The Association of Sex with Unplanned Cardiac Readmissions following Percutaneous Coronary Intervention in Australia: Results from a Multicentre Outcomes Registry (GenesisCare Cardiovascular Outcomes Registry)
Abstract
:1. Introduction
2. Method
2.1. Study Design
2.2. Study Data Collection
2.3. Statistical Analyses
3. Results
3.1. Baseline Demographics
3.2. Procedure Characteristics
3.3. Clinical Events and Outcomes
3.4. Predictors of Unplanned Cardiac Readmissions
4. Discussion
4.1. One-Year Unplanned Cardiac Readmission Rates
4.2. Difference by Sex for Unplanned Cardiac Readmissions
4.3. Unplanned Cardiac Readmissions and Association with Mortality
4.4. Independent Predictors of Unplanned Cardiac Readmission for the Study Cohort
4.5. Independent Predictors of Unplanned Cardiac Readmissions for Female and Male Patients
5. Limitation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fischer, C.; Lingsma, H.F.; Marang-van de Mheen, P.J.; Kringos, D.S.; Klazinga, N.S.; Steyerberg, E.W. Is the Readmission Rate a Valid Quality Indicator? A Review of the Evidence. PLoS ONE 2014, 9, e112282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwok, C.S.; Hulme, W.; Olier, I.; Holroyd, E.; Mamas, M.A. Review of early hospitalisation after percutaneous coronary intervention. Int. J. Cardiol. 2017, 227, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Hariri, E.; Hansra, B.; Barringhaus, K.G.; Mohamud, D.; Smith, C.S.; Akhter, M.W.; Kassas, I. Trends, Predictors, and Outcomes Associated With 30-Day Hospital Readmissions After Percutaneous Coronary Intervention in a High-Volume Center Predominantly Using Radial Vascular Access. Cardiovasc. Revasc. Med. 2020, 21, 1525–1531. [Google Scholar] [CrossRef]
- Kwok, C.S.; Shah, B.; Al-Suwaidi, J.; Fischman, D.L.; Holmvang, L.; Alraies, C.; Bagur, R.; Nagaraja, V.; Rashid, M.; Mohamed, M.; et al. Timing and Causes of Unplanned Readmissions After Percutaneous Coronary Intervention. JACC Cardiovasc. Interv. 2019, 12, 734–748. [Google Scholar] [CrossRef]
- Sangu, P.V.; Ranasinghe, I.; Aliprandi Costa, B.; Devlin, G.; Elliot, J.; Lefkovitz, J.; Brieger, D. Trends and predictors of rehospitalisation following an acute coronary syndrome: Report from the Australian and New Zealand population of the Global Registry of Acute Coronary Events (GRACE). Heart 2012, 98, 1728–1731. [Google Scholar] [CrossRef]
- Andrés, E.; Cordero, A.; Magán, P.; Alegría, E.; León, M.; Luengo, E.; Magallón Botaya, R.; García Ortiz, L.; Casasnovas, J.A. Long-Term Mortality and Hospital Readmission After Acute Myocardial Infarction: An Eight-Year Follow-Up Study. Rev. Española Cardiol. Engl. Ed. 2012, 65, 414–420. [Google Scholar] [CrossRef]
- Kwok, C.S.; Potts, J.; Gulati, M.; Alasnag, M.; Rashid, M.; Shoaib, A.; Ul Haq, M.A.; Bagur, R.; Mamas, M.A. Effect of Gender on Unplanned Readmissions After Percutaneous Coronary Intervention (from the Nationwide Readmissions Database). Am. J. Cardiol. 2018, 121, 810–817. [Google Scholar] [CrossRef]
- Eccleston, D.; Horrigan, M.; Rafter, T.; Holt, G.; Worthley, S.G.; Sage, P.; Whelan, A.; Reid, C.; Thompson, P.L. Improving Guideline Compliance in Australia With a National Percutaneous Coronary Intervention Outcomes Registry. Heart Lung Circ. 2017, 26, 1303–1309. [Google Scholar] [CrossRef]
- Curtis, J.P.; Schreiner, G.; Wang, Y.; Chen, J.; Spertus, J.A.; Rumsfeld, J.S.; Brindis, R.G.; Krumholz, H.M. All-Cause Readmission and Repeat Revascularization After Percutaneous Coronary Intervention in a Cohort of Medicare Patients. J. Am. Coll. Cardiol. 2009, 54, 903–907. [Google Scholar] [CrossRef] [Green Version]
- Arnold, S.V.; Smolderen, K.G.; Kennedy, K.F.; Li, Y.; Shore, S.; Stolker, J.M.; Wang, T.Y.; Jones, P.G.; Zhao, Z.; Spertus, J.A. Risk Factors for Rehospitalization for Acute Coronary Syndromes and Unplanned Revascularization Following Acute Myocardial Infarction. J. Am. Heart Assoc. 2015, 4, e001352. [Google Scholar] [CrossRef]
- Roe, C.J.; Kulinskaya, E.; Brisbane, M.; Brown, R.; Barter, C. A methodology for measuring clinical outcomes in an acute care teaching hospital. J. Qual. Clin. Pract. 1996, 16, 203–214. [Google Scholar] [PubMed]
- Hansen, K.N.; Bendix, K.; Antonsen, L.; Veien, K.T.; Mæng, M.; Junker, A.; Christiansen, E.H.; Kahlert, J.; Terkelsen, C.J.; Christensen, L.B.; et al. One-year rehospitalisation after percutaneous coronary intervention: A retrospective analysis. EuroIntervention 2018, 14, 926–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwok, C.S.; Narain, A.; Pacha, H.M.; Lo, T.S.; Holroyd, E.W.; Alraies, M.C.; Nolan, J.; Mamas, M.A. Readmissions to Hospital After Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis of Factors Associated with Readmissions. Cardiovasc. Revascularization Med. 2020, 21, 375–391. [Google Scholar] [CrossRef] [PubMed]
- Fath-Ordoubadi, F.; Spaepen, E.; El-Omar, M.; Fraser, D.G.; Khan, M.A.; Neyses, L.; Danzi, G.B.; Roguin, A.; Paunovic, D.; Mamas, M.A. Outcomes in Patients with Acute and Stable Coronary Syndromes; Insights from the Prospective NOBORI-2 Study. PLoS ONE 2014, 9, e88577. [Google Scholar] [CrossRef]
- Yudi, M.B.; Clark, D.J.; Farouque, O.; Andrianopoulos, N.; Ajani, A.E.; Brennan, A.; Lefkovits, J.; Freeman, M.; Hiew, C.; Selkrig, L.A.; et al. Trends and predictors of recurrent acute coronary syndrome hospitalizations and unplanned revascularization after index acute myocardial infarction treated with percutaneous coronary intervention. Am. Heart J. 2019, 212, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.L.; Peterson, E.D.; Brennan, J.M.; Rao, S.V.; Dai, D.; Anstrom, K.J.; Piana, R.; Popescu, A.; Sedrakyan, A.; Messenger, J.C.; et al. Short- and Long-Term Outcomes of Coronary Stenting in Women Versus Men: Results from the National Cardiovascular Data Registry Centers for Medicare & Medicaid Services Cohort. Circulation 2012, 126, 2190–2199. [Google Scholar] [PubMed] [Green Version]
- Tisminetzky, M.; Chen, H.Y.; McManus, D.D.; Gurwitz, J.; Granillo, E.; Yarzebski, J.; Gore, J.M.; Goldberg, R.J. Trends in the Magnitude of, and Patient Characteristics Associated With, Multiple Hospital Readmissions After Acute Myocardial Infarction. Am. J. Cardiol. 2016, 118, 1117–1122. [Google Scholar] [CrossRef]
- Graham, G. Acute Coronary Syndromes in Women: Recent Treatment Trends and Outcomes. Clin. Med. Insights Cardiol. 2016, 10, CMC.S37145. [Google Scholar] [CrossRef] [Green Version]
- Mehta, L.S.; Beckie, T.M.; DeVon, H.A.; Grines, C.L.; Krumholz, H.M.; Johnson, M.N.; Lindley, K.J.; Vaccarino, V.; Wang, T.Y.; Watson, K.E.; et al. Acute Myocardial Infarction in Women: A Scientific Statement from the American Heart Association. Circulation 2016, 133, 916–947. [Google Scholar] [CrossRef] [Green Version]
- Hess, C.N.; Kaltenbach, L.A.; Doll, J.A.; Cohen, D.J.; Peterson, E.D.; Wang, T.Y. Race and Sex Differences in Post–Myocardial Infarction Angina Frequency and Risk of 1-Year Unplanned Rehospitalization. Circulation 2017, 135, 532–543. [Google Scholar] [CrossRef]
- Li, S.; Fonarow, G.C.; Mukamal, K.J.; Liang, L.; Schulte, P.J.; Smith, E.E.; DeVore, A.; Hernandez, A.F.; Peterson, E.D.; Bhatt, D.L. Sex and Race/Ethnicity–Related Disparities in Care and Outcomes After Hospitalization for Coronary Artery Disease Among Older Adults. Circ. Cardiovasc. Qual. Outcomes 2016, 9 (Suppl. S1), S36–S44. [Google Scholar] [CrossRef] [PubMed]
- Bucholz, E.M.; Strait, K.M.; Dreyer, R.P.; Lindau, S.T.; D’Onofrio, G.; Geda, M.; Spatz, E.S.; Beltrame, J.F.; Lichtman, J.H.; Lorenze, N.P.; et al. Editor’s Choice-Sex differences in young patients with acute myocardial infarction: A VIRGO study analysis. Eur. Heart J. Acute Cardiovasc. Care 2017, 6, 610–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutledge, T.; Reis, S.E.; Olson, M.B.; Owens, J.; Kelsey, S.F.; Pepine, C.J.; Mankad, S.; Rogers, W.J.; Merz, C.N.B.; Sopko, G.; et al. Depression Symptom Severity and Reported Treatment History in the Prediction of Cardiac Risk in Women with Suspected Myocardial Ischemia: The NHLBI-Sponsored WISE Study. Arch. Gen. Psychiatry 2006, 63, 874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, S.; Dinh, D.; Lucas, M.; Duffy, S.J.; Brennan, A.L.; Liew, D.; Cox, N.; Nadurata, V.; Reid, C.M.; Lefkovits, J.; et al. Incidence and Predictors of Unplanned Hospital Readmission after Percutaneous Coronary Intervention. JCM 2020, 9, 3242. [Google Scholar] [CrossRef] [PubMed]
- Kwok, C.S.; Kalra, A.; Velagapudi, P.; Park, K.; Mohamed, M.; Alraies, M.C.; Cheng, R.K.; Bagur, R.; Mamas, M.A. Comparison of 30-Day Unplanned Readmissions to the Index Versus Nonindex Hospital After Percutaneous Coronary Intervention. Am. J. Cardiol. 2020, 125, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Lemesle, G.; de Labriolle, A.; Bonello, L.; Torguson, R.; Kaneshige, K.; Xue, Z.; Suddath, W.O.; Satler, L.F.; Kent, K.M.; Lindsay, J.; et al. Incidence, Predictors, and Outcome of New, Subsequent Lesions Treated with Percutaneous Coronary Intervention in Patients Presenting with Myocardial Infarction. Am. J. Cardiol. 2009, 103, 1189–1195. [Google Scholar] [CrossRef]
- Alberts, M.J.; Bhatt, D.L.; Mas, J.L.; Ohman, E.M.; Hirsch, A.T.; Rother, J.; Salette, G.; Goto, S.; Smith, S.C.; Liau, C.-S.; et al. Three-year follow-up and event rates in the international REduction of Atherothrombosis for Continued Health Registry. Eur. Heart J. 2009, 30, 2318–2326. [Google Scholar] [CrossRef] [Green Version]
- Narasimhan, B.; Patel, N.; Chakraborty, S.; Bandyopadhyay, D.; Sreenivasan, J.; Hajra, A.; Amgai, B.; Rai, D.; Krittanawong, C.; Kaul, R.; et al. Impact of Atrial Fibrillation on Acute Coronary Syndrome–Analysis of In-Hospital Outcomes and 30-Day Readmissions. Curr. Probl. Cardiol. 2021, 46, 100764. [Google Scholar] [CrossRef]
- Gibson, C.M.; Pinto, D.S.; Chi, G.; Arbetter, D.; Yee, M.; Mehran, R.; Bode, C.; Halperin, J.; Verheugt, F.W.A.; Wildgoose, P.; et al. Recurrent Hospitalization Among Patients with Atrial Fibrillation Undergoing Intracoronary Stenting Treated With 2 Treatment Strategies of Rivaroxaban or a Dose-Adjusted Oral Vitamin K Antagonist Treatment Strategy. Circulation 2017, 135, 323–333. [Google Scholar] [CrossRef]
- Antithrombotic Therapy for Atrial Fibrillation with Stable Coronary Disease. N. Engl. J. Med. 2021, 385, 1632. [CrossRef]
- Sutton, N.R.; Seth, M.; Ruwende, C.; Gurm, H.S. Outcomes of Patients with Atrial Fibrillation Undergoing Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2016, 68, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Bramlage, P.; Cuneo, A.; Zeymer, U.; Hochadel, M.; Richardt, G.; Silber, S.; Senges, J.; Nienaber, C.A.; Tebbe, U.; Kuck, K.-H. Prognosis of patients with atrial fibrillation undergoing percutaneous coronary intervention receiving drug eluting stents. Clin. Res. Cardiol. 2013, 102, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Xu, L.; Yang, X.; Chen, M.; Gao, Y. The common characteristics and mutual effects of heart failure and atrial fibrillation: Initiation, progression, and outcome of the two aging-related heart diseases. Heart Fail. Rev. 2022, 27, 837–847. [Google Scholar] [CrossRef] [PubMed]
- Kaikita, K.; Yasuda, S.; Akao, M.; Ako, J.; Matoba, T.; Nakamura, M.; Miyauchi, K.; Hagiwara, N.; Kimura, K.; Hirayama, A.; et al. Bleeding and Subsequent Cardiovascular Events and Death in Atrial Fibrillation with Stable Coronary Artery Disease: Insights From the AFIRE Trial. Circ. Cardiovasc. Interv. 2021, 14, e010476. [Google Scholar] [CrossRef]
- Golwala, H.B.; Cannon, C.P.; Steg, P.G.; Doros, G.; Qamar, A.; Ellis, S.G.; Oldgren, J.; ten Berg, J.M.; Kimura, T.; Hohnloser, S.H.; et al. Safety and efficacy of dual vs. triple antithrombotic therapy in patients with atrial fibrillation following percutaneous coronary intervention: A systematic review and meta-analysis of randomized clinical trials. Eur. Heart J. 2018, 39, 1726–1735a. [Google Scholar] [CrossRef]
- Kuno, T.; Claessen, B.; Cao, D.; Chandiramani, R.; Guedeney, P.; Sorrentino, S.; Krucoff, M.; Kozuma, K.; Ge, J.; Seth, A.; et al. Impact of renal function in high bleeding risk patients undergoing percutaneous coronary intervention: A patient-level stratified analysis from four post-approval studies. J. Thromb. Thrombolysis 2021, 52, 419–428. [Google Scholar] [CrossRef]
- Ariyaratne, T.V.; Ademi, Z.; Duffy, S.J.; Andrianopoulos, N.; Billah, B.; Brennan, A.L.; New, G.; Black, A.; Ajani, A.E.; Clark, D.J.; et al. Cardiovascular readmissions and excess costs following percutaneous coronary intervention in patients with chronic kidney disease: Data from a large multi-centre Australian registry. Int. J. Cardiol. 2013, 168, 2783–2790. [Google Scholar] [CrossRef]
- Baber, U.; Mehran, R.; Kirtane, A.J.; Gurbel, P.A.; Christodoulidis, G.; Maehara, A.; Witzenbichler, B.; Weisz, G.; Rinaldi, M.J.; Metzger, D.C.; et al. Prevalence and Impact of High Platelet Reactivity in Chronic Kidney Disease: Results from the Assessment of Dual Antiplatelet Therapy with Drug-Eluting Stents Registry. Circ. Cardiovasc. Interv. 2015, 8, e001683. [Google Scholar] [CrossRef] [Green Version]
- Franchi, F.; Rollini, F.; Angiolillo, D.J. Defining the Link Between Chronic Kidney Disease, High Platelet Reactivity, and Clinical Outcomes in Clopidogrel-Treated Patients Undergoing Percutaneous Coronary Intervention. Circ. Cardiovasc. Interv. 2015, 8, e002760. [Google Scholar] [CrossRef] [Green Version]
- Morel, O.; Muller, C.; Jesel, L.; Moulin, B.; Hannedouche, T. Impaired platelet P2Y12 inhibition by thienopyridines in chronic kidney disease: Mechanisms, clinical relevance and pharmacological options. Nephrol. Dial. Transplant. 2013, 28, 1994–2002. [Google Scholar] [CrossRef]
- Best, P.J.M.; Steinhubl, S.R.; Berger, P.B.; Dasgupta, A.; Brennan, D.M.; Szczech, L.A.; Califf, R.M.; Topol, E.J. The efficacy and safety of short- and long-term dual antiplatelet therapy in patients with mild or moderate chronic kidney disease: Results from the Clopidogrel for the Reduction of Events During Observation (CREDO) Trial. Am. Heart J. 2008, 155, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Keltai, M.; Tonelli, M.; Mann, J.F.E.; Sitkei, E.; Lewis, B.S.; Hawken, S.; Mehta, S.R.; Yusuf, S. For the Clopidogrel in Unstable Angina to Prevent Recurrent Events (CURE) trial investigators. Renal function and outcomes in acute coronary syndrome: Impact of clopidogrel. Eur. J. Cardiovasc. Prev. Rehabil. 2007, 14, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Best, P.J.M.; Lennon, R.; Ting, H.H.; Bell, M.R.; Rihal, C.S.; Holmes, D.R.; Berger, P.B. The impact of renal insufficiency on clinical outcomes in patients undergoing percutaneous coronary interventions. J. Am. Coll. Cardiol. 2002, 39, 1113–1119. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.S.; Park, S.J.; Kandzari, D.E.; Kirtane, A.J.; Fearon, W.F.; Brilakis, E.S.; Vermeersch, P.; Kim, Y.-H.; Waksman, R.; Mehilli, J.; et al. Saphenous Vein Graft Intervention. JACC Cardiovasc. Interv. 2011, 4, 831–843. [Google Scholar] [CrossRef] [Green Version]
- Brilakis, E.S.; Rao, S.V.; Banerjee, S.; Goldman, S.; Shunk, K.A.; Holmes, D.R.; Honeycutt, E.; Roe, M.T. Percutaneous Coronary Intervention in Native Arteries Versus Bypass Grafts in Prior Coronary Artery Bypass Grafting Patients. JACC Cardiovasc. Interv. 2011, 4, 844–850. [Google Scholar] [CrossRef] [Green Version]
- Brilakis, E.S.; O’Donnell, C.I.; Penny, W.; Armstrong, E.J.; Tsai, T.; Maddox, T.M.; Plomondon, M.E.; Banerjee, S.; Rao, S.V.; Garcia, S.; et al. Percutaneous Coronary Intervention in Native Coronary Arteries Versus Bypass Grafts in Patients with Prior Coronary Artery Bypass Graft Surgery. JACC Cardiovasc. Interv. 2016, 9, 884–893. [Google Scholar] [CrossRef]
- Xenogiannis, I.; Rangan, B.V.; Uyeda, L.; Banerjee, S.; Edson, R.; Bhatt, D.L.; Goldman, S.; Holmes, D.R.; Rao, S.V.; Shunk, K.; et al. In-Stent Restenosis in Saphenous Vein Grafts (from the DIVA Trial). Am. J. Cardiol. 2022, 162, 24–30. [Google Scholar] [CrossRef]
- Dangas, G.; Ellis, S.G.; Shlofmitz, R.; Katz, S.; Fish, D.; Martin, S.; Mehran, R.; Russell, M.E.; Stone, G.W. Outcomes of paclitaxel-eluting stent implantation in patients with stenosis of the left anterior descending coronary artery. J. Am. Coll. Cardiol. 2005, 45, 1186–1192. [Google Scholar] [CrossRef] [Green Version]
- Thiele, H.; Neumann-Schniedewind, P.; Jacobs, S.; Boudriot, E.; Walther, T.; Mohr, F.W.; Schuler, G.; Falk, V. Randomized Comparison of Minimally Invasive Direct Coronary Artery Bypass Surgery Versus Sirolimus-Eluting Stenting in Isolated Proximal Left Anterior Descending Coronary Artery Stenosis. J. Am. Coll. Cardiol. 2009, 53, 2324–2331. [Google Scholar] [CrossRef]
- Kedhi, E.; Joesoef, K.S.; McFadden, E.; Wassing, J.; van Mieghem, C.; Goedhart, D.; Smits, P.C. Second-generation everolimus-eluting and paclitaxel-eluting stents in real-life practice (COMPARE): A randomised trial. Lancet 2010, 375, 201–209. [Google Scholar] [CrossRef]
- Kandzari, D.E.; Leon, M.B.; Meredith, I.; Fajadet, J.; Wijns, W.; Mauri, L. Final 5-Year Outcomes from the Endeavor Zotarolimus-Eluting Stent Clinical Trial Program. JACC Cardiovasc. Interv. 2013, 6, 504–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migliorini, A.; Shehu, M.; Carrabba, N.; Giurlani, L.; Valenti, R.; Buonamici, P.; Dovellini, E.V.; Parodi, G.; Antoniucci, D. Predictors of Outcome After Sirolimus-Eluting Stent Implantation for Complex In-Stent Restenosis. Am. J. Cardiol. 2005, 96, 1110–1112. [Google Scholar] [CrossRef] [PubMed]
- Dangas, G.D.; Claessen, B.E.; Caixeta, A.; Sanidas, E.A.; Mintz, G.S.; Mehran, R. In-Stent Restenosis in the Drug-Eluting Stent Era. J. Am. Coll. Cardiol. 2010, 56, 1897–1907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claessen, B.E.; Smits, P.C.; Kereiakes, D.J.; Parise, H.; Fahy, M.; Kedhi, E.; Serruys, P.W.; Lansky, A.J.; Cristea, E.; Sudhir, K.; et al. Impact of Lesion Length and Vessel Size on Clinical Outcomes After Percutaneous Coronary Intervention with Everolimus- Versus Paclitaxel-Eluting Stents. JACC Cardiovasc. Interv. 2011, 4, 1209–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, A.K. Women, Ischemic Heart Disease, Revascularization, and the Gender Gap. J. Am. Coll. Cardiol. 2006, 47, S63–S65. [Google Scholar] [CrossRef] [Green Version]
- Guru, V.; Fremes, S.E.; Austin, P.C.; Blackstone, E.H.; Tu, J.V. Gender Differences in Outcomes After Hospital Discharge from Coronary Artery Bypass Grafting. Circulation 2006, 113, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Wiviott, S.D.; Cannon, C.P.; Morrow, D.A.; Murphy, S.A.; Gibson, C.M.; McCabe, C.H.; Sabatine, M.S.; Rifai, N.; Giugliano, R.P.; DiBattiste, P.M.; et al. Differential Expression of Cardiac Biomarkers by Gender in Patients with Unstable Angina/Non–ST-Elevation Myocardial Infarction: A TACTICS-TIMI 18 (Treat Angina with Aggrastat and determine Cost of Therapy with an Invasive or Conservative Strategy–Thrombolysis in Myocardial Infarction 18) Substudy. Circulation 2004, 109, 580–586. [Google Scholar]
- Shiyovich, A.; Chodick, G.; Azani, L.; Tirosh, M.; Shuvy, M.; Pereg, D.; Katz, A.; Minha, S. Sex-specific contemporary trends in incidence, prevalence and survival of patients with non-valvular atrial fibrillation: A long-term real-world data analysis. PLoS ONE 2021, 16, e0247097. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, Q.; Much, A.A.; Maor, E.; Segev, A.; Beinart, R.; Adawi, S.; Lu, Y.; Bragazzi, N.L.; Wu, J. Global, regional, and national prevalence, incidence, mortality, and risk factors for atrial fibrillation, 1990–2017: Results from the Global Burden of Disease Study 2017. Eur. Heart J. Qual. Care Clin. Outcomes 2021, 7, 574–582. [Google Scholar] [CrossRef]
- Andrade, J.G.; Deyell, M.W.; Lee, A.Y.K.; Macle, L. Sex Differences in Atrial Fibrillation. Can. J. Cardiol. 2018, 34, 429–436. [Google Scholar] [CrossRef]
- Magnussen, C.; Niiranen, T.J.; Ojeda, F.M.; Gianfagna, F.; Blankenberg, S.; Njølstad, I.; Vartiainen, E.; Sans, S.; Pasterkamp, G.; Hughes, M.; et al. Sex Differences and Similarities in Atrial Fibrillation Epidemiology, Risk Factors, and Mortality in Community Cohorts: Results from the BiomarCaRE Consortium (Biomarker for Cardiovascular Risk Assessment in Europe). Circulation 2017, 136, 1588–1597. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, R.B.; Pecen, L.; Ojeda, F.M.; Lucerna, M.; Rzayeva, N.; Blankenberg, S.; Darius, H.; Kotecha, D.; Caterina, R.D.; Kirchhof, P. Gender differences in clinical presentation and 1-year outcomes in atrial fibrillation. Heart 2017, 103, 1024–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, G.W.; Maehara, A.; Lansky, A.J.; de Bruyne, B.; Cristea, E.; Mintz, G.S.; Mehran, R.; McPherson, J.; Farhat, N.; Marso, S.P.; et al. A Prospective Natural-History Study of Coronary Atherosclerosis. N. Engl. J. Med. 2011, 364, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Glaser, R.; Selzer, F.; Faxon, D.P.; Laskey, W.K.; Cohen, H.A.; Slater, J.; Detre, K.M.; Wilensky, R.L. Clinical Progression of Incidental, Asymptomatic Lesions Discovered During Culprit Vessel Coronary Intervention. Circulation 2005, 111, 143–149. [Google Scholar] [CrossRef]
- Humphries, K.H.; Izadnegahdar, M.; Sedlak, T.; Saw, J.; Johnston, N.; Schenck-Gustafsson, K.; Shah, R.U.; Regitz-Zagrosek, V.; Grewal, J.; Vaccarino, V.; et al. Sex differences in cardiovascular disease—Impact on care and outcomes. Front. Neuroendocrinol. 2017, 46, 46–70. [Google Scholar] [CrossRef]
- Patel, N.J.; Bavishi, C.; Atti, V.; Tripathi, A.; Nalluri, N.; Cohen, M.G.; Kini, A.S.; Sharma, S.K.; Dangas, G.; Bhatt, D.L. Drug-Eluting Stents Versus Bare-Metal Stents in Saphenous Vein Graft Intervention: An Updated Meta-Analysis of Randomized Controlled Trials. Circ. Cardiovasc. Interv. 2018, 11, e007045. [Google Scholar] [CrossRef]
- Chew, D.P.; French, J.; Briffa, T.G.; Hammett, C.J.; Ellis, C.J.; Ranasinghe, I.; Aliprandi-Costa, B.J.; Astley, C.M.; Turnbull, F.M.; Lefkovits, J.; et al. Acute coronary syndrome care across Australia and New Zealand: The SNAPSHOT ACS study. Med. J. Aust. 2013, 199, 185–191. [Google Scholar] [CrossRef]
Factor | Total | Male | Female | p |
---|---|---|---|---|
N | 13,996 | 10,687 | 3304 | |
Age (in yr), mean (SD) | 68.8 (10.4) (n = 13979) | 67.9 (10.3) (n = 10677) | 71.7 (10.1) (n = 3297) | <0.001 |
Age categories | ||||
<55 years | 1413 (10.1%) | 1192 (11.2%) | 221 (6.7%) | <0.001 |
55–74 years | 8565 (61.3%) | 6770 (63.4%) | 1790 (54.3%) | <0.001 |
>75 years | 4001 (28.6%) | 2715 (25.4%) | 1286 (39.0%) | <0.001 |
Risk Factors | ||||
Diabetes | 3433 (24.7%) | 2622 (24.7%) | 810 (24.7%) | 0.99 |
Hypertension | 10195 (73.8%) | 7582 (71.9%) | 2613 (79.9%) | <0.001 |
Hypercholesterolemia (Chl > 5.2/on Med) | 11437 (86.6%) | 8681 (86.0%) | 2753 (88.8%) | <0.001 |
Family history CAD | 5065 (40.8%) | 3820 (40.2%) | 1245 (42.6%) | 0.02 |
Chronic HF | 710 (5.2%) | 513 (4.9%) | 197 (6.1%) | 0.01 |
Current HF < 2 wks | 483 (3.5%) | 343 (3.3%) | 140 (4.4%) | 0.004 |
Smoking history | ||||
Never smoked | 5974 (45.1%) | 4088 (40.3%) | 1885 (60.8%) | <0.001 |
Previous smoker | 6129 (46.3%) | 5138 (50.7%) | 988 (31.9%) | <0.001 |
Current smoker | 1138 (8.6%) | 909 (9.0%) | 229 (7.4%) | 0.01 |
BMI (kg/m2), mean (SD) | 28.9 (4.9) (n = 12788) | 29.0 (4.6) (n = 9759) | 28.7 (5.8) (n = 3024) | <0.001 |
Previous MI | 3100 (22.7%) | 2498 (23.9%) | 602 (18.6%) | <0.001 |
Previous PCI | 4582 (33.0%) | 3642 (34.4%) | 938 (28.6%) | <0.001 |
Previous PVD | 1034 (7.6%) | 767 (7.4%) | 267 (8.3%) | 0.09 |
Previous CeVD | 965 (7.1%) | 693 (6.7%) | 272 (8.4%) | <0.001 |
Previous CABG | 1511 (10.9%) | 1268 (11.9%) | 243 (7.4%) | <0.001 |
Renal dysfunction1 | 707 (5.7%) | 537 (5.7%) | 170 (5.8%) | 0.93 |
eGFR (ml/min/1.73 m2), mean (SD) | 72.1 (17.2) (n = 12064) | 72.9 (16.8) (n = 9173) | 69.7 (18.3) (n = 2888) | <0.001 |
Atrial fibrillation | 1556 (14.2%) | 1155 (13.8%) | 401 (15.7%) | 0.02 |
Ejection fraction, mean (SD) | 56.9 (10.1) (n = 11548) | 56.5 (10.1) (n = 8780) | 58.0 (9.9) (n = 2765) | <0.001 |
Cardiogenic Shock | 44 (0.3%) | 29 (0.3%) | 15 (0.5%) | 0.100 |
Clinical presentation | ||||
Elective | 7426 (55.1%) | 5735 (55.6%) | 1690 (53.3%) | 0.02 |
STEMI | 915 (6.8%) | 715 (6.9%) | 199 (6.3%) | 0.20 |
NSTEMI | 2925 (21.7%) | 2197 (21.3%) | 727 (22.9%) | 0.05 |
Unstable angina | 2220 (16.5%) | 1664 (16.1%) | 555 (17.5%) | 0.07 |
Overall | ||||
---|---|---|---|---|
Variables | Total | Male | Female | p |
N | 13,996 | 10,687 | 3304 | |
Average number of lesions per procedure, mean (SD) | 1.4 (0.6) (n = 13919) | 1.4 (0.7) (n = 10638) | 1.3 (0.6) (n = 3276) | <0.001 |
Disease extent multivessel | 6191 (44.5%) | 4916 (46.3%) | 1274 (38.8%) | <0.001 |
Lesion access site | ||||
Femoral | 8032 (57.8%) | 6083 (57.3%) | 1945 (59.4%) | 0.033 |
Radial | 5830 (41.9%) | 4505 (42.4%) | 1324 (40.4%) | 0.043 |
Brachial | 41 (0.3%) | 34 (0.3%) | 7 (0.2%) | 0.33 |
Coronary lesion | ||||
De novo | 11814 (84.4%) | 9126 (85.4%) | 2683 (81.2%) | <0.001 |
In stent restenosis | 671 (4.8%) | 524 (4.9%) | 147 (4.4%) | 0.29 |
Restenosis | 63 (0.5%) | 52 (0.5%) | 11 (0.3%) | 0.25 |
Other | 156 (1.1%) | 132 (1.2%) | 24 (0.7%) | 0.015 |
ACC/AHA morphology | ||||
A | 1561 (11.2%) | 1174 (11.0%) | 387 (11.8%) | 0.22 |
B1 | 4077 (29.3%) | 3110 (29.2%) | 965 (29.5%) | 0.81 |
B2_C | 5992 (43.0%) | 4706 (44.2%) | 1283 (39.2%) | <0.001 |
Target vessel | ||||
RCA | 3738 (26.7%) | 2867 (26.8%) | 871 (26.4%) | 0.60 |
LMCA | 194 (1.4%) | 155 (1.5%) | 39 (1.2%) | 0.25 |
LAD | 5265 (37.6%) | 4011 (37.5%) | 1252 (37.9%) | 0.71 |
LCx | 2557 (18.3%) | 2060 (19.3%) | 496 (15.0%) | <0.001 |
Bypass | 363 (2.6%) | 315 (2.9%) | 48 (1.5%) | <0.001 |
Total occlusion | 601 (4.8%) | 494 (5.1%) | 106 (3.7%) | 0.003 |
Bifurcation lesion | 1260 (10.0%) | 969 (9.9%) | 291 (10.2%) | 0.61 |
FFR used | 1938 (13.8%) | 1378 (12.9%) | 560 (16.9%) | <0.001 |
Bare-metal stents (BMSs) | 1942 (16.6%) | 1474 (16.3%) | 468 (17.7%) | 0.078 |
Drug-eluting stents (DESs) | 10,593 (91.8%) | 8234 (92.1%) | 2355 (90.7%) | 0.021 |
Average number of stents per procedure | 1.3 (0.9) (n = 13,919) | 1.4 (0.9) (n = 10,638) | 1.2 (0.9) (n = 3276) | <0.001 |
Stent length (mm); ±SD | 19.2 (6.6) (n = 12,127) | 19.3 (6.6) (n = 9392) | 18.6 (6.6) (n = 2731) | <0.001 |
Stent diameter (mm); ±SD | 3.0 (0.5) (n = 12,129) | 3.0 (0.5) (n = 9394) | 2.9 (0.4) (n = 2731) | <0.001 |
Procedural success | 12,285 (96.7%) | 9514 (96.7%) | 2767 (96.8%) | 0.69 |
Overall | Male | Female | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Predictor Variables | Odds Ratio | L95% CI | U95% CI | p-Value | Odds Ratio | L95% CI | U95% CI | p-Value | Odds Ratio | L95% CI | U95% CI | p-Value |
Age category | ||||||||||||
<55 yr | Ref | Ref | ||||||||||
55–74 yr | 0.79 | 0.59 | 1.05 | 0.10 | 0.56 | 0.34 | 0.91 | 0.02 | ||||
75 + yr | 0.75 | 0.55 | 1.04 | 0.07 | 0.50 | 0.29 | 0.83 | 0.01 | ||||
Female | 1.31 | 1.07 | 1.60 | 0.01 | ||||||||
Diabetes | 0.90 | 0.74 | 1.11 | 0.34 | 0.90 | 0.70 | 1.14 | 0.37 | ||||
Hypertension | 1.21 | 0.98 | 1.49 | 0.08 | 1.18 | 0.93 | 1.50 | 0.17 | ||||
Heart failure | 1.13 | 0.81 | 1.57 | 0.47 | 1.07 | 0.72 | 1.59 | 0.75 | ||||
Ejection fraction | 1.00 | 0.99 | 1.01 | 0.91 | 1.00 | 0.98 | 1.01 | 0.40 | ||||
Previous MI | 1.02 | 0.81 | 1.29 | 0.84 | 1.11 | 0.86 | 1.45 | 0.42 | 0.75 | 0.51 | 1.12 | 0.16 |
Previous PCI | 0.92 | 0.74 | 1.15 | 0.47 | 0.88 | 0.69 | 1.13 | 0.33 | 1.18 | 0.82 | 1.68 | 0.37 |
Previous PVD | 1.25 | 0.92 | 1.70 | 0.15 | 1.35 | 0.95 | 1.92 | 0.09 | ||||
Previous CeVD | 1.21 | 0.89 | 1.63 | 0.22 | 1.17 | 0.81 | 1.68 | 0.40 | 1.39 | 0.87 | 2.22 | 0.17 |
Previous CABG | 1.60 | 1.18 | 2.17 | 0.03 | 1.31 | 0.92 | 1.87 | 0.14 | 1.95 | 1.18 | 3.24 | 0.01 |
Atrial fibrillation | 1.84 | 1.47 | 2.29 | <0.001 | 1.67 | 1.28 | 2.17 | <0.001 | 2.10 | 1.48 | 2.97 | <0.001 |
Renal dysfunction | 1.40 | 1.00 | 1.96 | 0.05 | 1.36 | 0.92 | 2.02 | 0.12 | ||||
Clinical presentation | ||||||||||||
STEMI | Ref | Ref | ||||||||||
NSTEMI | 1.22 | 0.83 | 1.81 | 0.30 | 1.44 | 0.90 | 2.32 | 0.13 | ||||
UAP | 1.38 | 0.92 | 2.06 | 0.12 | 1.73 | 1.06 | 2.83 | 0.03 | ||||
Elective | 1.02 | 0.70 | 1.50 | 0.90 | 1.34 | 0.85 | 2.14 | 0.21 | ||||
Coronary lesion | ||||||||||||
De novo | Ref | Ref | Ref | |||||||||
In stent restenosis | 1.49 | 1.00 | 2.23 | 0.05 | 1.22 | 0.75 | 1.99 | 0.43 | 2.60 | 1.46 | 4.61 | 0.001 |
Restenosis | 2.82 | 0.77 | 10.29 | 0.12 | 3.48 | 0.94 | 12.96 | 0.06 | 3.02 | 0.30 | 30.04 | 0.35 |
Other de novo | 1.42 | 0.56 | 3.61 | 0.46 | 1.23 | 0.40 | 3.78 | 0.72 | 1.28 | 0.26 | 6.38 | 0.77 |
ACC/AHA morphology | ||||||||||||
A | Ref | |||||||||||
B1 | 0.85 | 0.56 | 1.30 | 0.46 | ||||||||
B2_C | 0.64 | 0.42 | 0.98 | 0.04 | ||||||||
Target vessel | ||||||||||||
RCA | Ref | Ref | Ref | |||||||||
LMCA | 0.81 | 0.38 | 1.73 | 0.59 | 0.87 | 0.38 | 1.98 | 0.74 | 1.77 | 0.58 | 5.37 | 0.31 |
LAD | 1.24 | 1.00 | 1.53 | 0.048 | 1.12 | 0.87 | 1.44 | 0.38 | 1.18 | 0.84 | 1.65 | 0.34 |
LCx | 1.18 | 0.92 | 1.51 | 0.20 | 1.14 | 0.86 | 1.52 | 0.36 | 1.13 | 0.74 | 1.73 | 0.57 |
Bypass | 1.77 | 1.06 | 2.95 | 0.03 | 1.83 | 1.03 | 3.25 | 0.04 | 1.97 | 0.71 | 5.46 | 0.20 |
Multivessel (vs. No) | 1.05 | 0.88 | 1.25 | 0.58 | 1.05 | 0.86 | 1.29 | 0.61 | ||||
DES (vs. BMS) | 0.78 | 0.58 | 1.07 | 0.12 | 0.71 | 0.50 | 1.02 | 0.06 | ||||
Stent diameter (Per mm) | 0.79 | 0.66 | 0.96 | 0.02 | 0.85 | 0.69 | 1.05 | 0.13 | 0.68 | 0.48 | 0.95 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conradie, A.; Atherton, J.; Chowdhury, E.; Duong, M.; Schwarz, N.; Worthley, S.; Eccleston, D. The Association of Sex with Unplanned Cardiac Readmissions following Percutaneous Coronary Intervention in Australia: Results from a Multicentre Outcomes Registry (GenesisCare Cardiovascular Outcomes Registry). J. Clin. Med. 2022, 11, 6866. https://doi.org/10.3390/jcm11226866
Conradie A, Atherton J, Chowdhury E, Duong M, Schwarz N, Worthley S, Eccleston D. The Association of Sex with Unplanned Cardiac Readmissions following Percutaneous Coronary Intervention in Australia: Results from a Multicentre Outcomes Registry (GenesisCare Cardiovascular Outcomes Registry). Journal of Clinical Medicine. 2022; 11(22):6866. https://doi.org/10.3390/jcm11226866
Chicago/Turabian StyleConradie, Andre, John Atherton, Enayet Chowdhury, MyNgan Duong, Nisha Schwarz, Stephen Worthley, and David Eccleston. 2022. "The Association of Sex with Unplanned Cardiac Readmissions following Percutaneous Coronary Intervention in Australia: Results from a Multicentre Outcomes Registry (GenesisCare Cardiovascular Outcomes Registry)" Journal of Clinical Medicine 11, no. 22: 6866. https://doi.org/10.3390/jcm11226866
APA StyleConradie, A., Atherton, J., Chowdhury, E., Duong, M., Schwarz, N., Worthley, S., & Eccleston, D. (2022). The Association of Sex with Unplanned Cardiac Readmissions following Percutaneous Coronary Intervention in Australia: Results from a Multicentre Outcomes Registry (GenesisCare Cardiovascular Outcomes Registry). Journal of Clinical Medicine, 11(22), 6866. https://doi.org/10.3390/jcm11226866