Simultaneous Radial and Ipsilateral Ulnar Artery Compression versus Isolated Radial Artery Compression after Conventional Radial Access for Coronary Angiography and/or Intervention: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Search Strategy
2.2. Study Selection
2.3. Data Extraction and Quality Assessment
2.4. Outcome Measures
2.5. Statistical Analysis
3. Results
3.1. Study Characteristics and Bias Assessment
3.2. Heterogeneity and Asymmetry
3.3. Outcomes
3.4. Metaregression Analysis
3.5. Subgroup Analysis
3.6. Sensitivity Analysis
3.7. Trial Sequential Analysis
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rashid, M.; Kwok, C.S.; Pancholy, S.; Chugh, S.; Kedev, S.A.; Bernat, I.; Ratib, K.; Large, A.; Fraser, D.; Nolan, J.; et al. Radial Artery Occlusion After Transradial Interventions: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2016, 5, e002686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhlemann, M.; Möbius-Winkler, S.; Mende, M.; Eitel, I.; Fuernau, G.; Sandri, M.; Adams, V.; Thiele, H.; Linke, A.; Schuler, G.; et al. The Leipzig Prospective Vascular Ultrasound Registry in Radial Artery Catheterization. JACC Cardiovasc. Interv. 2012, 5, 36–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Indolfi, C.; Passafaro, F.; Sorrentino, S.; Spaccarotella, C.; Mongiardo, A.; Torella, D.; Polimeni, A.; Sabatino, J.; Curcio, A.; De Rosa, S. Hand Laser Perfusion Imaging to Assess Radial Artery Patency: A Pilot Study. J. Clin. Med. 2018, 7, 319. [Google Scholar] [CrossRef] [Green Version]
- Scalise, R.F.M.; Salito, A.M.; Polimeni, A.; Garcia-Ruiz, V.; Virga, V.; Frigione, P.; Andò, G.; Tumscitz, C.; Costa, F. Radial Artery Access for Percutaneous Cardiovascular Interventions: Contemporary Insights and Novel Approaches. J. Clin. Med. 2019, 8, 1727. [Google Scholar] [CrossRef] [Green Version]
- Mason, P.J.; Shah, B.; Tamis-Holland, J.E.; Bittl, J.A.; Cohen, M.G.; Safirstein, J.; Drachman, D.E.; Valle, J.A.; Rhodes, D.; Gilchrist, I.C.; et al. An Update on Radial Artery Access and Best Practices for Transradial Coronary Angiography and Intervention in Acute Coronary Syndrome: A Scientific Statement From the American Heart Association. Circ. Cardiovasc. Interv. 2018, 11, e000035. [Google Scholar] [CrossRef] [PubMed]
- Sciahbasi, A.; Rigattieri, S.; Sarandrea, A.; Cera, M.; Di Russo, C.; Fedele, S.; Romano, S.; Penco, M.; Pugliese, F.R. Radial artery occlusion and hand strength after percutaneous coronary procedures: Results of the HANGAR study. Catheter. Cardiovasc. Interv. 2015, 87, 868–874. [Google Scholar] [CrossRef]
- Van Der Heijden, D.J.; Van Leeuwen, M.A.; Ritt, M.J.; Van De Ven, P.M.; Van Royen, N. Chronic radial artery occlusion does not cause exercise induced hand ischemia. J. Interv. Cardiol. 2018, 31, 949–956. [Google Scholar] [CrossRef]
- Avdikos, G.; Karatasakis, A.; Tsoumeleas, A.; Lazaris, E.; Ziakas, A.; Koutouzis, M. Radial artery occlusion after transradial coronary catheterization. Cardiovasc. Diagn. Ther. 2017, 7, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Polimeni, A.; Passafaro, F.; De Rosa, S.; Sorrentino, S.; Torella, D.; Spaccarotella, C.; Mongiardo, A.; Indolfi, C. Clinical and Procedural Outcomes of 5-French versus 6-French Sheaths in Transradial Coronary Interventions. Medicine 2015, 94, e2170. [Google Scholar] [CrossRef]
- Bernat, I.; Aminian, A.; Pancholy, S.; Mamas, M.; Gaudino, M.; Nolan, J.; Gilchrist, I.C.; Saito, S.; Hahalis, G.N.; Ziakas, A.; et al. Best Practices for the Prevention of Radial Artery Occlusion After Transradial Diagnostic Angiography and Intervention. JACC Cardiovasc. Interv. 2019, 12, 2235–2246. [Google Scholar] [CrossRef]
- Rao, S.V.; Tremmel, J.A.; Gilchrist, I.C.; Gulati, R.; Pancholy, S.B. Rebuttal: Response to letter by Chugh S. Regarding “Best practices for transradial angiography and intervention: A consensus statement from the society for cardiovascular angiography and intervention’s transradial working group”. Catheter. Cardiovasc. Interv. 2014, 85, 177. [Google Scholar] [CrossRef] [PubMed]
- Pancholy, S.B.; Bernat, I.; Bertrand, O.F.; Patel, T.M. Prevention of Radial Artery Occlusion After Transradial Catheterization. JACC Cardiovasc. Interv. 2016, 9, 1992–1999. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Hedges, L.V. Distribution Theory for Glass’s Estimator of Effect Size and Related Estimators. J. Educ. Stat. 1981, 6, 107. [Google Scholar] [CrossRef]
- Sidik, K.; Jonkman, J.N. A Note on Variance Estimation in Random Effects Meta-Regression. J. Biopharm. Stat. 2005, 15, 823–838. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.L.; Sutton, A.J.; Jones, D.R.; Abrams, K.R.; Rushton, L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J. Clin. Epidemiology 2008, 61, 991–996. [Google Scholar] [CrossRef]
- Wetterslev, J.; Thorlund, K.; Brok, J.; Gluud, C. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. J. Clin. Epidemiology 2008, 61, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Kang, H. Trial sequential analysis: Novel approach for meta-analysis. Anesthesia Pain Med. 2021, 16, 138–150. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Sethi, N.; Patel, G.A.; Kalisetti, D.; Patel, T.M. Evaluation of the incidence of radial artery occlusion using different introducer sheaths and hemostasis techniques. Catheter. Cardiovasc. Interv. 2022, 100, 387–391. [Google Scholar] [CrossRef]
- Patel, G.; Shah, S.; Patel, B.A.; Patel, T.M. Randomized COmparison of Isolated Radial Artery ComPrEssioN Versus Radial and Ipsilateral Ulnar Artery Compression in Achieving Radial Artery Patency: The OPEN-Radial Trial. J. Invasive Cardiol. 2020, 32, 476–482. [Google Scholar] [PubMed]
- Eid-Lidt, G.; Reyes-Carrera, J.; Farjat-Pasos, J.I.; Saenz, A.L.; Bravo, C.A.; Rangel, S.N.; Salido, D.Z.; Servin, N.S.V.; Soto-López, M.E.; Gaspar, J. Prevention of Radial Artery Occlusion of 3 Hemostatic Methods in Transradial Intervention for Coronary Angiography. JACC Cardiovasc. Interv. 2022, 15, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.A.; Abbas, E.; Bakr, A.H.; Demitry, S.R.; Algowhary, M.I. Prevention of radial artery occlusion by simultaneous ulnar and radial compression (PRO-SURC). A randomized duplex ultrasound follow-up study. Int. J. Cardiol. 2022, 363, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Koutouzis, M.J.; Maniotis, C.D.; Avdikos, G.; Tsoumeleas, A.; Andreou, C.; Kyriakides, Z.S. ULnar Artery Transient Compression Facilitating Radial Artery Patent Hemostasis (ULTRA): A Novel Technique to Reduce Radial Artery Occlusion After Transradial Coronary Catheterization. J. Invasive Cardiol. 2016, 28, 451–454. [Google Scholar]
- Dharma, S.; Kedev, S.; Patel, T.; Gilchrist, I.C.; Rao, S.V. The Predictors of Post-Procedural Arm Pain after Transradial Approach in 1706 Patients Underwent Transradial Catheterization. Cardiovasc. Revascularization Med. 2018, 20, 674–677. [Google Scholar] [CrossRef]
- Aminian, A.; Saito, S.; Takahashi, A.; Bernat, I.; Jobe, R.; Kajiya, T.; Gilchrist, I.; Louvard, Y.; Kiemeneij, F.; Van Royen, N.; et al. Comparison of a new slender 6 Fr sheath with a standard 5 Fr sheath for transradial coronary angiography and intervention: RAP and BEAT (Radial Artery Patency and Bleeding, Efficacy, Adverse evenT), a randomised multicentre trial. EuroIntervention 2017, 13, e549–e556. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wu, S.-Y.; Yin, D.; Feng, L.; Song, W.-H.; Wang, H.-J.; Zhu, C.-G.; Dou, K.-F. Effect of Thin-Walled Radial Sheath for Large-Bore Access On Reducing Periprocedural Radial Artery Occlusion Following Complex PCI: The REDUCE-RAO Randomized Trial. Rev. Cardiovasc. Med. 2022, 23, 329. [Google Scholar] [CrossRef]
- Ferrante, G.; Condello, F.; Rao, S.V.; Maurina, M.; Jolly, S.; Stefanini, G.G.; Reimers, B.; Condorelli, G.; Lefèvre, T.; Pancholy, S.B.; et al. Distal vs conventional radial access for coronary angiography and/or intervention: A meta-analysis of randomized trials. JACC Cardiovasc. Interv. 2022, 15, 2297–2311. [Google Scholar]
- Liang, D.; Lin, Q.; Zhu, Q.; Zhou, X.; Fang, Y.; Wang, L.; Xiang, G.; Zheng, K.I.; Huang, W.; Shan, P. Short-Term Postoperative Use of Rivaroxaban to Prevent Radial Artery Occlusion After Transradial Coronary Procedure: The RESTORE Randomized Trial. Circ. Cardiovasc. Interv. 2022, 15, e011555. [Google Scholar] [CrossRef] [PubMed]
Study | PROPHET II [12] | Koutouzis MJ et al [27] | OPEN-Radial [24] | PROTHECT [25] | PRO-SURC [26] | Patel P et al [23] |
---|---|---|---|---|---|---|
Country, date | India, Czech Republic, 2016 | Greece, 2016 | India, 2020 | Mexico, 2022 | Egypt, 2022 | India, 2022 |
Study design | RCT, open-label | Observational, prospective | RCT, open-label | RCT, open-label | RCT, open-label | Observational, retrospective |
Number of patients | 3000 | 240 | 253 | 981 | 300 | 2019 |
Access sheath size | 11-cm long 5-F hydrophilic introducer sheath (Terumo Interventional Systems, Tokyo, Japan). | 11-cm long 6 Fr hydrophilic Arrow sheaths (Teleflex, Limerick, PA, USA). | 7-cm long 5 Fr hydrophilic-coated, Radifocus introducer sheath (Terumo Interventional Systems, Tokyo, Japan) | 6 Fr radial sheath, 464 (94.5) SURC:6 Fr radial sheath, 469 (95.7) | 6 Fr radial sheath. | 6 Fr or 7 Fr slender introducer sheath (Terumo Interventional Systems) selected based on operator’s discretion. |
Hemostasis system | Isolated radial artery compression: TR band (Terumo Interventional Systems, Tokyo, Japan). SURC: radial artery compression with TR band (Terumo Interventional Systems). The ipsilateral ulnar artery was compressed at the Guyon’s canal by placing a cylindrical composite made by wrapping 4 inch × 4 inch gauze around a 1-inch plastic needle cap, or the barrel of a 3 mL plastic syringe, and compressing it using a circumferentially applied Hemoband (Hemoband Corporation, Portland, Oregon). | Isolated radial artery compression: Tourniquet screw-down pressure plate hemostatic device (KDL, type ZXD II-22; Shanghai Kindly Enterprise Development Group Co, Shangai, China). SURC: Tourniquet screw-down pressure plate hemostatic device (KDL, type ZXD II-22; Shanghai Kindly Enterprise Development Group Co, Shangai, China).1-hour ipsilateral ulnar compression with another of the same device. | Isolated radial artery compression: TR band (Terumo Interventional Systems, Tokyo, Japan).SURC: Two-bladder Vasoband (Vasoinnovations Inc.) plus ipsilateral ulnar compression (dedicated device). | Isolated radial artery compression: TR band (Terumo Interventional Systems). SURC: TR band (Terumo Interventional Systems, Tokyo, Japan) Ipsilateral ulnar artery compression was achieved by placing 4-inch × 4- inch cylindrical-shaped gauze that was compressed against the distal third of the ulnar artery by a 14- inch standard-length Hemoband device (Hemoband Corporation, Portland, Oregon). | Isolated radial artery compression: Balloon inflatable radial hemostatic band (TR band, Terumo Interventional System, Tokyo, Japan). Balloon inflatable radial hemostatic band (TR band). SURC: The ipsilateral ulnar artery was compressed by placing a second inflatable band proximal to the radial compression band in order to increase the velocity of blood flow into the radial artery. | Isolated radial artery compression: One-bladder TR band (Terumo Interventional Systems, Tokyo, Japan). SURC: Two-bladder Vasoband (Vasoinnovations Inc., South Pasadena, CA, USA) with ipsilateral ulnar compression (dedicated device). |
Timing and modality of RAO assessment | At the time of removal of the radial compression band, 24 h and 30 days following the procedure by pulse plethysmography or oximetry. In patients where compression of both radial and ulnar arteries did not result in total loss of plethysmographic signal, and in those where RAO was detected by digital plethysmography, duplex ultrasonography was performed to confirm patency status. | Within 1 h after hemostasis device removal by radial artery pulsation and when needed by Duplex US. | At the time of discharge, at a minimum of 1 hour after the removal of the hemostatic compression device by plethysmographic technique. All equivocal plethysmographic tests were evaluated by performing radial artery duplex Doppler US. | At 24 hours after the removal of the introducer sheath by oximetry plethysmography. In the presence of RAO by plethysmography, Doppler ultrasound) was performed to corroborate the occlusion. Patients with Doppler US criteria for RAO were evaluated with a repeat Doppler US study at 30 days. | Duplex US assessment was performed at 1-h post-TR band removal and after one month. | At 24 h after the procedure by US. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Condello, F.; Cacia, M.; Sturla, M.; Terzi, R.; Sánz-Sanchez, J.; Reimers, B.; Gasparini, G.L.; Pagnotta, P.; Sorrentino, S.; Spaccarotella, C.; et al. Simultaneous Radial and Ipsilateral Ulnar Artery Compression versus Isolated Radial Artery Compression after Conventional Radial Access for Coronary Angiography and/or Intervention: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 7013. https://doi.org/10.3390/jcm11237013
Condello F, Cacia M, Sturla M, Terzi R, Sánz-Sanchez J, Reimers B, Gasparini GL, Pagnotta P, Sorrentino S, Spaccarotella C, et al. Simultaneous Radial and Ipsilateral Ulnar Artery Compression versus Isolated Radial Artery Compression after Conventional Radial Access for Coronary Angiography and/or Intervention: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2022; 11(23):7013. https://doi.org/10.3390/jcm11237013
Chicago/Turabian StyleCondello, Francesco, Michele Cacia, Matteo Sturla, Riccardo Terzi, Jorge Sánz-Sanchez, Bernhard Reimers, Gabriele L. Gasparini, Paolo Pagnotta, Sabato Sorrentino, Carmen Spaccarotella, and et al. 2022. "Simultaneous Radial and Ipsilateral Ulnar Artery Compression versus Isolated Radial Artery Compression after Conventional Radial Access for Coronary Angiography and/or Intervention: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 11, no. 23: 7013. https://doi.org/10.3390/jcm11237013