Conventional and Pro-Inflammatory Pathways of Fibrinolytic Activation in Non-Traumatic Hyperfibrinolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Viscoelastic Testing
2.3. Detection of Mediators by Immunoassays
2.4. Statistical Analysis
3. Results
3.1. A Subgroup of OHCA Patients Present with Hyperfibrinolysis
3.2. Non-Traumatic HF Is Associated with an Activation of the Protein C Pathway
3.3. Conventional Fibrinolytic Pathways Are Activated in Non-Traumatic Hyperfibrinolysis
3.4. Pro-Inflammatory Pathways Do Not Appear to Be Associated with Non-Traumatic HF
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APC | Activated protein C |
ELISA | Enzyme-linked immuno-sorbent assay |
EPCR | Endothelial protein C receptor |
hDNA | Histonylated deoxyribonucleic acid |
HF | Hyperfibrinolysis |
PAI-1 | Plasminogen activator inhibitor 1 |
PCI | Protein C inhibitor |
PMA | Phorbol 12-myristate 13-acetate |
PMN | Polymorphonuclear neutrophil |
MCF | Maximum clot firmness |
ML | Maximum lysis |
NET | Neutrophil extracellular traps |
OHCA | Out-of-hospital cardiac arrest |
ROTEM | Rotational thromboelastometry |
sTM | Soluble thrombomodulin |
TIC | Trauma-induced coagulopathy |
t-PA | Tissue plasminogen activator |
References
- Brohi, K.; Cohen, M.J.; Ganter, M.T.; Schultz, M.J.; Levi, M.; Mackersie, R.C.; Pittet, J.F. Acute coagulopathy of trauma: Hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J. Trauma 2008, 64, 1211–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schöchl, H.; Cadamuro, J.; Seidl, S.; Franz, A.; Solomon, C.; Schlimp, C.J.; Ziegler, B. Hyperfibrinolysis is common in out-of-hospital cardiac arrest: Results from a prospective observational thromboelastometry study. Resuscitation 2013, 84, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Brohi, K.; Cohen, M.J.; Ganter, M.T.; Matthay, M.A.; Mackersie, R.C.; Pittet, J.F. Acute traumatic coagulopathy: Initiated by hypo-perfusion: Modulated through the protein C pathway? Ann. Surg. 2007, 245, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Cardenas, J.C.; Wade, C.E.; Holcomb, J.B. Advances in the understanding of trauma-induced coagulopathy. Blood 2016, 128, 1043–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davenport, R.A.; Brohi, K. Cause of trauma-induced coagulopathy. Curr. Opin. Anaesthesiol. 2016, 29, 212–219. [Google Scholar] [CrossRef]
- Hunt, B.J.; Jurd, K.M. Endothelial cell activation. Bmj 1998, 316, 1328–1329. [Google Scholar] [CrossRef]
- Johansson, P.I.; Sørensen, A.M.; Perner, A.; Welling, K.L.; Wanscher, M.; Larsen, C.F.; Ostrowski, S.R. Disseminated intravascular coagulation or acute coagulopathy of trauma shock early after trauma? An observational study. Crit. Care 2011, 15, R272. [Google Scholar] [CrossRef] [Green Version]
- Moore, E.E.; Moore, H.B.; Kornblith, L.Z.; Neal, M.D.; Hoffman, M.; Mutch, N.J.; Schöchl, H.; Hunt, B.J.; Sauaia, A. Trauma-induced coagulopathy. Nat. Rev. Dis. Prim. 2021, 7, 30. [Google Scholar] [CrossRef]
- Schöchl, H.; Frietsch, T.; Pavelka, M.; Jámbor, C. Hyperfibrinolysis After Major Trauma: Differential Diagnosis of Lysis Patterns and Prognostic Value of Thrombelastometry. J. Trauma Inj. Infect. Crit. Care 2009, 67, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Huber, D.; Cramer, E.M.; Kaufmann, J.E.; Meda, P.; Massé, J.-M.; Kruithof, E.K.O.; Vischer, U.M. Tissue-type plasminogen activator (t-PA) is stored in Weibel-Palade bodies in human endothelial cells both in vitro and in vivo. Blood 2002, 99, 3637–3645. [Google Scholar] [CrossRef]
- Cap, A.; Hunt, B.J. The pathogenesis of traumatic coagulopathy. Anaesthesia 2015, 70, 96-e34. [Google Scholar] [CrossRef] [PubMed]
- Healy, L.D.; Rigg, R.A.; Griffin, J.H.; McCarty, O.J.T. Regulation of immune cell signaling by activated protein C. J. Leukoc. Biol. 2018, 103, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Davenport, R.A.; Guerreiro, M.M.; Frith, D.; Rourke, B.C.; Platton, B.S.; Cohen, M.M.; Pearse, R.; Thiemermann, C.; Brohi, M.K. Activated Protein C Drives the Hyperfibrinolysis of Acute Traumatic Coagulopathy. Anesthesiology 2017, 126, 115–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iba, T.; Nagakari, K. The effect of plasma-derived activated protein C on leukocyte cell-death and vascular endothelial damage. Thromb. Res. 2015, 135, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Johnson, T.A.; Duru, N.; Buzza, M.S.; Pawar, N.R.; Sarkar, R.; Antalis, T.M. Fibrinolysis and Inflammation in Venous Thrombus Resolution. Front. Immunol. 2019, 10, 1348. [Google Scholar] [CrossRef] [Green Version]
- Schwameis, M.; Schober, A.; Schoergenhofer, C.; Sperr, W.R.; Schöchl, H.; Janata-Schwatczek, K.; Kürkciyan, E.I.; Sterz, F.; Jilma, B. Asphyxia by Drowning Induces Massive Bleeding Due to Hyperfibrinolytic Disseminated Intravascular Coagulation. Crit. Care Med. 2015, 43, 2394–2402. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, T.H.C.; Marques, P.E.; Proost, P.; Teixeira, M.M.M. Neutrophils: A cornerstone of liver ischemia and reperfusion injury. Lab. Investig. 2018, 98, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Adams, S.A.; Kelly, S.L.; Kirsch, R.E.; Robson, S.C.; Shephard, E.G. Role of neutrophil membrane proteases in fibrin degradation. Blood Coagul. Fibrinolysis 1995, 6, 693–702. [Google Scholar] [CrossRef]
- Johansson, P.; Stensballe, J.; Ostrowski, S. Shock induced endotheliopathy (SHINE) in acute critical illness—A unifying pathophysiologic mechanism. Crit. Care 2017, 21, 25. [Google Scholar] [CrossRef]
- Hofmann, N.; Zipperle, J.; Brettner, F.; Jafarmadar, M.; Ashmwe, M.; Keibl, C.; Ponschab, M.; Kipman, U.; Bahrami, A.; Redl, H.; et al. Effect of Coagulation Factor Concentrates on Markers of Endothelial Cell Damage in Experimental Hemorrhagic Shock. Shock 2019, 52, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Viersen, V.; Greuters, S.; Korfage, A.; Van der Rijst, C.; Van Bochove, V.; Nanayakkara, P.; Vandewalle, E.; Boer, C. Hyperfibrinolysis in out of hospital cardiac arrest is associated with markers of hypoperfusion. Resuscitation 2012, 83, 1451–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menges, T.; Engel, J.; Welters, I.; Wagner, R.M.; Little, S.; Ruwoldt, R.; Wollbrueck, M.; Hempelmann, G. Changes in blood lymphocyte populations after multiple trauma: Association with post-traumatic complications. Crit. Care Med. 1999, 27, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.S.; Siritongtaworn, P.; Pattanapanyasat, K.; Thavichaigarn, P.; Kongcharoen, P.; Jiarakul, N.; Tongtawe, P.; Yongvanitchit, K.; Komoltri, C.; Dheeradhada, C.; et al. Lymphocyte activation after nonthermal trauma. Br. J. Surg. 2000, 87, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Machovic, R.; Himer, A.; Owen, W.G. Neutrophil proteases in plasminogen activation. Blood Coag Fibrinolysis 1990, 1, 273–277. [Google Scholar] [CrossRef]
- Hirose, T.; Hamaguchi, S.; Matsumoto, N.; Irisawa, T.; Seki, M.; Tasaki, O.; Hosotsubo, H.; Yamamoto, N.; Yamamoto, K.; Akeda, Y.; et al. Presence of Neutrophil Extracellular Traps and Citrullinated Histone H3 in the Bloodstream of Critically Ill Patients. PLoS ONE 2014, 9, e111755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, P.; Windeløv, N.; Rasmussen, L.S.; Sørensen, A.; Ostrowski, S.R. Blood levels of histone-complexed DNA fragments are associated with coagulopathy, inflammation and endothelial damage early after trauma. J. Emergencies Trauma Shock 2013, 6, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Mauracher, L.M.; Buchtele, N.; Schörgenhofer, C.; Weiser, C.; Herkner, H.; Merrelaar, A.; Spiel, A.O.; Hell, L.; Ay, C.; Pabinger, I.; et al. Increased Citrullinated Histone H3 Levels in the Early Post-Resuscitative Period Are Associated with Poor Neurologic Function in Cardiac Arrest Survivors-A Prospective Observational Study. J. Clin. Med. 2019, 8, 1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangold, A.; Alias, S.; Scherz, T.; Hofbauer, T.; Jakowitsch, J.; Panzenböck, A.; Simon, D.; Laimer, D.; Bangert, C.; Kammerlander, A.; et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ. Res. 2015, 116, 1182–1192. [Google Scholar] [CrossRef] [Green Version]
- Massberg, S.; Grahl, L.; von Bruehl, M.L.; Manukyan, D.; Pfeiler, S.; Goosmann, C.; Brinkmann, V.; Lorenz, M.; Bidzhekov, K.; Khandagale, A.B.; et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 2010, 16, 887–896. [Google Scholar] [CrossRef]
- Darbousset, R.; Delierneux, C.; Mezouar, S.; Hego, A.; Lecut, C.; Guillaumat, I.; Riederer, M.A.; Evans, R.J.; Dignat-George, F.; Panicot-Dubois, L.; et al. P2X1 expressed on polymorphonuclear neutrophils and platelets is required for thrombosis in mice. Blood 2014, 124, 2575–2585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, S.F.; Hendricks, B.D.; Edwards, D.R.; Bastawrous, S.S.; Roberts, G.E.; Middleton, J.F. Mild episodes of tourniquet-induced forearm ischaemia-reperfusion injury results in leukocyte activation and changes in inflammatory and coagulation markers. J. Inflamm. 2007, 4, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bro-Jeppesen, J.; Kjaergaard, J.; Stammet, P.; Wise, M.P.; Hovdenes, J.; Åneman, A.; Horn, J.; Devaux, Y.; Erlinge, D.; Gasche, Y.; et al. TTM-Trial Investigators. Predictive value of interleukin-6 in post-cardiac arrest patients treated with targeted temperature management at 33 °C or 36 °C. Resuscitation 2016, 98, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Weichselbaum, N.; Oberladstätter, D.; Schlimp, C.J.; Zipperle, J.; Voelckel, W.; Grottke, O.; Zimmermann, G.; Osuchowski, M.; Schöchl, H. High Interleukin-6 Plasma Concentration upon Admission Is Predictive of Massive Transfusion in Severely Injured Patients. J. Clin. Med. 2021, 10, 2268. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Gando, S.; Ono, Y.; Maekawa, K.; Katabami, K.; Hayakawa, M.; Sawamura, A. Disseminated intravascular coagulation with the fibrinolytic phenotype predicts the outcome of patients with out-of-hospital cardiac arrest. Thromb. J. 2016, 14, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchtele, N.; Schörgenhofer, C.; Spiel, A.O.; Jilma, B.; Schwameis, M. Increased Fibrinolysis as a Specific Marker of Poor Outcome After Cardiac Arrest. Crit. Care Med. 2018, 46, e995–e1001. [Google Scholar] [CrossRef]
ALL | non-HF | HF | p-Value | Summary | |
---|---|---|---|---|---|
Age (years) | 66 (58–71.5) | 64 (53.5–71.5) | 67 (60–72) | 0.6406 | ns |
ROSC (yes/no) | 19/22 | 13/12 | 10/6 | 0.5224 | ns |
Bystander CPR (yes/no) | 29/12 | 19/6 | 10/6 | 0.485 | ns |
sTM (ng/mL) | 38.13 (30.32–47.98) | 36.55 (31.09–45.04) | 41.49 (29.01–63.04) | 0.4079 | ns |
APC–PCI (ng/mL) | 9.96 (6.4–43.35) | 8.33 (5.36–15.42) | 15.83 (8.553–72.7) | 0.0367 | * |
TAT (uG/mL) | 122.8 (50.45–261.7) | 76.1 (38.8–225.2) | 180.7 (95.28–297) | 0.0837 | ns |
D-dimer (mg/L) | 7.7 (1.4–23.95) | 2.4 (0.65–17) | 14.9 (6.65–59.55) | 0.014 | * |
PAP (mg/mL) | 16,746 (1349–53,232) | 8057 (546–19,099) | 39,790 (22347–118,289) | 0.0003 | *** |
IL-6 (pg/mL) | 18.7 (11.55–37.3) | 18.7 (9.95–33.15) | 18.55 (14.05–44.59) | 0.4872 | ns |
t-PA activity (U/mL) | 8.532 (0.3005–18.09) | 4.82 (0.1662–8.712) | 16.86 (12.44–30.45) | 0.0005 | *** |
t-PA antigen (ng/mL) | 78.3 (54.88–98.28) | 77.41 (49.01–94.96) | 85.73 (62.41–119.1) | 0.3073 | ns |
PAI-1 antigen (ng/mL) | 173.1 (90.59–325.8) | 168 (91.73–225.1) | 203.4 (58.62–348) | 0.7662 | ns |
t-PA–PAI-1 complex (ng/mL) | 54.47 (34.54–96.91) | 67.82 (39.5–129.9) | 41.12 (30.88–55.07) | 0.0373 | * |
PMN Elastase (ng/mL) | 178.5 (115.5–347.5) | 170 (104.6–320.4) | 230.9 (126.9–455.3) | 0.2593 | ns |
hcDNA (OD) | 1.158 (0.413–2.018) | 1.016 (0.3464–1.67) | 1.466 (0.7427–2.272) | 0.2268 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zipperle, J.; Ziegler, B.; Schöchl, H.; Voelckel, W.; Dungel, P.; Cadamuro, J.; Osuchowski, M.; Schlimp, C.J.; Oberladstätter, D. Conventional and Pro-Inflammatory Pathways of Fibrinolytic Activation in Non-Traumatic Hyperfibrinolysis. J. Clin. Med. 2022, 11, 7305. https://doi.org/10.3390/jcm11247305
Zipperle J, Ziegler B, Schöchl H, Voelckel W, Dungel P, Cadamuro J, Osuchowski M, Schlimp CJ, Oberladstätter D. Conventional and Pro-Inflammatory Pathways of Fibrinolytic Activation in Non-Traumatic Hyperfibrinolysis. Journal of Clinical Medicine. 2022; 11(24):7305. https://doi.org/10.3390/jcm11247305
Chicago/Turabian StyleZipperle, Johannes, Bernhard Ziegler, Herbert Schöchl, Wolfgang Voelckel, Peter Dungel, Janne Cadamuro, Marcin Osuchowski, Christoph J. Schlimp, and Daniel Oberladstätter. 2022. "Conventional and Pro-Inflammatory Pathways of Fibrinolytic Activation in Non-Traumatic Hyperfibrinolysis" Journal of Clinical Medicine 11, no. 24: 7305. https://doi.org/10.3390/jcm11247305