Intraocular Pressure Fluctuation in Primary Open-Angle Glaucoma with Canaloplasty and Microcatheter Assisted Trabeculotomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Aqueous Vein Examination
2.3. Blood Reflux into the SC
2.4. Postural IOP Change
2.5. 24-h IOP Monitoring
2.6. Statistical Analysis
3. Results
3.1. Demographic and Baseline Characteristics of the Subjects
3.2. Aqueous Vein Examinations
3.3. Blood Reflux into the SC
3.4. Postural IOP Changes
3.5. 24-h IOP Monitoring
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: A review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhartiya, S.; Dhingra, D.; Shaarawy, T. Revisiting Results of Conventional Surgery: Trabeculectomy, Glaucoma Drainage Devices, and Deep Sclerectomy in the Era of MIGS. J. Curr. Glaucoma Pract. 2019, 13, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Hirooka, K.; Tenkumo, K.; Nitta, E.; Sato, S. Correlation between Intraocular Pressure Fluctuation with Postural Change and Postoperative Intraocular Pressure in Relation to the Time Course after Trabeculectomy. J. Ophthalmol. 2014, 2014, 801967. [Google Scholar] [CrossRef] [PubMed]
- Pahlitzsch, M.; Klamann, M.K.; Pahlitzsch, M.L.; Gonnermann, J.; Torun, N.; Bertelmann, E. Is there a change in the quality of life comparing the micro-invasive glaucoma surgery (MIGS) and the filtration technique trabeculectomy in glaucoma patients? Graefes Arch Clin. Exp. Ophthalmol. 2017, 255, 351–357. [Google Scholar] [CrossRef]
- Agrawal, P.; Bradshaw, S.E. Systematic Literature Review of Clinical and Economic Outcomes of Micro-Invasive GlaucomaSurgery (MIGS) in Primary Open-Angle Glaucoma. Phthalmol. Ther. 2018, 7, 49–73. [Google Scholar] [CrossRef]
- Higginbotham, E.J.; Alexis, D. Is Newer Necessarily Better? The Evolution of Incisional Glaucoma Surgery Over the Last 100 Years. Am. J. Ophthalmol. 2018, 191, xxv–xxix. [Google Scholar] [CrossRef]
- Lavia, C.; Dallorto, L.; Maule, M.; Ceccarelli, M.; Fea, A.M. Minimally-invasive glaucoma surgeries (MIGS) for open angle glaucoma: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0183142. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, N.L. Progression on canaloplasty for primary open angle glaucoma. Int. J. Ophthalmol. 2019, 12, 1629–1633. [Google Scholar] [CrossRef]
- Byszewska, A.; Konopińska, J.; Kicińska, A.K.; Mariak, Z.; Rękas, M. Canaloplasty in the Treatment of Primary Open-Angle Glaucoma: Patient Selection and Perspectives. Clin. Ophthalmol. 2019, 13, 2617–2629. [Google Scholar] [CrossRef]
- Lim, M.E.; Dao, J.B.; Freedman, S.F. 360-Degree Trabeculotomy for Medically Refractory Glaucoma Following Cataract Surgery and Juvenile Open-Angle Glaucoma. Am. J. Ophthalmol. 2017, 175, 1–7. [Google Scholar] [CrossRef]
- Samuelson, T.W.; Sarkisian, S.R., Jr.; Lubeck, D.M.; Stiles, M.C.; Duh, Y.J.; Romo, E.A.; Giamporcaro, J.E.; Hornbeak, D.M.; Katz, L.J.; Bartlett, W.; et al. Prospective, Randomized, Controlled Pivotal Trial of an Ab Interno Implanted Trabecular Micro-Bypass in Primary Open-Angle Glaucoma and Cataract: Two-Year Results. Ophthalmology 2019, 126, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, M.J.; Supnet, R.A.; Ahmed, I.I.K. Circumferential viscodilation of Schlemm’s canal for open-angle glaucoma: Ab-interno vs ab-externo canaloplasty with tensioning suture. Clin. Ophthalmol. 2018, 12, 2493–2498. [Google Scholar] [CrossRef] [Green Version]
- Vahabikashi, A.; Gelman, A.; Dong, B.; Gong, L.; Cha, E.D.K.; Schimmel, M.; Tamm, E.R.; Perkumas, K.; Stamer, W.D.; Sun, C.; et al. Increased stiffness and flow resistance of the inner wall of Schlemm’s canal in glaucomatous human eyes. Proc. Natl. Acad. Sci. USA 2019, 116, 26555–26563. [Google Scholar] [CrossRef]
- Li, G.; Lee, C.; Agrahari, V.; Wang, K.; Navarro, I.; Sherwood, J.M.; Crews, K.; Farsiu, S.; Gonzalez, P.; Lin, C.W.; et al. In vivo measurement of trabecular meshwork stiffness in a corticosteroid-induced ocularhypertensive mouse model. Proc. Natl. Acad. Sci. USA 2019, 116, 1714–1722. [Google Scholar] [CrossRef] [Green Version]
- Carreon, T.A.; Edwards, G.; Wang, H.; Bhattacharya, S.K. Segmental outflow of aqueous humor in mouse and human. Exp. Eye Res. 2017, 158, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Rekas, M.; Danielewska, M.E.; Byszewska, A.; Petz, K.; Wierzbowska, J.; Wierzbowski, R.; Iskander, D.R. Assessing Efficacy of Canaloplasty Using Continuous 24-Hour Monitoring of Ocular Dimensional Changes. Invest. Ophthalmol. Vis. Sci. 2016, 57, 2533–2542. [Google Scholar] [CrossRef] [Green Version]
- Tojo, N.; Abe, S.; Miyakoshi, M.; Hayashi, A. Comparison of intraocular pressure fluctuations before and after ab interno trabeculectomy in pseudoexfoliation glaucoma patients. Clin. Ophthalmol. 2017, 11, 1667–1675. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, M.; Martin, E.; Jamil, A. Pulsatile flow into the aqueous veins: Manifestations in normal and glaucomatous eyes. Exp. Eye Res. 2011, 92, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Khatib, T.Z.; Meyer, P.A.R.; Lusthaus, J.; Manyakin, I.; Mushtaq, Y.; Martin, K.R. Hemoglobin Video Imaging Provides Novel In Vivo High-Resolution Imaging and Quantification of Human Aqueous Outflow in Patients with Glaucoma. Ophthalmol. Glaucoma 2019, 2, 327–335. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, H.; Yin, J.; Zhang, X.; Li, M.; Xin, C.; Chen, X.; Wang, N. Outcomes of microcatheter-assisted trabeculotomy following failed angle surgeries in primary congenital glaucoma. Eye 2017, 31, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Arora, N.; McLaren, J.W.; Hodge, D.O.; Sit, A.J. Effect of Body Position on Epsicleral Venous Pressure in Healthy Subjects. Invest. Ophthalmol. Vis. Sci. 2017, 58, 5151–5156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dastiridou, A.I.; Ginis, H.; Tsilimbaris, M.; Karyotakis, N.; Detorakis, E.; Siganos, C.; Cholevas, P.; Tsironi, E.E.; Pallikaris, I.G. Ocular rigidity, ocular pulse amplitude, and pulsatile ocular blood flow: The effect of axial length. Invest. Ophthalmol. Vis. Sci. 2013, 54, 2087–2092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, E.S.; Mulugeta, L.; Feola, A.; Raykin, J.; Myers, J.G.; Samuels, B.C.; Ethier, C.R. The impact of ocular hemodynamics and intracranial pressure on intraocular pressure during acute gravitational changes. J. Appl. Physiol. 2017, 123, 352–363. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, J.M., Jr.; Ko, M.K.; Hong, Y.K.; Weigert, R.; Tan, J.C.H. Deep tissue analysis of distal aqueous drainage structures and contractile features. Sci. Rep. 2017, 7, 17071. [Google Scholar] [CrossRef] [Green Version]
- Waxman, S.; Wang, C.; Dang, Y.; Hong, Y.; Esfandiari, H.; Shah, P.; Lathrop, K.L.; Loewen, R.T.; Loewen, N.A. Structure-Function Changes of the Porcine Distal Outflow Tract in Response to Nitric Oxide. Invest. Ophthalmol. Vis. Sci. 2018, 59, 4886–4895. [Google Scholar] [CrossRef] [Green Version]
- Göbel, K.; Rüfer, F.; Erb, C. Physiology of aqueous humor formation, diurnal fluctuation of intraocular pressure and its significance for glaucoma. Klin. Monbl. Augenheilkd. 2011, 228, 104–108. [Google Scholar] [CrossRef]
- Wang, N.L.; Hao, J.; Zhen, Y.; Liu, J.H.; Li, S.Z.; Wang, H.; Chen, H.; Peng, X.X.; Han, W.; Fan, S.J.; et al. A Population-based Investigation of Circadian Rhythm of Intraocular Pressure in Habitual Position Among Healthy Subjects: The Handan Eye Study. J. Glaucoma 2016, 25, 584–589. [Google Scholar] [CrossRef]
- Aref, A.A. What happens to glaucoma patients during sleep? Curr. Opin. Ophthalmol. 2013, 24, 162–166. [Google Scholar] [CrossRef]
- Konstas, A.G.; Kahook, M.Y.; Araie, M.; Katsanos, A.; Quaranta, L.; Rossetti, L.; Holló, G.; Detorakis, E.T.; Oddone, F.; Mikropoulos, D.G.; et al. Diurnal and 24-h Intraocular Pressures in Glaucoma: Monitoring Strategies and Impact on Prognosis and Treatment. Adv. Ther. 2018, 35, 1775–1804. [Google Scholar] [CrossRef]
- Quaranta, L.; Hitchings, R.A.; Quaranta, C.A. Ab-interno goniotrabeculotomy versus mitomycin C trabeculectomy for adult open-angle glaucoma: A 2-year randomized clinical trial. Ophthalmology 1999, 106, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, M.; Ando, A.; Minamino, K.; Matsuyama, K.; Shima, C.; Matsumura, M.; Nishimura, T. Dampening of diurnal intraocular pressure fluctuation by combined trabeculotomy and sinusotomy in eyes with open-angle glaucoma. J. Glaucoma 2013, 22, 290–293. [Google Scholar] [CrossRef] [PubMed]
Normal | MC | MAT | p | |
---|---|---|---|---|
No. of eyes | 20 | 25 | 30 | |
Age * (year), | 41.2 ± 12.9 | 40.6 ± 12.0 | 41.0 ± 8.3 | 0.942 |
Gender (M/F) | 12/8 | 14/11 | 18/12 | 0.406 |
OD/OS | 14/6 | 15/10 | 14/16 | 0.199 |
Intervals (month) | 18.8 ± 4.0 | 18.5 ± 3.1 | 0.527 | |
Pre-IOP * (mmHg) | 25.9 ± 5.0 | 24.4 ± 5.6 | 0.261 | |
No. medication * | 3.0 ± 0.5 | 3.1 ± 0.6 | 0.621 | |
Post-IOP*visit1 (mmHg) | 15.4 ± 1.6 | 14.8 ± 2.4 | 14.6 ± 2.3 | 0.452 |
Normal | Canaloplasty | MAT | |
---|---|---|---|
IOP 2:00 am | 15.4 ± 2.2 | 17.4 ± 3.1 | 15.0 ± 2.9 |
IOP 6:00 am | 14.9 ± 2.0 | 16.7 ± 2.3 | 15.3 ± 3.0 |
IOP 8:00 am | 14.7 ± 2.0 | 14.9 ± 2.1 | 15.0 ± 2.2 |
IOP 10:00 am | 14.7 ± 2.2 | 14.5 ± 2.3 | 14.1 ± 2.1 |
IOP 2:00 pm | 15.5 ± 1.7 | 14.8 ± 2.6 | 14.0 ± 2.3 |
IOP 6:00 pm | 14.8 ± 2.0 | 14.8 ± 2.2 | 14.3 ± 2.3 |
IOP 10:00 pm | 14.0 ± 1.9 | 15.0 ± 2.2 | 14.1 ± 2.3 |
IOP max | 17.6 ± 1.9 | 18.6 ± 2.4 | 16.4 ± 2.4 |
IOP min | 13.4 ± 1.7 | 13.3 ± 1.9 | 13.0 ± 2.1 |
ΔIOP | 4.2 ± 1.2 | 5.2 ± 1.6 | 3.4 ± 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, C.; Wang, N.; Wang, H. Intraocular Pressure Fluctuation in Primary Open-Angle Glaucoma with Canaloplasty and Microcatheter Assisted Trabeculotomy. J. Clin. Med. 2022, 11, 7279. https://doi.org/10.3390/jcm11247279
Xin C, Wang N, Wang H. Intraocular Pressure Fluctuation in Primary Open-Angle Glaucoma with Canaloplasty and Microcatheter Assisted Trabeculotomy. Journal of Clinical Medicine. 2022; 11(24):7279. https://doi.org/10.3390/jcm11247279
Chicago/Turabian StyleXin, Chen, Ningli Wang, and Huaizhou Wang. 2022. "Intraocular Pressure Fluctuation in Primary Open-Angle Glaucoma with Canaloplasty and Microcatheter Assisted Trabeculotomy" Journal of Clinical Medicine 11, no. 24: 7279. https://doi.org/10.3390/jcm11247279
APA StyleXin, C., Wang, N., & Wang, H. (2022). Intraocular Pressure Fluctuation in Primary Open-Angle Glaucoma with Canaloplasty and Microcatheter Assisted Trabeculotomy. Journal of Clinical Medicine, 11(24), 7279. https://doi.org/10.3390/jcm11247279