) × 100% |
FE PO4% | (UPO4 × Scr)/(SPO4 × Ucr) × 100% |
FE UA% | (UUA × Scr)/(SUA × Ucr) × 100% |
FE U% | (UU × Scr)/(SU × Ucr) × 100% |
Characteristics | Total Group (n = 42) | [177Lu]Lu-DOTATATE (n = 31) | [90Y]Y/[177Lu]Lu-DOTATATE (n = 11) |
---|---|---|---|
Age (years) | |||
mean | 58.1 ± 13.1 | 57.8 ± 14 | 59 ± 11 |
range | 23–78 | 23–78 | 43–76 |
Sex | |||
Women | 19 (45.2%) | 14 (45.2%) | 5 (45.5%) |
Men | 23 (54.8%) | 17 (54.8%) | 6 (54.5%) |
BMI (kg/m2) | |||
mean | 24.9 ± 5.2 | 23.1 ± 5.6 | 24.3 ± 4.4 |
range | 16.4–41.3 | 16.4–41.3 | 17.8–30.8 |
<18.5 | 3 (7.1%) | 2 (6.5%) | 1 (9.1%) |
18.5–24.9 | 21 (50%) | 14 (45.1%) | 7 (63.6%) |
25.0–29.9 | 12 (28.6%) | 11 (35.5) | 1 (9.1%) |
≥30.0 | 6 (14.3%) | 4 (12.9%) | 2 (18.2%) |
Concomitant conditions | |||
Chronic kidney disease | 6 (14.3%) | 6 (19.4%) | 0 (0%) |
Arterial hypertension | 18 (42.9%) | 13 (41.9%) | 5 (45.4%) |
Diabetes | 12 (28.6%) | 5 (16.1%) | 7 (63.6%) |
Hypercholesterolemia | 6 (14.3%) | 4 (12.9%) | 2 (18.2%) |
Location of the primary origin of NEN | |||
Pancreas | 15 (35.6%) | 10 (32.2%) | 5 (45.4%) |
small intestine | 13 (30.9%) | 12 (38.7%) | 1 (9.1%) |
large intestine | 5 (12%) | 3 (9.7%) | 2 (18.2%) |
other | 5 (12%) | 3 (9.7%) | 2 (18.2%) |
(2 × ovary, | (2 × ovary, | (1 × stomach, | |
1 × stomach, | 1 × paraganglioma) | 1 × lung) | |
1 × paraganglioma, | |||
1 × lung) | |||
unknown | 4 (9.5%) | 3 (9.7%) | 1 (9.1%) |
Functional NEN | |||
total | 23 (54.8%) | 15 (48.4%) | 8 (72.7%) |
Pancreas | 10 SC (66.7%) | 5 SC * (50%) | 5 SC ** (100%) |
small intestine | 7 SC (53.8%) | 6 SC (50%) | 1 SC (100%) |
large intestine | 2 SC (40%) | 1 SC (33.3%) | 1 SC (50%) |
ovary | 1 SC (50%) | 1 SC (50%) | 0 SC (0%) |
stomach | 0 SC (0%) | 0 SC (0%) | 0 SC (0%) |
paraganglioma | 1 SC (100%) | 1 SC (100%) | 0 SC (0%) |
lung | 1 SC (100%) | 0 SC (0%) | 1 SC *** (100%) |
unknown | 1 SC (25%) | 1 SC (33.3%) | 0 SC (0%) |
NEN histological malignancy grade [13] | |||
G1 | 20 (48%) | 15 (48.4%) | 5 (45.5%) |
G2 | 22 (52%) | 16 (51.6%) | 6 (54.5%) |
G3 | 0 | 0 | 0 |
Before Radioisotope Administration (n = 42) | After Radioisotope Administration (n = 42) | ||||||
---|---|---|---|---|---|---|---|
Parameter | M | SD | M | SD | Δ | % | p |
WBC [103/µL] | 6.88 | 1.83 | 5.99 | 1.92 | −0.89 | −12.936 | <0.001 |
Neu [103/µL]] | 4.45 | 1.59 | 3.62 | 1.28 | −0.83 | −18.6517 | <0.001 |
Lymph [103/µL] | 1.71 | 0.80 | 1.60 | 0.76 | −0.11 | −6.43275 | 0.038 |
RBC [106/µL] | 4.50 | 0.67 | 4.44 | 0.74 | −0.06 | −1.33333 | 0.186 |
HGB [g/dL] | 13.40 | 1.87 | 13.21 | 2.02 | −0.19 | −1.41791 | 0.107 |
PLT [103/µL] | 246.19 | 107.04 | 234.50 | 68.57 | −11.69 | −4.74837 | 0.176 |
RET% | 1.46 | 0.43 | 1.46 | 0.39 | 0 | 0 | 0.236 |
GFR ≥ 60 mL/min/1.73 m2 (n = 36) | GFR < 60mL/min/1.73 m2 (n = 6) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | |||||||
Parameter | M | SD | M | SD | p | M | SD | M | SD | p |
WBC [103/µL] | 6.92 | 1.93 | 6.12 | 2.02 | <0.001 | 6.67 | 1.11 | 5.22 | 0.80 | 0.043 |
Neu [103/µL] | 4.41 | 1.63 | 3.68 | 1.34 | <0.001 | 4.66 | 1.48 | 3.26 | 0.83 | 0.026 |
Lymph [103/µL] | 1.78 | 0.81 | 1.66 | 0.78 | 0.182 | 1.32 | 0.62 | 1.26 | 0.57 | 0.329 |
RBC [106/µL] | 4.61 | 0.55 | 4.59 | 0.57 | 0.776 | 3.87 | 1.02 | 3.56 | 1.05 | 0.01 |
HGB [g/dL] | 13.66 | 1.56 | 13.61 | 1.53 | 0.733 | 11.85 | 2.85 | 10.83 | 2.99 | 0.007 |
PLT [103/µL] | 231.39 | 67.29 | 228.47 | 60.27 | 0.739 | 335.00 | 226.31 | 270.67 | 106.31 | 0.27 |
RET% | 1.42 | 0.39 | 1.44 | 0.39 | 0.539 | 1.71 | 0.58 | 1.58 | 0.41 | 0.205 |
Serum creatinine [mg/dL] | 0.87 | 0.26 | 0.88 | 0.29 | 0.638 | 1.23 | 0.20 | 1.20 | 0.15 | 0.465 |
GFR CKD-EPI cr [mL/min/1.73 m2] | 91.18 | 21.82 | 90.59 | 23.80 | 0.775 | 51.50 | 11.98 | 54.33 | 13.31 | 0.301 |
FE Na% | 0.69 | 0.69 | 0.85 | 0.54 | 0.26 | 1.89 | 2.54 | 1.44 | 0.54 | 0.663 |
FE K% | 10.35 | 7.53 | 6.05 | 2.80 | 0.003 | 11.20 | 9.95 | 9.17 | 5.98 | 0.591 |
FE Ca% | 0.54 | 0.54 | 2.04 | 6.42 | 0.186 | 0.82 | 0.73 | 0.98 | 0.71 | 0.697 |
FE PO4% | 11.23 | 6.84 | 15.18 | 7.44 | 0.005 | 19.32 | 9.93 | 14.06 | 6.06 | 0.09 |
FE U% | 34.59 | 20.13 | 52.35 | 14.25 | <0.001 | 38.39 | 25.16 | 41.38 | 24.72 | 0.702 |
FE UA% | 6.65 | 4.88 | 7.49 | 3.66 | 0.329 | 7.32 | 6.77 | 6.78 | 5.65 | 0.58 |
ACR [mg/g] | 0.09 | 0.16 | 0.08 | 0.33 | 0.912 | 0.06 | 0.07 | 0.07 | 0.12 | 0.908 |
Albumin in the urine [mg/mL] | 9.38 | 24.48 | 0.67 | 0.68 | 0.042 | 10.00 | 18.22 | 3.68 | 6.49 | 0.452 |
KIM-1 in the urine [pg/dL] | 1713.50 | 1395.59 | 1250.04 | 1018.99 | 0.068 | 2966.93 | 1535.15 | 2384.20 | 2959.90 | 0.548 |
Il-18 in the urine [pg/mL] | 150.45 | 118.61 | 44.96 | 52.96 | <0.001 | 217.93 | 151.94 | 56.80 | 47.09 | 0.053 |
KIM-1 in the serum [pg/dL] | 66.61 | 291.58 | 55.95 | 196.34 | 0.551 | 117.97 | 246.39 | 119.40 | 211.46 | 0.932 |
Serum albumin [mg/dL] | 4.66 | 0.33 | 4.41 | 0.39 | <0.001 | 3.92 | 0.88 | 3.55 | 0.77 | 0.018 |
ALT [IU/L] | 26.44 | 18.79 | 22.38 | 15.16 | 0.005 | 22.83 | 14.68 | 21.50 | 14.84 | 0.484 |
Bilirubin [mg/dL] | 0.67 | 0.44 | 0.79 | 0.49 | 0.002 | 0.57 | 0.22 | 0.57 | 0.25 | 1 |
Before Radioisotope Administration (n = 42) | After Radioisotope Administration (n = 42) | ||||
---|---|---|---|---|---|
Parameter | M | SD | M | SD | p |
Serum creatinine [mg/dL] | 0.93 | 0.28 | 0.93 | 0.29 | 0.317 |
GFR CKD-EPI cr [mL/min/1.73 m2] | 85.23 | 25.05 | 85.15 | 25.96 | 0.290 |
FE Na% | 0.88 | 1.20 | 0.94 | 0.58 | 0.291 |
FE K% | 10.48 | 7.80 | 6.53 | 3.55 | 0.044 |
FE Ca% | 0.58 | 0.57 | 1.87 | 5.91 | 0.320 |
FE PO4% | 12.50 | 7.84 | 15.00 | 7.18 | 0.098 |
FE U% | 35.17 | 20.65 | 50.66 | 16.36 | <0.001 |
FE UA% | 5.61 | 0.84 | 5.66 | 0.60 | 0.395 |
ACR [mg/g] | 0.08 | 0.15 | 0.08 | 0.31 | 0.527 |
Albumin in the urine [mg/mL] | 9.47 | 23.45 | 1.12 | 2.64 | 0.004 |
KIM-1 in the urine [pg/dL] | 1906.33 | 1469.74 | 1424.52 | 1482.91 | 0.147 |
IL-18 in the urine [pg/dL] | 160.84 | 124.47 | 46.78 | 51.70 | <0.001 |
KIM-1 in the serum [pg/mL] | 74.32 | 282.96 | 65.47 | 197.17 | 0.987 |
Before Radioisotope Administration (n = 42) | After Radioisotope Administration (n = 42) | ||||
---|---|---|---|---|---|
Parameter | M | SD | M | SD | p |
Serum albumin [mg/dL] | 4.54 | 0.52 | 4.28 | 0.55 | <0.001 |
ALT [IU/L] | 25.90 | 18.12 | 22.25 | 14.93 | 0.002 |
Bilirubin [mg/dL] | 0.66 | 0.41 | 0.76 | 0.47 | 0.003 |
[177Lu]Lu-DOTATATE (n = 31) | [90Y]Y/[177Lu]Lu-DOTATATE (n = 11) | ||||
---|---|---|---|---|---|
Parameter | Δ | SD | Δ | SD | p |
WBC [103/µL] | −0.65 | 1.17 | −1.56 | 1.26 | 0.035 |
Neu [103/µL] | −0.73 | 1.06 | −1.09 | 0.91 | 0.324 |
Lymph [103/µL] | −0.02 | 0.41 | −0.38 | 0.65 | 0.107 |
GFR CKD-EPI cr [mL/min/1.73 m2] | −2.62 | 10.64 | 6.64 | 10.38 | 0.018 |
FE K% | −5.08 | 8.40 | −0.69 | 3.76 | 0.121 |
FE U% | 13.28 | 26.39 | 21.90 | 13.47 | 0.332 |
Albumin in the urine [mg/mL] | −4.25 | 17.19 | −20.65 | 33.71 | 0.169 |
IL-18 in the urine [pg/dL] | −104.06 | 131.54 | −130.47 | 79.81 | 0.555 |
Pre-Treatment | Post-Treatment | ||||||
---|---|---|---|---|---|---|---|
G1 | G2 | G1 | G2 | G3 | Total pre-treatment (%) | Total post-treatment (%) | |
Leukopenia | 1 | 0 | 5 | 1 | 0 | 1/42 (2.4) | 6/42 (14.3) |
Neutropenia | 0 | 0 | 1 | 0 | 0 | 0/42 (0) | 1/42 (2.4) |
Lymphopenia | 2 | 2 | 7 | 2 | 0 | 4/42 (9.5) | 9/42 (21.4) |
Anemia | 6 | 1 | 5 | 2 | 1 | 7/42 (16.7) | 8/42 (19) |
Thrombocytopenia | 2 | 0 | 3 | 0 | 0 | 2/42 (4.8) | 3/42 (7.14) |
Creatinine increase | 6 | 0 | 5 | 0 | 0 | 6/40 (15) | 5/40 (12.5) |
GFR decrease | 17 | 7 | 15 | 7 | 0 | 24/40 (60) | 22/40 (55) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bober, B.; Saracyn, M.; Zaręba, K.; Lubas, A.; Mazurkiewicz, P.; Wilińska, E.; Kamiński, G. Early Complications of Radioisotope Therapy with Lutetium-177 and Yttrium-90 in Patients with Neuroendocrine Neoplasms—A Preliminary Study. J. Clin. Med. 2022, 11, 919. https://doi.org/10.3390/jcm11040919
Bober B, Saracyn M, Zaręba K, Lubas A, Mazurkiewicz P, Wilińska E, Kamiński G. Early Complications of Radioisotope Therapy with Lutetium-177 and Yttrium-90 in Patients with Neuroendocrine Neoplasms—A Preliminary Study. Journal of Clinical Medicine. 2022; 11(4):919. https://doi.org/10.3390/jcm11040919
Chicago/Turabian StyleBober, Barbara, Marek Saracyn, Kornelia Zaręba, Arkadiusz Lubas, Paweł Mazurkiewicz, Ewelina Wilińska, and Grzegorz Kamiński. 2022. "Early Complications of Radioisotope Therapy with Lutetium-177 and Yttrium-90 in Patients with Neuroendocrine Neoplasms—A Preliminary Study" Journal of Clinical Medicine 11, no. 4: 919. https://doi.org/10.3390/jcm11040919
APA StyleBober, B., Saracyn, M., Zaręba, K., Lubas, A., Mazurkiewicz, P., Wilińska, E., & Kamiński, G. (2022). Early Complications of Radioisotope Therapy with Lutetium-177 and Yttrium-90 in Patients with Neuroendocrine Neoplasms—A Preliminary Study. Journal of Clinical Medicine, 11(4), 919. https://doi.org/10.3390/jcm11040919