Lost in Translation: Evaluation of Subcutaneous Interferon-β Treatment for SARS-CoV-2 Infection in Real Life
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acharya, D.; Liu, G.; Gack, M.U. Dysregulation of type I interferon responses in COVID-19. Nat. Rev. Immunol. 2020, 20, 397–398. [Google Scholar] [CrossRef] [PubMed]
- Abers, M.S.; Rosen, L.B.; Delmonte, O.M.; Shaw, E.; Bastard, P.; Imberti, L.; Quaresima, V.; Biondi, A.; Bonfanti, P.; Castagnoli, R.; et al. Neutralizing type-I interferon autoantibodies are associated with delayed viral clearance and intensive care unit admission in patients with COVID-19. Immunol. Cell. Biol. 2021, 99, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Bastard, P.; Rosen, L.B.; Zhang, Q.; Michailidis, E.; Hoffmann, H.-H.; Zhang, Y.; Dorgham, K.; Philippot, Q.; Rosain, J.; Béziat, V.; et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 2020, 370, eabd4585. [Google Scholar] [CrossRef] [PubMed]
- Arabi, Y.M.; Asiri, A.Y.; Assiri, A.M.; Balkhy, H.H.; Al Bshabshe, A.; Al Jeraisy, M.; Mandourah, Y.; Azzam, M.H.A.; Bin Eshaq, A.M.; Al Johani, S.; et al. Interferon Beta-1b and Lopinavir–Ritonavir for Middle East Respiratory Syndrome. N. Engl. J. Med. 2020, 383, 1645–1656. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, C.G.K.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Cao, Y.; Yousif, A.S.; Bals, J.; Hauser, B.M.; et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell 2020, 181, 1016–1035.e19. [Google Scholar] [CrossRef] [PubMed]
- Channappanavar, R.; Fehr, A.R.; Zheng, J.; Wohlford-Lenane, C.; Abrahante, J.E.; Mack, M.; Sompallae, R.; McCray, P.B., Jr.; Meyerholz, D.K.; Perlman, S. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J. Clin. Investig. 2019, 129, 3625–3639. [Google Scholar] [CrossRef] [PubMed]
- Davoudi-Monfared, E.; Rahmani, H.; Khalili, H.; Hajiabdolbaghi, M.; Salehi, M.; Abbasian, L.; Kazemzadeh, H.; Yekaninejad, M.S. A Randomized Clinical Trial of the Efficacy and Safety of Interferon β-1a in Treatment of Severe COVID-19. Antimicrob. Agents Chemother. 2020, 64, e2013136. [Google Scholar] [CrossRef] [PubMed]
- Salto-Alejandre, S.; Palacios-Baena, Z.R.; Arribas, J.R.; Berenguer, J.; Carratalà, J.; Jarrín, I.; Ryan, P.; de Miguel-Montero, M.; Rodríguez-Baño, J.; Pachón, J. Impact of early interferon-β treatment on the prognosis of patients with COVID-19 in the first wave: A post hoc analysis from a multicenter cohort. Biomed. Pharmacother. 2022, 146, 112572. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Mehta, A.K.; Patterson, T.F.; Erdmann, N.; Gomez, C.A.; Jain, M.K.; Wolfe, C.R.; Ruiz-Palacios, G.M.; Kline, S.; Regalado Pineda, J.; et al. Efficacy of interferon beta-1a plus remdesivir compared with remdesivir alone in hospitalised adults with COVID-19: A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2021, 9, 1365–1376. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, D.; Mezidi, M.; Bastard, P.; Perret, M.; Saker, K.; Fabien, N.; Pescarmona, R.; Lombard, C.; Walzer, T.; Casanova, J.L.; et al. Antibodies against type I interferon: Detection and association with severe clinical outcome in COVID-19 patients. Clin. Transl. Immunol. 2021, 10, e1327. [Google Scholar] [CrossRef] [PubMed]
- Clementi, N.; Ferrarese, R.; Criscuolo, E.; Diotti, R.A.; Castelli, M.; Scagnolari, C.; Burioni, R.; Antonelli, G.; Clementi, M.; Mancini, N. Interferon-β-1a Inhibition of Severe Acute Respiratory Syndrome-Coronavirus 2 In Vitro When Administered After Virus Infection. J. Infect. Dis. 2020, 222, 722–725. [Google Scholar] [CrossRef] [PubMed]
- Alavi Darazam, I.; Shokouhi, S.; Pourhoseingholi, M.A.; Naghibi Irvani, S.S.; Mokhtari, M.; Shabani, M.; Amirdosara, M.; Torabinavid, P.; Golmohammadi, M.; Hashemi, S.; et al. Role of interferon therapy in severe COVID-19: The COVIFERON randomized controlled trial. Sci. Rep. 2021, 11, 8059. [Google Scholar] [CrossRef] [PubMed]
- Monk, P.D.; Marsden, R.J.; Tear, V.J.; Brookes, J.; Batten, T.N.; Mankowski, M.; Gabbay, F.J.; Davies, D.E.; Holgate, S.T.; Ho, L.P.; et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir. Med. 2021, 9, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Hung, I.F.; Lung, K.C.; Tso, E.Y.; Liu, R.; Chung, T.W.; Chu, M.Y.; Ng, Y.Y.; Lo, J.; Chan, J.; Tam, A.R.; et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: An open-label, randomised, phase 2 trial. Lancet 2020, 395, 1695–1704. [Google Scholar] [CrossRef] [PubMed]
- WHO Solidarity Trial Consortium. Repurposed Antiviral Drugs for Covid-19—Interim WHO Solidarity Trial Results. N. Engl. J. Med. 2021, 384, 497–511. [Google Scholar] [CrossRef]
- Ader, F.; Peiffer-Smadja, N.; Poissy, J.; Bouscambert-Duchamp, M.; Belhadi, D.; Diallo, A.; Delmas, C.; Saillard, J.; Dechanet, A.; Mercier, N.; et al. An open-label randomized controlled trial of the effect of lopinavir/ritonavir, lopinavir/ritonavir plus IFN-beta-1a and hydroxychloroquine in hospitalized patients with COVID-19. Clin. Microbiol. Infect. 2021, 27, 1826–1837. [Google Scholar] [CrossRef] [PubMed]
- Jalkanen, J.; Hollmén, M.; Jalkanen, S. Interferon beta-1a for COVID-19: Critical importance of the administration route. Crit. Care 2020, 24, 335. [Google Scholar] [CrossRef] [PubMed]
Variable | IT | No IT | p-Value |
---|---|---|---|
(n = 153) | (n = 3437) | (IT vs. No IT) | |
Female sex | 49 (32) | 1382 (40) | 0.043 |
Age | 69 (59–79) | 68 (55–81) | 0.697 |
BMI (Kg/m2) | 29.3 (25.4–32.3) | 27.9 (25.2–31.2) | 0.04 |
Hypertension | 28 (18) | 412 (12) | 0.021 |
Diabetes | 18 (12) | 275 (8) | 0.09 |
Obesity (BMI > 30) | 57 (42) | 1169 (34) | 0.2 |
Chronic kidney disease (eGFR < 60 mL/min/1.73 m2) | 17 (11) | 241 (7) | 0.001 |
Days of symptoms until admission | 6.5 (4–8) | 7 (4–10) | 0.442 |
Days from symptoms initiation to IFN | 8 (6–11) | - | - |
Fever at admission | 112 (73) | 1650 (48) | <0.001 |
Low SpO2 < 94% at admission | 87 (57) | 1375 (40) | <0.001 |
eGFR (MDRD) | 73.2 (58–90.3) | 78.5 (70–94.8) | 0.122 |
eGFR < 60 mL/min/1.73 m2 | 44 (29) | 859 (25) | 0.07 |
Lymphocyte count < 900/μL | 85 (56) | 1547 (45) | <0.001 |
NLR | 6.41 (3.3–13.2) | 5.2 (2.9–9.9) | 0.017 |
Platelets < 150,000/μL | 34 (22) | 653 (19) | <0.001 |
INR ≥ 1.3 | 28 (18) | 3093 (9) | <0.001 |
D-dimer levels (ng/mL) | 752 (481–1875) | 640 (368–1272) | 0.035 |
Lactate dehydrogenase ≥ 250 U/L | 126 (82) | 2509 (73) | 0.003 |
C-reactive protein (mg/L) | 278 (77–392) | 70 (15–144) | <0.001 |
Procalcitonin | 0.08 (0.01–1.3) | 0.07 (0.01–0.8) | 0.877 |
Corticosteroids | 132 (86) | 2084 (61) | <0.01 |
Time on CE therapy (days) | 12 (6–20) | 9 (5–19) | 0.027 |
ICU | 46 (30) | 588 (17) | <0.001 |
Days from symptoms initiation to ICU | 14 (9–22) | 15 (10–21) | 0.244 |
Days from admission to ICU | 6 (1.5–13) | 5 (2–10) | 0.302 |
SAPS II at ICU admission | 33.5 (27.5–43) | 38 (30–49) | 0.041 |
Apache II score at ICU admission | 13 (10–18) | 15 (11–21) | 0.143 |
Mortality at day 30 | 60 (39) | 574 (17) | <0.001 |
Composed outcome (ICU/Death) | 88 (58) | 1078 (31) | <0.001 |
Variable | EIT (n = 46) | LIT (n = 107) | p-Value (EIT vs. LIT) |
---|---|---|---|
Female sex | 16 (35) | 33 (31) | 0.632 |
Age | 76 (60–83) | 67 (58–77) | 0.098 |
BMI (Kg/m2) | 28.2 (25–30.3) | 29.7 (25.7–32.8) | 0.159 |
Hypertension | 11 (24) | 17 (16) | 0.21 |
Diabetes | 7 (16) | 11 (10) | 0.29 |
Obesity (BMI > 30) | 14 (31) | 43 (40) | 0.123 |
Chronic kidney disease (eGFR < 60 mL/min/1.73 m2) | 7 (16) | 10 (9) | 0.19 |
Days of symptoms until admission | 3 (1–5) | 8 (6–10) | <0.01 |
Days from symptoms initiation to IFN | 5 (1–6) | 10 (8–11) | <0.01 |
Fever at admission | 39 (85) | 73 (68) | 0.034 |
Low SpO2 < 94% at admission | 36 (78) | 64 (60) | <0.01 |
eGFR (MDRD) | 67 (52.2–82) | 75.4 (67.1–90.2) | 0.122 |
eGFR < 60 mL/min/1.73 m2 | 18 (39) | 26 (24) | 0.086 |
Lymphocyte count < 900/μL | 25 (55) | 60 (56) | 0.854 |
NLR | 5.84 (3–12.6) | 6.42 (3–13.2) | 0.867 |
Platelets < 150,000/μL | 13 (29) | 21 (20) | 0.197 |
INR ≥ 1.3 | 14 (30) | 14 (13) | <0.001 |
D-dimer levels (ng/mL) | 818 (606–1408) | 750 (426–2347) | 0.839 |
Lactate dehydrogenase ≥ 250 U/L | 37 (80) | 89 (83) | 0.838 |
C-reactive protein (mg/L) | 311 (101–455) | 146 (52–380) | <0.01 |
Procalcitonin | 0.12 (0.06–0.25) | 0.08 (0.03–0.9) | 0.894 |
Corticosteroids | 38 (83) | 94 (88) | 0.765 |
Time on CE therapy (days) | 10 (4–16) | 13.5 (7–22) | 0.024 |
ICU | 12 (26) | 34 (32) | 0.482 |
Days from symptoms initiation to ICU | 9 (6–13) | 17 (11–23) | <0.01 |
Days from admission to ICU | 4.5 (1–12) | 7 (2–14) | 0.447 |
SAPS II at ICU admission | 37 (28–51) | 32 (26–40) | 0.288 |
Apache II score at ICU admission | 16 (10–33) | 13 (10–18) | 0.224 |
Mortality at day 30 | 23 (50) | 37 (35) | 0.242 |
Composed outcome (ICU/Death) | 29 (63) | 59 (55) | 0.364 |
Variable |
IT
(n = 42) |
No IT
(n = 42) | p-Value |
---|---|---|---|
Female sex | 15 (36) | 16 (39) | 0.783 |
Age (range) | 62 (21–87) | 62 (21–87) | 0.993 |
BMI (Kg/m2) | 29.8 (24.9–34.1) | 28.4 (26–30.1) | 0.347 |
Hypertension | 24 (50) | 32 (75) | 0.988 |
Diabetes | 9 (21) | 8 (18) | 0.877 |
Obesity (BMI > 30) | 16 (47) | 9 (22) | 0.389 |
Chronic kidney disease (eGFR < 60 mL/min/1.73 m2) | 4 (10) | 3 (7) | 0.19 |
Days of symptoms until admission | 7 (5–9) | 9 (6–15) | 0.263 |
Days from symptoms initiation to IFN | 9 (6–11) | - | - |
Fever at admission | 32 (75) | 29 (68) | 0.765 |
Low SpO2 < 94% at admission | 18 (43) | 18 (43) | 0.987 |
Serum creatinine | 0.81 (0.77–0.96) | 0.8 (0.73–0.92) | 0.496 |
eGFR (MDRD) | 86.3 (70.2–95.9) | 82.2 (78.6–96.6) | 0.623 |
Lymphocyte count (×103/μL) | 1.29 (1.03–1.78) | 1.58 (1.38–1.91) | 0.046 |
NLR | 2.95 (1.3–4.3) | 2.91 (2.3–3.4) | 0.883 |
Platelets < 150,000/μL | 15 (36) | 3 (7) | <0.001 |
INR ≥ 1.3 | 2 (5) | 15 (35) | 0.04 |
D-dimer levels (ng/mL) | 611 (394–926) | 316 (280–764) | 0.136 |
Lactate dehydrogenase ≥ 250 U/L | 32 (75) | 29 (70) | 0.755 |
C-reactive protein (mg/L) | 108 (77–212) | 105 (55–124) | 0.698 |
Procalcitonin | 0.08 (0.01–1.3) | 0.07 (0.01–0.8) | 0.877 |
Corticosteroids | 32 (75) | 32 (75) | 0.91 |
Time on CE therapy (days) | 11 (7–14) | 21 (9–24) | 0.042 |
ICU | 9 (21) | 15 (36) | 0.237 |
Days from symptoms initiation to ICU | 17 (10–22) | 16 (12–21) | 0.137 |
Days from admission to ICU | 8 (3–14) | 6 (3–8) | 0.837 |
SAPS II at ICU admission | 35 (26–40) | 36 (30–49) | 0.041 |
Apache II score at ICU admission | 13 (10–18) | 14 (11–21) | 0.143 |
Mortality at day 30 | 15 (36) | 13 (32) | 0.665 |
Composed outcome (ICU/Death) | 16 (39) | 16 (39) | 0.99 |
Variable | Hazard Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
Age (years) | 1.015 | 1.006–1.024 | 0.001 |
Lymphocyte count < 900 cells/mm | 1.576 | 1.225–2.028 | <0.001 |
C-reactive protein ≥ 75 mg/L | 1.694 | 1.217–2.359 | 0.002 |
eGFR < 60 mL/min/m | 1.55 | 1.205–1.995 | 0.001 |
Use of corticosteroids | 0.929 | 0.915–0.943 | <0.001 |
NLR | 1.012 | 1.002–1.21 | 0.02 |
IFN therapy | 1.149 | 0.794–1.662 | 0.461 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casado, J.L.; Vizcarra, P.; Del Rey, J.M.; Soriano, M.C.; Rodriguez-Dominguez, M.; Manzano, L.; Acero, J.; Palomar-Fernandez, C.; Vallejo, A.; on behalf of the COVID-19 IRYCIS Team. Lost in Translation: Evaluation of Subcutaneous Interferon-β Treatment for SARS-CoV-2 Infection in Real Life. J. Clin. Med. 2022, 11, 6952. https://doi.org/10.3390/jcm11236952
Casado JL, Vizcarra P, Del Rey JM, Soriano MC, Rodriguez-Dominguez M, Manzano L, Acero J, Palomar-Fernandez C, Vallejo A, on behalf of the COVID-19 IRYCIS Team. Lost in Translation: Evaluation of Subcutaneous Interferon-β Treatment for SARS-CoV-2 Infection in Real Life. Journal of Clinical Medicine. 2022; 11(23):6952. https://doi.org/10.3390/jcm11236952
Chicago/Turabian StyleCasado, José L., Pilar Vizcarra, José M. Del Rey, María Cruz Soriano, Mario Rodriguez-Dominguez, Luis Manzano, Julio Acero, Carmen Palomar-Fernandez, Alejandro Vallejo, and on behalf of the COVID-19 IRYCIS Team. 2022. "Lost in Translation: Evaluation of Subcutaneous Interferon-β Treatment for SARS-CoV-2 Infection in Real Life" Journal of Clinical Medicine 11, no. 23: 6952. https://doi.org/10.3390/jcm11236952
APA StyleCasado, J. L., Vizcarra, P., Del Rey, J. M., Soriano, M. C., Rodriguez-Dominguez, M., Manzano, L., Acero, J., Palomar-Fernandez, C., Vallejo, A., & on behalf of the COVID-19 IRYCIS Team. (2022). Lost in Translation: Evaluation of Subcutaneous Interferon-β Treatment for SARS-CoV-2 Infection in Real Life. Journal of Clinical Medicine, 11(23), 6952. https://doi.org/10.3390/jcm11236952