Urinary C5b-9 as a Prognostic Marker in IgA Nephropathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical and Laboratory Data Collection
2.3. Serum and Urinary C5b-9 Quantification
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Baseline-Corrected Urinary C5b-9 Levels Were Correlated with MAP, Proteinuria Amount, and Segmental Sclerosis at the Time of Diagnosis
3.3. Changes in Corrected Urinary C5b-9 Levels Were Positively Correlated with Changes in Proteinuria and Inversely Correlated with Changes in eGFR at 6 Months after Medical Treatment
3.4. Corrected Urinary C5b-9 Levels Were Decreased in the Response Group 6 Months after Medical Treatment
3.5. Changes in Corrected Urinary C5b-9 Levels Were Positively Correlated with Time-Averaged Proteinuria but Were Not Correlated with the Mean Annual Rate of eGFR Decline during Follow-Up Duration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, R.J.; Feehally, J.; Floege, J. Comprehensive Clinical Nephrology; Elsevier: Philadelphia, PA, USA, 2015. [Google Scholar]
- Magistroni, R.; D’Agati, V.D.; Appel, G.B.; Kiryluk, K. New developments in the genetics, pathogenesis, and therapy of IgA nephropathy. Kidney Int. 2015, 88, 974–989. [Google Scholar] [CrossRef] [Green Version]
- Boyd, J.K.; Cheung, C.K.; Molyneux, K.; Feehally, J.; Barratt, J. An update on the pathogenesis and treatment of IgA nephropathy. Kidney Int. 2012, 81, 833–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, J.C.; Haas, M.; Reich, H.N. IgA Nephropathy. Clin. J. Am. Soc. Nephrol. 2017, 12, 677–686. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, G. Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin. Nephrol. 2004, 24, 179–196. [Google Scholar] [CrossRef] [PubMed]
- Barbour, S.J.; Espino-Hernandez, G.; Reich, H.N.; Coppo, R.; Roberts, I.S.; Feehally, J.; Herzenberg, A.M.; Cattran, D.C. The MEST score provides earlier risk prediction in lgA nephropathy. Kidney Int. 2016, 89, 167–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koopman, J.J.E.; van Essen, M.F.; Rennke, H.G.; de Vries, A.P.J.; van Kooten, C. Deposition of the Membrane Attack Complex in Healthy and Diseased Human Kidneys. Front. Immunol. 2020, 11, 599974. [Google Scholar] [CrossRef]
- Rizk, D.V.; Maillard, N.; Julian, B.A.; Knoppova, B.; Green, T.J.; Novak, J.; Wyatt, R.J. The Emerging Role of Complement Proteins as a Target for Therapy of IgA Nephropathy. Front. Immunol. 2019, 10, 504. [Google Scholar] [CrossRef]
- Floege, J.; Daha, M.R. IgA nephropathy: New insights into the role of complement. Kidney Int. 2018, 94, 16–18. [Google Scholar] [CrossRef]
- Maillard, N.; Wyatt, R.J.; Julian, B.A.; Kiryluk, K.; Gharavi, A.; Fremeaux-Bacchi, V.; Novak, J. Current Understanding of the Role of Complement in IgA Nephropathy. J. Am. Soc. Nephrol. 2015, 26, 1503–1512. [Google Scholar] [CrossRef] [Green Version]
- Bomback, A.S.; Markowitz, G.S.; Appel, G.B. Complement-Mediated Glomerular Diseases: A Tale of 3 Pathways. Kidney Int. Rep. 2016, 1, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Nangaku, M.; Shankland, S.J.; Couser, W.G. Cellular response to injury in membranous nephropathy. J. Am. Soc. Nephrol. 2005, 16, 1195–1204. [Google Scholar] [CrossRef] [PubMed]
- Carrara, C.; Podestà, M.A.; Abbate, M.; Rizzo, P.; Piras, R.; Alberti, M.; Daina, E.; Ruggenenti, P.; Remuzzi, G. Morphofunctional Effects of C5 Convertase Blockade in Immune Complex-Mediated Membranoproliferative Glomerulonephritis: Report of Two Cases with Evidence of Terminal Complement Activation. Nephron 2020, 144, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Wilson, H.R.; Medjeral-Thomas, N.R.; Gilmore, A.C.; Trivedi, P.; Seyb, K.; Farzaneh-Far, R.; Gunnarsson, I.; Zickert, A.; Cairns, T.D.; Lightstone, L.; et al. Glomerular membrane attack complex is not a reliable marker of ongoing C5 activation in lupus nephritis. Kidney Int. 2019, 95, 655–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, R.J.H.; Appel, G.B.; Blom, A.M.; Cook, H.T.; D’Agati, V.D.; Fakhouri, F.; Fremeaux-Bacchi, V.; Józsi, M.; Kavanagh, D.; Lambris, J.D.; et al. C3 glomerulopathy—Understanding a rare complement-driven renal disease. Nat. Rev. Nephrol. 2019, 15, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos, E.; Papaghianni, A.; Papadimitriou, M. The pathogenetic significance of C5b-9 in IgA nephropathy. Nephrol. Dial. Transplant. 1995, 10, 1166–1172. [Google Scholar] [CrossRef]
- Onda, K.; Ohsawa, I.; Ohi, H.; Tamano, M.; Mano, S.; Wakabayashi, M.; Toki, A.; Horikoshi, S.; Fujita, T.; Tomino, Y. Excretion of complement proteins and its activation marker C5b-9 in IgA nephropathy in relation to renal function. BMC Nephrol. 2011, 12, 64. [Google Scholar] [CrossRef] [Green Version]
- Beck, L.; Bomback, A.S.; Choi, M.J.; Holzman, L.B.; Langford, C.; Mariani, L.H.; Somers, M.J.; Trachtman, H.; Waldman, M. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for glomerulonephritis. Am. J. Kidney Dis. 2013, 62, 403–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trimarchi, H.; Barratt, J.; Cattran, D.C.; Cook, H.T.; Coppo, R.; Haas, M.; Liu, Z.H.; Roberts, I.S.; Yuzawa, Y.; Zhang, H.; et al. Oxford Classification of IgA nephropathy 2016: An update from the IgA Nephropathy Classification Working Group. Kidney Int. 2017, 91, 1014–1021. [Google Scholar] [CrossRef] [Green Version]
- Rinder, C.S.; Rinder, H.M.; Smith, B.R.; Fitch, J.C.; Smith, M.J.; Tracey, J.B.; Matis, L.A.; Squinto, S.P.; Rollins, S.A. Blockade of C5a and C5b-9 generation inhibits leukocyte and platelet activation during extracorporeal circulation. J. Clin. Invest. 1995, 96, 1564–1572. [Google Scholar] [CrossRef]
- Zhao, W.T.; Huang, J.W.; Sun, P.P.; Su, T.; Tang, J.W.; Wang, S.X.; Liu, G.; Yang, L. Diagnostic roles of urinary kidney injury molecule 1 and soluble C5b-9 in acute tubulointerstitial nephritis. Am. J. Physiol. Ren. Physiol. 2019, 317, F584–F592. [Google Scholar] [CrossRef]
- Bariety, J.; Hinglais, N.; Bhakdi, S.; Mandet, C.; Rouchon, M.; Kazatchkine, M.D. Immunohistochemical study of complement S protein (Vitronectin) in normal and diseased human kidneys: Relationship to neoantigens of the C5b-9 terminal complex. Clin. Exp. Immunol. 1989, 75, 76–81. [Google Scholar]
- Tamai, H.; Matsuo, S.; Fukatsu, A.; Nishikawa, K.; Sakamoto, N.; Yoshioka, K.; Okada, N.; Okada, H. Localization of 20-kD homologous restriction factor (HRF20) in diseased human glomeruli. An immunofluorescence study. Clin. Exp. Immunol. 1991, 84, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Miyazaki, M.; Koji, T.; Furusu, A.; Shioshita, K.; Tsukasaki, S.; Ozono, Y.; Harada, T.; Sakai, H.; Kohno, S. Intraglomerular synthesis of complement C3 and its activation products in IgA nephropathy. Nephron 2001, 87, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Rauterberg, E.W.; Lieberknecht, H.M.; Wingen, A.M.; Ritz, E. Complement membrane attack (MAC) in idiopathic IgA-glomerulonephritis. Kidney Int. 1987, 31, 820–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumont, C.; Mérouani, A.; Ducruet, T.; Benoit, G.; Clermont, M.J.; Lapeyraque, A.L.; Phan, V.; Patey, N. Clinical relevance of membrane attack complex deposition in children with IgA nephropathy and Henoch-Schönlein purpura. Pediatr. Nephrol. 2020, 35, 843–850. [Google Scholar] [CrossRef]
- Liu, L.L.; Jiang, Y.; Wang, L.N.; Liu, N. Urinary mannose-binding lectin is a biomarker for predicting the progression of immunoglobulin (Ig)A nephropathy. Clin. Exp. Immunol. 2012, 169, 148–155. [Google Scholar] [CrossRef]
- Peters, H.P.; Waanders, F.; Meijer, E.; van den Brand, J.; Steenbergen, E.J.; van Goor, H.; Wetzels, J.F. High urinary excretion of kidney injury molecule-1 is an independent predictor of end-stage renal disease in patients with IgA nephropathy. Nephrol. Dial. Transplant. 2011, 26, 3581–3588. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.C.; Cho, N.J.; Park, S.; Kim, H.; Choi, S.J.; Kim, J.K.; Hwang, S.D.; Gil, H.W.; Lee, E.Y.; Jeon, J.S.; et al. IgA nephropathy is associated with elevated urinary mitochondrial DNA copy numbers. Sci. Rep. 2019, 9, 16068. [Google Scholar] [CrossRef] [Green Version]
- Maixnerova, D.; Reily, C.; Bian, Q.; Neprasova, M.; Novak, J.; Tesar, V. Markers for the progression of IgA nephropathy. J. Nephrol. 2016, 29, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Salant, D.J.; Belok, S.; Madaio, M.P.; Couser, W.G. A new role for complement in experimental membranous nephropathy in rats. J. Clin. Investig. 1980, 66, 1339–1350. [Google Scholar] [CrossRef] [Green Version]
- Cybulsky, A.V.; Quigg, R.J.; Salant, D.J. The membrane attack complex in complement-mediated glomerular epithelial cell injury: Formation and stability of C5b-9 and C5b-7 in rat membranous nephropathy. J. Immunol. 1986, 137, 1511–1516. [Google Scholar] [PubMed]
- Kerjaschki, D.; Schulze, M.; Binder, S.; Kain, R.; Ojha, P.P.; Susani, M.; Horvat, R.; Baker, P.J.; Couser, W.G. Transcellular transport and membrane insertion of the C5b-9 membrane attack complex of complement by glomerular epithelial cells in experimental membranous nephropathy. J. Immunol. 1989, 143, 546–552. [Google Scholar] [PubMed]
- Cattran, D.C.; Coppo, R.; Cook, H.T.; Feehally, J.; Roberts, I.S.; Troyanov, S.; Alpers, C.E.; Amore, A.; Barratt, J.; Berthoux, F.; et al. The Oxford classification of IgA nephropathy: Rationale, clinicopathological correlations, and classification. Kidney Int. 2009, 76, 534–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, G.S.; Nochy, D.; El Karoui, K. Comments on the Oxford classification of IgA nephropathy. Kidney Int. 2009, 76, 1207. [Google Scholar] [CrossRef] [Green Version]
- El Karoui, K.; Hill, G.S.; Karras, A.; Moulonguet, L.; Caudwell, V.; Loupy, A.; Bruneval, P.; Jacquot, C.; Nochy, D. Focal segmental glomerulosclerosis plays a major role in the progression of IgA nephropathy. II. Light microscopic and clinical studies. Kidney Int. 2011, 79, 643–654. [Google Scholar] [CrossRef] [Green Version]
- Mubarak, M.; Nasri, H. Significance of segmental glomerulosclerosis in IgA supnephropathy: What is the evidence? J. Ren. Inj. Prev. 2013, 2, 113–115. [Google Scholar]
- Levey, A.S.; Gansevoort, R.T.; Coresh, J.; Inker, L.A.; Heerspink, H.L.; Grams, M.E.; Greene, T.; Tighiouart, H.; Matsushita, K.; Ballew, S.H.; et al. Change in Albuminuria and GFR as End Points for Clinical Trials in Early Stages of CKD: A Scientific Workshop Sponsored by the National Kidney Foundation in Collaboration With the US Food and Drug Administration and European Medicines Agency. Am. J. Kidney Dis. 2020, 75, 84–104. [Google Scholar] [CrossRef] [Green Version]
- Neuen, B.L.; Weldegiorgis, M.; Herrington, W.G.; Ohkuma, T.; Smith, M.; Woodward, M. Changes in GFR and Albuminuria in Routine Clinical Practice and the Risk of Kidney Disease Progression. Am. J. Kidney Dis. 2021, 78, 350–360.E1. [Google Scholar] [CrossRef]
- Inker, L.A.; Heerspink, H.J.L.; Tighiouart, H.; Chaudhari, J.; Miao, S.; Diva, U.; Mercer, A.; Appel, G.B.; Donadio, J.V.; Floege, J.; et al. Association of Treatment Effects on Early Change in Urine Protein and Treatment Effects on GFR Slope in IgA Nephropathy: An Individual Participant Meta-analysis. Am. J. Kidney Dis. 2021, 78, 340–349.E1. [Google Scholar] [CrossRef]
- Coresh, J.; Grams, M.E.; Chen, T.K. Using GFR, Albuminuria, and Their Changes in Clinical Trials and Clinical Care. Am. J. Kidney Dis. 2021, 78, 333–334. [Google Scholar] [CrossRef]
Variable | Total (n = 33) | Response Group (n = 23) | Non-Response Group (n = 10) | p-Value * |
---|---|---|---|---|
Sex (male) | 17 (51.5) | 10 (43.5) | 7 (70.0) | 0.259 |
Age (years) | 40.0 ± 14.4 | 41.0 ± 15.2 | 37.5 ± 12.8 | 0.603 |
Body mass index (kg/m2) | 24.3 ± 4.1 | 23.9 ± 4.0 | 25.2 ± 4.6 | 0.524 |
Mean arterial pressure (mmHg) | 93.4 ± 11.9 | 92.4 ± 12.2 | 95.8 ± 11.4 | 0.384 |
Hypertension | 5 (15.2) | 4 (17.4) | 1 (10.0) | >0.999 |
Serum creatinine levels (mg/dL) | 1.12 ± 0.29 | 1.09 ± 0.30 | 1.17 ± 0.26 | 0.324 |
eGFR (mL/min/1.73 m2) | 79.76 ± 22.67 | 79.38 ± 23.18 | 80.65 ± 22.62 | 0.773 |
Proteinuria (g/24 h) | 1.05 ± 0.97 | 1.14 ±1.09 | 0.85 ± 0.60 | >0.999 |
Serum C5b-9 levels (ng/mL) | 43.19 ± 31.55 | 43.69 ± 34.13 | 31.31 ± 18.40 | 0.493 |
Corrected urinary C5b-9 levels | 283.22 ± 421.22 | 227.61 ± 321.55 | 411.12 ± 593.33 | 0.499 |
Immunosuppressive agents | 7 (21.2) | 6 (26.1) | 1 (10.0) | 0.397 |
Oxford classification | ||||
M score 1 1 | 17 (51.5) | 10 (43.5) | 7 (70.0) | 0.259 |
E score 1 2 | 10 (30.3) | 8 (34.8) | 2 (20.0) | 0.682 |
S score 1 3 | 19 (57.6) | 13 (56.5) | 6 (60.0) | >0.999 |
T score 1–2 4 | 11 (33.3) | 8 (34.8) | 3 (30.0) | >0.999 |
C score 1–2 5 | 4 (12.1) | 4 (17.4) | 0 (0.0) | 0.289 |
Global sclerosis (%) | 12.1 ± 11.9 | 12.7 ± 11.4 | 10.6 ± 13.5 | 0.499 |
Segmental sclerosis (%) | 8.8 ± 11.9 | 9.1 ± 12.8 | 8.0 ± 10.4 | 0.985 |
Variable | Mean Arterial Pressure | eGFR | Amount of Proteinuria |
---|---|---|---|
Serum C5b-9 levels (ng/mL) | r = −0.020 | r = −0.156 | r = −0.078 |
p = 0.930 | p = 0.487 | p = 0.728 | |
Corrected urinary C5b-9 levels | r = 0.489 | r = −0.236 | r = 0.548 |
p = 0.004 | p = 0.185 | p = 0.001 |
Risk Factor | Univariable | Multivariable | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Baseline-corrected urinary C5b-9 levels | 0.999 (0.997–1.001) | 0.270 | 0.997 (0.993–1.000) | 0.078 |
eGFR at baseline (mL/min/1.73m2) | 0.998 (0.965–1.031) | 0.880 | 1.011 (0.968–1.055) | 0.631 |
Proteinuria at baseline (mg/day) | 1.000 (1.000–1.001) | 0.435 | 1.001 (0.999–1.002) | 0.375 |
Hypertension | 1.897 (0.184–19.482) | 0.591 | 67.625 (0.168–27179.9) | 0.168 |
Variable | Mean Annual Rate of eGFR Decline | Time-Averaged Proteinuria |
---|---|---|
Baseline serum C5b-9 levels (ng/mL) | r = 0.007 | r = −0.215 |
p = 0.974 | p = 0.336 | |
Baseline-corrected urinary C5b-9 levels | r = −0.319 | r = 0.280 |
p = 0.071 | p = 0.115 | |
Changes in serum C5b-9 (%) | r = 0.080 | r = 0.019 |
p = 0.725 | p = 0.934 | |
Changes in corrected urinary C5b-9 (%) | r = −0.282 | r = 0.461 |
p = 0.112 | p = 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, B.C.; Park, J.H.; Lee, K.H.; Oh, Y.S.; Choi, S.J.; Kim, J.K.; Park, M.Y. Urinary C5b-9 as a Prognostic Marker in IgA Nephropathy. J. Clin. Med. 2022, 11, 820. https://doi.org/10.3390/jcm11030820
Yu BC, Park JH, Lee KH, Oh YS, Choi SJ, Kim JK, Park MY. Urinary C5b-9 as a Prognostic Marker in IgA Nephropathy. Journal of Clinical Medicine. 2022; 11(3):820. https://doi.org/10.3390/jcm11030820
Chicago/Turabian StyleYu, Byung Chul, Jin Hoon Park, Kyung Ho Lee, Young Seung Oh, Soo Jeong Choi, Jin Kuk Kim, and Moo Yong Park. 2022. "Urinary C5b-9 as a Prognostic Marker in IgA Nephropathy" Journal of Clinical Medicine 11, no. 3: 820. https://doi.org/10.3390/jcm11030820
APA StyleYu, B. C., Park, J. H., Lee, K. H., Oh, Y. S., Choi, S. J., Kim, J. K., & Park, M. Y. (2022). Urinary C5b-9 as a Prognostic Marker in IgA Nephropathy. Journal of Clinical Medicine, 11(3), 820. https://doi.org/10.3390/jcm11030820