Myeloperoxidase Levels in Pericardial Fluid Is Independently Associated with Postoperative Atrial Fibrillation after Isolated Coronary Artery Bypass Surgery
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Collection and Storage of Serum and Pericardial Fluid Samples
2.3. Luminex Assays
2.4. Evaluation of POAF
2.5. Statistical Analysis
3. Results
3.1. Baseline Clinical Characteristics of the Study Population
3.2. Pericardial Fluid MPO and Serum MPO
3.3. Increased Intraoperative Pericardial Fluid MPO Levels in Subjects with POAF
3.4. Association between Intraoperative Pericardial Fluid MPO Levels and POAF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Perrier, S.; Meyer, N.; Hoang Minh, T.; Announe, T.; Bentz, J.; Billaud, P.; Mommerot, A.; Mazzucotelli, J.P.; Kindo, M. Predictors of Atrial Fibrillation After Coronary Artery Bypass Grafting: A Bayesian Analysis. Ann. Thorac. Surg. 2017, 103, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorén, E.; Hellgren, L.; Ståhle, E. High incidence of atrial fibrillation after coronary surgery. Interact. Cardiovasc. Thorac. Surg. 2016, 22, 176–180. [Google Scholar] [CrossRef] [Green Version]
- Butt, J.H.; Olesen, J.B.; Gundlund, A.; Kümler, T.; Olsen, P.S.; Havers-Borgersen, E.; Aagaard, D.T.; Gislason, G.H.; Torp-Pedersen, C.; Køber, L.; et al. Long-term Thromboembolic Risk in Patients with Postoperative Atrial Fibrillation After Left-Sided Heart Valve Surgery. JAMA Cardiol. 2019, 4, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 42, 373–498. [Google Scholar]
- Gillinov, A.M.; Bagiella, E.; Moskowitz, A.J.; Raiten, J.M.; Groh, M.A.; Bowdish, M.E.; Ailawadi, G.; Kirkwood, K.A.; Perrault, L.P.; Parides, M.K.; et al. Rate Control versus Rhythm Control for Atrial Fibrillation after Cardiac Surgery. N. Engl. J. Med. 2016, 374, 1911–1921. [Google Scholar] [CrossRef]
- Dobrev, D.; Aguilar, M.; Heijman, J.; Guichard, J.-B.; Nattel, S. Postoperative atrial fibrillation: Mechanisms, manifestations and management. Nat. Rev. Cardiol. 2019, 16, 417–436. [Google Scholar] [CrossRef]
- Lin, M.-H.; Kamel, H.; Singer, D.E.; Wu, Y.-L.; Lee, M.; Ovbiagele, B. Perioperative/Postoperative Atrial Fibrillation and Risk of Subsequent Stroke and/or Mortality. Stroke 2019, 50, 1364–1371. [Google Scholar] [PubMed]
- Eikelboom, R.; Sanjanwala, R.; Le, M.L.; Yamashita, M.H.; Arora, R.C. Post-operative atrial fibrillation after cardiac surgery: A systematic review and meta-analysis. Ann. Thorac. Surg. 2021, 111, 544–554. [Google Scholar] [CrossRef]
- Hoit, B.D. Pathophysiology of the Pericardium. Prog. Cardiovasc. Dis. 2017, 59, 341–348. [Google Scholar] [CrossRef]
- Stewart, D.J.; Cernacek, P.; Costello, K.B.; Rouleau, J.L. Elevated endothelin-1 in heart failure and loss of normal response to postural change. Circulation 1992, 85, 510–517. [Google Scholar]
- Hasdai, D.; Barak, V.; Leibovitz, E.; Herz, I.; Sclarovsky, S.; Eldar, M.; Scheinowitz, M. Serum basic fibroblast growth factor levels in patients with ischemic heart disease. Int. J. Cardiol. 1997, 59, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Winterbourn, C.C.; Kettle, A.J.; Hampton, M.B. Reactive Oxygen Species and Neutrophil Function. Annu. Rev. Biochem. 2016, 85, 765–792. [Google Scholar] [CrossRef] [PubMed]
- Fontes, M.L.; Mathew, J.P.; Rinder, H.M.; Zelterman, D.; Smith, B.R.; Rinder, C.S. Atrial Fibrillation After Cardiac Surgery/Cardiopulmonary Bypass Is Associated with Monocyte Activation. Anesth. Analg. 2005, 101, 17–23. [Google Scholar] [CrossRef]
- Ndrepepa, G. Myeloperoxidase—A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin. Chim. Acta 2019, 493, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Baldus, S.; Heeschen, C.; Meinertz, T.; Zeiher, A.M.; Eiserich, J.P.; Münzel, T.; Simoons, M.L.; Hamm, C.W. Myeloperoxidase Serum Levels Predict Risk in Patients with Acute Coronary Syndromes. Circulation 2003, 108, 1440–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Yu, M.; Wu, Y.; Wu, F.; Feng, X.; Zhao, H. Myeloperoxidase in the pericardial fluid improves the performance of prediction rules for postoperative atrial fibrillation. J. Thorac. Cardiovasc. Surg. 2021; in press. [Google Scholar] [CrossRef]
- Leligdowicz, A.; Conroy, A.L.; Hawkes, M.; Zhong, K.; Lebovic, G.; Matthay, M.A.; Kain, K.C. Validation of two multiplex platforms to quantify circulating markers of inflammation and endothelial injury in severe infection. PLoS ONE 2017, 12, e0175130. [Google Scholar] [CrossRef] [Green Version]
- Manghelli, J.L.; Kelly, M.O.; Carter, D.I.; Gauthier, J.M.; Scozzi, D.; Lancaster, T.S.; MacGregor, R.M.; Khiabani, A.J.; Schuessler, R.B.; Gelman, A.E.; et al. Pericardial Mitochondrial DNA Levels Are Associated with Atrial Fibrillation After Cardiac Surgery. Ann. Thorac. Surg. 2021, 111, 1593–1600. [Google Scholar] [CrossRef]
- Shenje, J.; Lai, R.P.; Ross, I.L.; Mayosi, B.M.; Wilkinson, R.J.; Ntsekhe, M.; Wilkinson, K.A. Effect of prednisolone on inflammatory markers in pericardial tuberculosis: A pilot study. IJC Heart Vasc. 2017, 18, 104–108. [Google Scholar] [CrossRef]
- Kirchhof, P.; Benussi, S.; Kotecha, D.; Ahlsson, A.; Atar, D.; Casadei, B.; Castella, M.; Diener, H.C.; Heidbuchel, H.; Hendriks, J.; et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 2016, 37, 2893–2962. [Google Scholar] [CrossRef] [Green Version]
- Lonjon, G.; Porcher, R.; Ergina, P.; Fouet, M.; Boutron, I. Potential Pitfalls of Reporting and Bias in Observational Studies with Propensity Score Analysis Assessing a Surgical Procedure: A Methodological Systematic Review. Ann Surg. 2017, 265, 901–909. [Google Scholar] [PubMed]
- Borger, M.A.; Mansour, M.C.; Levine, R.A. Atrial Fibrillation and Mitral Valve Prolapse: Time to Intervene? J. Am. Coll. Cardiol. 2019, 73, 275–277. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.M.; Kattach, H.; Ratnatunga, C.; Pillai, R.; Channon, K.M.; Casadei, B. Association of Atrial Nicotinamide Adenine Dinucleotide Phosphate Oxidase Activity With the Development of Atrial Fibrillation After Cardiac Surgery. J. Am. Coll. Cardiol. 2008, 51, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Mathew, J.P.; Fontes, M.L.; Tudor, I.C.; Ramsay, J.; Duke, P.; Mazer, C.D.; Barash, P.G.; Hsu, P.H.; Mangano, D.T. A Multicenter Risk Index for Atrial Fibrillation After Cardiac Surgery. JAMA 2004, 291, 1720–1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banach, M.; Rysz, J.; Drozdz, J.A.; Okonski, P.; Misztal, M.; Barylski, M.; Irzmanski, R.; Zaslonka, J. Risk factors of atrial fibrillation following coronary artery bypass grafting: A preliminary report. Circ. J. 2006, 70, 438–441. [Google Scholar] [CrossRef] [Green Version]
- Echahidi, N.; Mohty, D.; Pibarot, P.; Després, J.-P.; O’Hara, G.; Champagne, J.; Philippon, F.; Daleau, P.; Voisine, P.; Mathieu, P. Obesity and Metabolic Syndrome Are Independent Risk Factors for Atrial Fibrillation After Coronary Artery Bypass Graft Surgery. Circulation 2007, 116, I213–I219. [Google Scholar] [CrossRef] [Green Version]
- Evogiatzidis, K.; Zarogiannis, S.G.; Aidonidis, I.; Solenov, E.I.; Emolyvdas, P.-A.; Gourgoulianis, K.I.; Ehatzoglou, C. Physiology of pericardial fluid production and drainage. Front. Physiol. 2015, 6, 62. [Google Scholar]
- Burgess, L. Biochemical analysis of pleural, peritoneal and pericardial effusions. Clin. Chim. Acta 2004, 343, 61–84. [Google Scholar] [CrossRef]
- Nakamura, T.; Azuma, A.; Sawada, T.; Sakamoto, K.; Yamano, T.; Yaku, H.; Matsubara, H. Brain natriuretic peptide concentration in pericardial fluid is independently associated with atrial fibrillation after off-pump coronary artery bypass surgery. Coron. Artery Dis. 2007, 18, 253–258. [Google Scholar]
- Liu, Y.; Wu, F.; Wu, Y.; Elliott, M.; Zhou, W.; Deng, Y.; Ren, D.; Zhao, H. Mechanism of IL-6-related spontaneous atrial fibrillation after coronary artery grafting surgery: IL-6 knockout mouse study and human observation. Transl. Res. 2021, 233, 16–31. [Google Scholar] [CrossRef]
- Fujita, M.; Komeda, M.; Hasegawa, K.; Kihara, Y.; Nohara, R.; Sasayama, S. Pericardial fluid as a new material for clinical heart research. Int. J. Cardiol. 2001, 77, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Wazni, O.M.; Martin, D.O.; Marrouche, N.F.; Latif, A.A.; Ziada, K.; Shaaraoui, M.; Almahameed, S.; Schweikert, R.A.; Saliba, W.I.; Gillinov, A.M.; et al. Plasma B-Type Natriuretic Peptide Levels Predict Postoperative Atrial Fibrillation in Patients Undergoing Cardiac Surgery. Circulation 2004, 110, 124–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.-Y.; Hou, H.-T.; Chen, H.-X.; Liu, X.-C.; Wang, J.; Yang, Q.; He, G.-W. Preoperative plasma biomarkers associated with atrial fibrillation after coronary artery bypass surgery. J. Thorac. Cardiovasc. Surg. 2021, 162, 851–863.e3. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Yamashita, K.; Sharma, V.; Ranjan, R.; Selzman, C.H.; Dosdall, D.J. Perioperative Biomarkers Predicting Postoperative Atrial Fibrillation Risk After Coronary Artery Bypass Grafting: A Narrative Review. J. Cardiothorac. Vasc. Anesth. 2020, 34, 1933–1941. [Google Scholar] [CrossRef]
- Anatoĺevna, R.O.; Veniaminovich, F.O.; Mikhaylovich, K.S. Predictors of new-onset atrial fibrillation in elderly patients with coronary artery disease after coronary artery bypass graft. J. Geriatr. Cardiol. 2016, 13, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Paschalis, A.; Tousoulis, D.; Demosthenous, M.; Antonopoulos, A.; Papaioannou, S.; Miliou, A.; Koumallos, N.; Antoniades, C.; Stefanadis, C. Pre-operative inflammation and post-operative atrial fibrillation in coronary artery bypass surgery. Int. J. Cardiol. 2014, 173, 327–328. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, V.; Andrié, R.P.; Rudolph, T.K.; Friedrichs, K.; Klinke, A.; Hirsch-Hoffmann, B.; Schwoerer, A.P.; Lau, D.; Fu, X.; Klingel, K.; et al. Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nat. Med. 2010, 16, 470–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aratani, Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch. Biochem. Biophys. 2018, 640, 47–52. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Atherosclerosis 2019, 290, 140–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, F.L.; Agarwal, S.K.; Maclehose, R.F.; Soliman, E.Z.; Sharrett, A.R.; Huxley, R.R.; Konety, S.; Ballantyne, C.M.; Alonso, A. Blood lipid levels, lipid-lowering medications, and the incidence. of atrial fibrillation: The atherosclerosis risk in communities study. Circ. Arrhythm. Electrophysiol. 2012, 5, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Aydin, M.; Susam, I.; Kilicaslan, B.; Dereli, M.; Sacar, M.; Ozdogan, O. Serum cholesterol levels and postoperative atrial fibrillation. J. Cardiothorac. Surg. 2014, 9, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tadic, M.; Ivanovic, B.; Zivkovic, N. Predictors of atrial fibrillation following coronary artery bypass surgery. Med. Sci. Monit. 2011, 17, CR48–CR55. [Google Scholar] [CrossRef] [PubMed]
Unmatched | Propensity Score Matched | |||||
---|---|---|---|---|---|---|
POAF | SR | POAF | SR | |||
Variable | (n = 24) | (n = 73) | p value | (n = 20) | (n = 20) | p value |
Age (years) | 64.07 ± 8.48 | 61.24 ± 9.06 | 0.047 | 63.86 ± 5.10 | 62.57 ± 7.77 | 0.468 |
Sex | 0.036 | 1.000 | ||||
Male, n (%) | 19 (79.17) | 60 (82.19) | 15 (75.00) | 15 (75.00) | ||
BMI (kg/m2) | 26.37 ± 3.02 | 25.73 ± 3.12 | 0.195 | 26.51 ± 3.43 | 26.02 ± 2.42 | 0.545 |
Hypertension, n (%) | 19 (79.17) | 45 (61.64) | 0.020 | 14 (70.00) | 12 (60.00) | 0.265 |
Diabetes mellitus, n (%) | 13 (54.17) | 33 (45.20) | 0.239 | 13 (65.00) | 15 (75.00) | 0.593 |
Hyperlipidemia, n (%) | 5 (20.83) | 19 (26.02) | 0.980 | 6 (30.00) | 6 (30.00) | 1.000 |
TG (mmol/L) | 1.71 ± 0.83 | 1.68 ± 0.71 | 0.824 | 1.70 ± 0.75 | 1.70 ± 0.71 | 0.831 |
TC (mmol/L) | 5.03 ± 1.21 | 5.05 ± 1.04 | 0.187 | 5.03 ± 1.35 | 5.05 ± 1.01 | 0.510 |
HDL-C (mmol/L) | 1.01 ± 0.23 | 0.97 ± 0.30 | 0.297 | 1.01 ± 0.23 | 0.97 ± 0.30 | 0.639 |
LDL-C (mmol/L) | 3.20 ± 0.85 | 3.28 ± 0.55 | 0.248 | 3.22 ± 0.75 | 3.24 ± 0.54 | 0.412 |
Lp (a) (mmol/L) | 73.35 (43.20, 103.41) | 87.95 (70.32, 105.59) | 0.238 | 65.47 (43.05, 87.89) | 83.84 (48.45, 119.23) | 0.373 |
LVEF (%) | 58.72 ± 8.18 | 59.98 ± 7.79 | 0.323 | 60.00 ± 7.56 | 59.89 ± 7.66 | 0.958 |
LAD (mm) | 37.27 ± 3.92 | 35.35 ± 4.24 | 0.001 | 37.22 ± 4.34 | 35.55 ± 3.85 | 0.274 |
EuroSCORE II | 5.94 ± 2.09 | 5.41 ± 2.00 | 0.102 | 5.86 ± 1.63 | 5.25 ± 1.48 | 0.150 |
Surgery time (h) | 4.08 (3.83, 4.33) | 3.29 (3.16, 3.42) | 0.675 | 4.08 (3.68, 4.49) | 4.16 (3.91, 4.41) | 0.412 |
Number of grafts | 4.085 (3.838, 3.322) | 4.112 (3.982, 4.243) | 0.015 | 3.61 (3.36, 3.85) | 3.61 (3.30, 3.91) | 0.864 |
Univariate Model | Multiple Model | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p Value | OR | 95% CI | p Value | |
Age (years) | 0.970 | 0.893–1.052 | 0.460 | |||
Sex Male | 1.00 | 0.255–3.926 | 1.000 | |||
BMI (kg/m2) | 1.059 | 0.883–1.269 | 0.538 | 2.926 | 1.029–8.320 | 0.044 |
Hypertension | 1.875 | 0.618–5.690 | 0.267 | |||
Diabetes mellitus | 0.751 | 0.263–2.147 | 0.593 | 34.489 | 1.850–643.095 | 0.017 |
LVEF (%) | 1.002 | 0.934–1.075 | 0.957 | |||
LAD | 1.535 | 1.130–5.251 | 0.525 | |||
EuroSCORE II | 0.098 | 0.011–0.852 | 0.035 | |||
Number of grafts | 2.726 | 1.102–6.743 | 0.030 | |||
MPO | 1.009 | 1.001–1.018 | 0.025 | 1.016 | 1.001–1.031 | 0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yang, Y.; Yang, X.; Hua, K. Myeloperoxidase Levels in Pericardial Fluid Is Independently Associated with Postoperative Atrial Fibrillation after Isolated Coronary Artery Bypass Surgery. J. Clin. Med. 2022, 11, 7018. https://doi.org/10.3390/jcm11237018
Liu Y, Yang Y, Yang X, Hua K. Myeloperoxidase Levels in Pericardial Fluid Is Independently Associated with Postoperative Atrial Fibrillation after Isolated Coronary Artery Bypass Surgery. Journal of Clinical Medicine. 2022; 11(23):7018. https://doi.org/10.3390/jcm11237018
Chicago/Turabian StyleLiu, Yuhua, Yunxiao Yang, Xiubin Yang, and Kun Hua. 2022. "Myeloperoxidase Levels in Pericardial Fluid Is Independently Associated with Postoperative Atrial Fibrillation after Isolated Coronary Artery Bypass Surgery" Journal of Clinical Medicine 11, no. 23: 7018. https://doi.org/10.3390/jcm11237018