Minimally Invasive Glaucoma Surgery: Safety of Individual Devices
Abstract
:1. Introduction
2. Method of the Literature Search
- “Minimally invasive surgical procedures” AND “glaucoma”;
- “Minimally invasive glaucoma surgery”;
- “MIGS”;
- “Microinvasive glaucoma surgery”;
- 1 OR 2 OR 3 OR 4;
- “Complicat*”;
- “Side effect*”;
- “Adverse”;
- 6 OR 7 OR 8;
- 5 AND 9.
3. Results
3.1. Enhancing Aqueous Outflow through the Trabecular Meshwork
3.1.1. iStent Trabecular Micro-Bypass Stent
3.1.2. iStent Inject
3.1.3. Hydrus Microstent
3.1.4. Kahook Dual Blade Goniotomy
3.1.5. Trabectome
3.1.6. Gonioscopy-Assisted Transluminal Trabeculotomy
3.1.7. TRAB360
3.1.8. VISCO360
3.1.9. OMNI System
3.1.10. Ab Interno Canaloplasty
3.1.11. Summary
3.2. Enhancing Aqueous Outflow through the Suprachoroidal Space
3.2.1. CyPass Micro-Stent
3.2.2. iStent Supra
3.2.3. Summary
3.3. Shunting Aqueous Outflow into the Subconjunctival Space
3.3.1. XEN Gel Stent
3.3.2. PreserFlo MicroShunt (Formerly InnFocus MicroShunt)
3.3.3. Summary
3.4. Reducing Aqueous Production by Ciliary Body Ablation
3.4.1. Endocyclophotocoagulation
3.4.2. Summary
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Device | Complication | Incidence | Included Studies |
---|---|---|---|
iStent Trabecular Micro-Bypass Stent | IOP spike | 1.8–22.2% | Ahmed et al., Al Habash et al., Donnenfeld et al., Ferguson et al., Hooshmand et al., Katz et al., Kozera et al., Nitta et al., Samuelson et al., Vold et al. [12,13,16,17,18,19,20,21,22,23,24,25] |
New cataract | 1.3–20% | ||
Device obstruction | 0–13.2% | ||
Hyphaema | 1.85–11.4% | ||
PCO | 3–9.09% | ||
Corneal oedema | 2.1–8.97% | ||
BCVA loss >2 lines | 1.3–7.7% | ||
Corneal abrasion | 2.1–7.4% | ||
SCH | 1.8–2.27% | ||
Epiretinal membrane | 2% | ||
Iridodialysis | 0–1.85% | ||
Viral keratitis | 0–1.8% | ||
Iris atrophy | 1% | ||
Blurry vision | 1% | ||
Dry eye | 1% | ||
CMO | 1% | ||
Foreign body sensation | 0% | ||
Ocular allergy | 0% | ||
Pain | 0% | ||
Stent migration | 0% | ||
Choroidal detachment | 0% | ||
Retinal detachment | 0% | ||
Endophthalmitis | 0% | ||
Hypotony maculopathy | 0% | ||
PAS formation | 0% | ||
iStent Inject | IOP spike | 1.06–18.6% | Al Habash et al., Berdahl et al., Fea et al., Hengerer et al., Salimi et al., Samuelson et al., Seixas et al., Shalaby et al. [28,29,30,31,32,34,35,36] |
Ocular surface disease | 16.1% | ||
Corneal oedema | 0–10% | ||
PCO | 8% | ||
Stent occlusion | 0–6.2% | ||
AC inflammation | 0–6% | ||
Hyphaema | 0–5% | ||
New cataract | 4.55% | ||
Ocular allergy | 0–2.8% | ||
Posterior vitreous detachment | 2.6% | ||
BCVA loss ≥2 lines | 0–2.6% | ||
Foreign body sensation | 2.3% | ||
Blurred vision | 2.3% | ||
Epiretinal membrane | 2.3% | ||
Extraocular inflammation | 2.3% | ||
Vitreous floaters | 2.1% | ||
Pain | 1.06–2.1% | ||
Corneal abrasion | 0–2.1% | ||
CMO | 1.33% | ||
Corneal opacity | 0–1.0% | ||
Hyperaemia | 0.8% | ||
Choroidal effusion | 0% | ||
Vitreous/retinal haemorrhage | 0% | ||
PAS formation | 0% | ||
Hypotony | 0% | ||
Endophthalmitis | 0% | ||
Choroidal detachment | 0% | ||
Myopic shift | 0% | ||
Hydrus Microstent | PAS formation | 0–18.8% | Ahmed et al., Fea et al., Lee et al., Meer et al., Pfeiffer et al. [38,39,40,41,42] |
Device obstruction | 12.2% | ||
BCVA loss >2 lines | 0–9.68% | ||
Hyphaema | 1.92–6.45% | ||
IOP spike | 1.9–6.45% | ||
Corneal oedema | 0–3.23% | ||
New cataract | 2.6% | ||
Vitreomacular traction | 2.1% | ||
Optic disc haemorrhage | 2.0% | ||
CMO | 2.0% | ||
Epiretinal membrane | 0% | ||
Stent migration | 0% | ||
Flat AC | 0% | ||
Choroidal effusion | 0% | ||
Hypotony | 0% | ||
AC inflammation | 0% | ||
Conjunctival injection/oedema | 0% | ||
Scleritis | 0% | ||
Corneal abrasion/infection | 0% | ||
Retinal tear/detachment | 0% | ||
Retinal haemorrhage | 0% | ||
Optic nerve atrophy | 0% | ||
Wound leak | 0% | ||
Kahook Dual Blade Goniotomy | Hyphaema | 0–34.9% | Arnljots et al., Berdahl et al., El Mallah et al., Falkenberry et al., Iwasaki et al., Lee et al., Salinas et al., Tanito et al., Ventura-Abreu et al., Wakil et al. [43,44,45,46,47,48,49,50,51,52] |
IOP spike | 1.0–18.2% | ||
PCO | 1.6–15.5% | ||
Corneal oedema | 1.0–15.5% | ||
CMO | 3.13–6.03% | ||
AC inflammation | 0.54–4% | ||
Descemet’s membrane tear | 0–3.8% | ||
Epiretinal membrane | 3.45% | ||
Iris prolapse | 3–3.13% | ||
Hypotony | 0–3.13% | ||
Posterior synechiae/corectopia/ | 2% | ||
pupillary occlusion | |||
Posterior vitreous detachment | 1.9% | ||
Retinal vein occlusion | 0.18–1.72% | ||
BCVA loss >2 lines | 1.72% | ||
Cyclodialysis cleft | 1.2% | ||
Vitreous haemorrhage | 0.89% | ||
Blood accumulation in lens bag | 0.89% | ||
Retinal detachment | 0.86% | ||
Choroidal haemorrhage | 0.18% | ||
Wound leak | 0% | ||
Flat AC | 0% | ||
Recurrent uveitis | 0% | ||
New cataract | 0% | ||
Endophthalmitis | 0% | ||
PAS formation | 0% | ||
Hypotony maculopathy | 0% | ||
Trabectome | Hyphaema | 4.72–95% | Ahuja et al., Avar et al., Bendel et al., Bussel et al., Esfandieri et al., Kono et al., Sato et al., Yildirim et al. [55,57,58,59,60,61,62,63] |
PAS formation | 60.0% | ||
IOP spike | 2.06–28.9% | ||
Corneal abrasion | 28.5% | ||
Delayed-onset hyphaema | 4.9–5% | ||
Iris prolapse | 5% | ||
BCVA loss >2 lines | 0–5% | ||
CMO | 2.65% | ||
SCH | 1.47% | ||
Prolonged pain | 0–0.88% | ||
Aqueous misdirection | 0–0.4% | ||
Hypotony | 0–0.3% | ||
Infection | 0–0.3% | ||
Bleb formation | 0% | ||
Wound leak | 0% | ||
Choroidal effusion | 0% | ||
Choroidal haemorrhage | 0% | ||
Flat AC | 0% | ||
Endophthalmitis | 0% | ||
Gonioscopy-Assisted Transluminal Trabeculotomy | Hyphaema | 0.97–38% | Baykara et al., Boese et al., Grover et al., Hamze et al., Loayza-Gamboa et al., Olgun et al., Rahmatnejad et al., Sharkawi et al. [64,65,66,67,68,70,71,72] |
IOP spike | 0–18.7% | ||
Fibrinous uveitis | 5.4% | ||
Hypotony | 0–3.1% | ||
Iris prolapse | 2.7% | ||
Iridodialysis | 0–2.7% | ||
Toxic anterior segment syndrome | 0.93% | ||
Suprachoroidal haemorrhage | 0.93% | ||
Descemet’s membrane detachment | 0% | ||
Corneal oedema | 0% | ||
Endophthalmitis | 0% | ||
Choroidal detachment | 0% | ||
TRAB360 | Hyphaema | 50.6% | Sarkisian et al. [73] |
Corneal oedema | 6.2% | ||
Posterior vitreous detachment | 2.5% | ||
Iris trauma | 1.2% | ||
Neovascularisation | 1.2% | ||
Pain | 1.2% | ||
Steroid responder | 1.2% | ||
Keratic precipitates | 1.2% | ||
Retinal detachment | 1.2% | ||
VISCO360 | Hyphaema | 1–13.1% | Heersink et al., Ondrejka et al., Tracer et al. [74,75,76] |
AC inflammation | 0.9–6% | ||
BCVA loss ≥2 lines | 3% | ||
Dry eye exacerbation | 3% | ||
IOP spike | 0.9–1.1% | ||
SCH | 1% | ||
Foreign body sensation | 1% | ||
Corneal oedema | 0% | ||
OMNI System | PCO | 17.3% | Hirsch et al. [79] |
AC inflammation | 9.9% | ||
CMO | 4.9% | ||
Corneal oedema | 4.9% | ||
IOP increase (≥10 mmHg above baseline >30 days post-op) | 3.7% | ||
Clinically significant hyphaema | 3.7% | ||
Worsening of VF (mean deviation ≥2 dB) | 1.2% | ||
BCVA loss ≥2 Snellen lines >3 months post-op | 1.2% | ||
Choroidal effusion | 1.2% | ||
Ocular allergic reaction | 1.2% | ||
Posterior vitreous detachment | 1.2% | ||
Cyclodialysis | 1.2% | ||
Ab Interno Canaloplasty | IOP spike | 0–22.2% | Al Habash et al., Davids et al., Gillmann et al., Kazerounian et al. [80,81,83,84] |
Hyphaema | 1.9–20% | ||
Descemet’s membrane detachment | 4% | ||
Iris atrophy | 1.9% | ||
Pupillary block | 1.9% | ||
AC inflammation | 1.9% | ||
Hypotony | 0% | ||
Choroidal effusion | 0% | ||
Choroidal haemorrhage | 0% | ||
Aqueous misdirection | 0% | ||
Wound leak | 0% |
Device | Complication | Incidence | Included Studies |
---|---|---|---|
CyPass Micro-Stent | IOP spike | 0.5–28.1% | Gabbay et al., Grisanti et al., Hoeh et al., Reiss et al., Vold et al. [85,87,88,89,90] |
BCVA loss ≥2 lines | 2.7–11.2% | ||
Stent obstruction | 2.1–10.2% | ||
Visual field loss | 1.8–10.2% | ||
Iritis | 8.6% | ||
Choroidal effusion | 4.7% | ||
Corneal oedema | 0.8–3.5% | ||
Hyphaema | 1.3–3.1% | ||
Hypotony | 0.4–2.9% | ||
Corneal abrasion | 1.9% | ||
Cyclodialysis | 1.9% | ||
Endothelial touch | 1.8% | ||
Vitreous haemorrhage | 1.6% | ||
Myopic shift | 1.6% | ||
SCH | 1.6% | ||
Retinal detachment | 0–1.6% | ||
CMO | 1.3–1.4% | ||
Conjunctivitis | 0.4–1.4% | ||
Dry eye syndrome | 1.3% | ||
AC inflammation | 0.9% | ||
Stent malposition | 0.9% | ||
Herpes keratitis | 0.4% | ||
Band keratopathy | 0.4% | ||
Plateau iris syndrome | 0.4% | ||
Hypotony maculopathy | 0% | ||
iStent Supra | BCVA loss ≥3 lines | 15% | Myers et al. [94] |
Choroidal effusion | 0% | ||
Hyphaema | 0% | ||
Iridodialysis | 0% |
Device | Complication | Incidence | Included Studies |
---|---|---|---|
XEN Gel Stent | Needling required | 22.1–43.4% | Baser et al., Busch et al., Grover et al., Heidinger et al., Hengerer et al., Karimi et al., Reitsamer et al., Theillac et al., Widder et al. [96,97,98,99,100,101,102,103,105] |
Hypotony | 1.9–34.7% | ||
Bleb fibrosis | 3–24% | ||
IOP spike | 2.6–21.5% | ||
Choroidal detachment | 0–17% | ||
Intraoperative bleeding | 9.4% | ||
Wound leak | 0–9.2% | ||
Stent occlusion | 3.9–8.8% | ||
BCVA loss ≥2 lines | 0.9–6.2% | ||
Hyphaema | 0.9–6% | ||
AC inflammation | 0.9–3.1% | ||
Choroidal effusion | 0–3.1% | ||
Endophthalmitis | 0–3% | ||
Corneal oedema | 0–2.8% | ||
Conjunctival fistula/subconjunctival cysts | 2.7% | ||
Iridocorneal touch | 2.4% | ||
Dysesthetic bleb | 1.5–2.3% | ||
Stent exposure | 0–2.3% | ||
Iris incarceration | 2.1% | ||
Hypotony maculopathy | 1.9% | ||
Stent migration | 0–1.8% | ||
CMO | 0.5–1.7% | ||
Dellen | 1.5% | ||
Fixed dilated pupil | 1.5% | ||
Macular puckering | 1.5% | ||
Blepharitis | 1.5% | ||
Chalazion | 1.5% | ||
Hyperaemia | 1.5% | ||
Shallow AC | 1.3–1.5% | ||
Bleb leak | 0.5–1.5% | ||
Aqueous misdirection | 0.9–1.0% | ||
Malignant glaucoma | 0.9% | ||
Vitreous haemorrhage | 0.9% | ||
Stent damage | 0.4–0.9% | ||
Corneal ulcer | 0–0.9% | ||
Dacryocystitis | 0.5% | ||
Macular hole | 0.5% | ||
Periorbital cellulitis | 0.5% | ||
Ptosis | 0.5% | ||
Scleritis | 0.5% | ||
Ulcerative keratitis | 0.5% | ||
Retinal vein occlusion | 0.4–0.5% | ||
Cyclodialysis cleft | 0.4% | ||
Preserflo MicroShunt | Choroidal effusion/detachment | 0–46% | Ahmed et al., Baker et al., Batlle et al., Beckers et al., Durr et al., Martinez-de-la-Casa et al., Quaranta et al., Scheres et al., Schlenker et al., Tanner et al. [106,107,108,109,110,111,112,113,114,115,116] |
IOP spike | 25.3–39.5% | ||
Hypotony | 0–39% | ||
Hyphaema/SCH | 2.5–20% | ||
Corneal oedema | 1.0–17.4% | ||
Bleb-related complications | 13.0% | ||
Iridocorneal touch | 2.9–13.0% | ||
Flat/shallow AC | 0–9.4% | ||
Corneal striae | 8.7% | ||
AC inflammation | 6.8% | ||
Bleb leak | 0–6.6% | ||
Keratitis | 6.2% | ||
Needling required | 5.9% | ||
Foreign body sensation | 4.3% | ||
Pain | 3.3–3.7% | ||
Hypotony maculopathy | 0–3.5% | ||
Dellen | 1.2% | ||
Ciliary body effusion | 1.2% | ||
Retinal tear | 1.2% | ||
Snuff out | 1.2% | ||
Diplopia | 1.2% | ||
Corneal abrasion | 1.0–1.2% | ||
Ptosis | 0.6–1.2% | ||
Vitreous haemorrhage | 0–1.2% | ||
CMO | 0–1.2% | ||
Iris incarceration | 0% | ||
Suprachoroidal haemorrhage | 0% | ||
Late (>1–3 months) | |||
Needling required | 5.0–150% | ||
IOP spike | 32.9–40.7% | ||
Worsening visual field mean deviation | 10.4% | ||
Conjunctival fibrosis | 8.6% | ||
Device touching cornea | 1.2–8.6% | ||
BCVA loss ≥ 2 lines | 6.1% | ||
Hypotony | 0–6.1% | ||
Hyphaema/SCH | 0–6.1% | ||
Blocked/exposed shunt | 0–5.7% | ||
Keratitis | 4.9% | ||
Bleb fibrosis | 4.7% | ||
Iritis | 2.5% | ||
CMO | 1.0–2.4% | ||
Hypotony maculopathy | 0–2.4% | ||
Ptosis | 0–2% | ||
Corneal decompensation | 0–1.8% | ||
Pain | 1.2% | ||
Diplopia | 1.2% | ||
New cataract | 1.2% | ||
Choroidal detachment | 1.2% | ||
Dellen | 1.2% | ||
Diplopia | 1.2% | ||
Blebitis | 0% | ||
Endophthalmitis | 0% | ||
PAS formation | 0% | ||
Retinal detachment | 0% | ||
Flat AC | 0% |
Device | Complication | Incidence | Included Studies |
---|---|---|---|
ECP | IOP spike | 31.81% | Izquierdo et al., Koduri et al. [119,122] |
Corneal oedema | 18.18% | ||
Keratitis | 18.18% | ||
PCO | 18.18% | ||
Persistent anterior uveitis | 14.9% | ||
CMO | 3.7% |
References
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Heijl, A.; Leske, M.C.; Bengtsson, B.; Hyman, L.; Bengtsson, B.; Hussein, M. Reduction of intra-ocular pressure and glaucoma progression: Results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 2002, 120, 1268–1279. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.F. Compliance and persistency in glaucoma follow-up treatment. Curr. Opin. Ophthalmol. 2005, 16, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Siani, S.D.; Schoenfeld, P.; Kaulback, K.; Dubinsky, M.C. Effect of dosing frequency on adherence in chronic diseases. Am. J. Manag. Care 2009, 15, 22–33. [Google Scholar]
- Gedde, S.J.; Herndon, L.W.; Brandt, J.D.; Budenz, D.L.; Feuer, W.J.; Schiffman, J.C. Surgical complications in the tube versus trabeculectomy study during the first year of follow-up. Am. J. Ophthalmol. 2007, 143, 23–31. [Google Scholar] [CrossRef]
- Jampel, H.D.; Musch, D.C.; Gillespie, B.W.; Lichter, P.R.; Wright, M.M.; Guire, K.E. Perioperative complications of trabeculectomy in the collaborative initial glaucoma treatment study (CIGTS). Am. J. Ophthalmol. 2005, 140, 16–22. [Google Scholar] [CrossRef]
- Jampel, H.D.; Solus, J.F.; Tracey, P.A.; Gilbert, D.L.; Loyd, T.L.; Jefferys, J.L.; Quigley, H.A. Outcomes and bleb-related complications of trabeculectomy. Ophthalmology 2012, 119, 712–722. [Google Scholar] [CrossRef]
- Bindlish, R.; Condon, G.P.; Schlosser, J.D.; D’Antonio, J.; Lauer, K.B.; Lehrer, R. Efficacy and safety of mitomycin-C in primary trabeculectomy: Five-year follow-up. Ophthalmology 2002, 109, 1336–1341. [Google Scholar] [CrossRef]
- Zahid, S.; Musch, D.C.; Niziol, L.M.; Lichter, P.R. Collaborative Initial Glaucoma Treatment Study Group. Risk of endophthalmitis and other long-term complications of trabeculectomy in the Collaborative Initial Glaucoma Treatment Study (CIGTS). Am. J. Ophthalmol. 2013, 155, 674–680. [Google Scholar] [CrossRef] [Green Version]
- Gedde, S.J.; Feuer, W.J.; Lim, K.S.; Barton, K.; Goyal, S.; Ahmed, I.I.; Brandt, J.D. Treatment outcomes in the primary tube versus trabeculectomy study after 3 years of follow-up. Ophthalmology 2020, 127, 333–345. [Google Scholar] [CrossRef]
- Saheb, H.; Ahmed, I.I. Micro-invasive glaucoma surgery: Current perspectives and future directions. Curr. Opin. Ophthalmol. 2012, 23, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.I.; Katz, L.J.; Chang, D.F.; Donnenfeld, E.D.; Solomon, K.D.; Voskanyan, L.; Samuelson, T.W. Prospective evaluation of micro invasive glaucoma surgery with trabecular micro bypass stents and prostaglandins in open-angle glaucoma. J. Cataract Refract. Surg. 2014, 40, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.I.; Fea, A.; Au, L.; Ang, R.E.; Harasymowicz, P.; Jampel, H.D.; Samuelson, T.W.; Chang, D.F.; Rhee, D.J.; COMPARE Investigators. A prospective randomised trial comparing Hydrus and iStent microinvasive glaucoma surgery implants for standalone treatment of open-angle glaucoma: The COMPARE study. Ophthalmology 2020, 127, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Fea, A.M. Phacoemulsification versus phacoemulsification with micro-bypass trabecular stent implantation in primary open-angle glaucoma: Randomized double-masked clinical trial. J. Cataract Refract. Surg. 2010, 36, 407–412. [Google Scholar] [CrossRef]
- Fernandez-Barrientos, Y.; Garcia-Feijoo, J.; Martinez-de-la-Casa, J.M.; Pablo, L.E.; Fernandez-Perez, C.; Garcia Sanchez, J. Fluorophotometric study of the effect of the Glaukos trabecular microbypass stent on aqueous humor dynamics. Investig. Ophthalmol. Vis. Sci. 2010, 51, 3327–3332. [Google Scholar] [CrossRef] [PubMed]
- Katz, L.J.; Erb, C.; Carceller Guillamet, A.; Fea, A.M.; Voskanyan, L.; Wells, J.M.; Voskanyan, L. Prospective, randomized study of one, two, or three trabecular bypass stents in open-angle glaucoma subjects on topical hypotensive medication. Clin. Ophthalmol. 2015, 9, 2313–2320. [Google Scholar]
- Kozera, M.; Konopinska, J.; Mariak, Z.; Rekas, M. System combined with phacoemulsification versus phacoemulsification alone in patients with glaucoma and cataract depending on the initial intraocular pressure. Ophthalmic. Res. 2021, 64, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Samuelson, T.W.; Katz, L.J.; Wells, J.M.; Duh, Y.J.; Giamporcaro, J.E. Randomized evaluation of the trabecular micro-bypass stent with phacoemulsification in patients with glaucoma and cataract. Ophthalmology 2011, 118, 459–467. [Google Scholar] [CrossRef]
- Vold, S.D.; Voskanyan, L.; Tetz, M.; Auffarth, G.; Masood, I.; Au, L.; Ahmed, I.I.K.; Saheb, H. Newly diagnosed primary open-angle glaucoma randomised to 2 trabecular bypass stents or prostaglandin: Outcomes through 36 months. Ophthalmol. Ther. 2016, 5, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Al Habash, A.; Khan, O. Outcomes of combined iStent trabecular micro-bypass and cataract surgery for the treatment of open-angle glaucoma in a Saudi population. Clin. Ophthalmol. 2020, 14, 1573–1580. [Google Scholar] [CrossRef]
- Donnenfeld, E.D.; Solomon, K.D.; Voskanyan, L.; Chang, D.F.; Samuelson, T.W.; Ahmed, I.I.; Katz, J.L. A prospective 3-year follow-up trial of implantation of two trabecular micro bypass stents in open-angle glaucoma. Clin. Ophthalmol. 2015, 9, 2057–2065. [Google Scholar]
- Ferguson, T.J.; Mechels, K.B.; Dockter, Z.; Bleeker, A.; Ibach, M.; Schweitzer, J.; Berdahl, J.P. iStent trabecular microbypass stent implantation with phacoemulsification in patients with open-angle glaucoma: 6-year outcomes. Clin. Ophthalmol. 2020, 14, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Hooshmand, J.; Rothschild, P.; Allen, P.; Kerr, N.M.; Vote, B.J.; Toh, T. Minimally invasive glaucoma surgery: Comparison of iStent with iStent inject in primary open angle glaucoma. Clin. Exp. Ophthalmol. 2019, 47, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Kozera, M.; Konopinska, J.; Mariak, Z.; Rekas, M. Treatment of open-angle glaucoma with iStent implantation combined with phacoemulsification in Polish Caucasian population. Clin. Ophthalmol. 2021, 15, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Nitta, K.; Yamada, Y.; Morokado, S.; Sugiyama, K. iStent trabecular micro-bypass stent implantation with cataract surgery in a Japanese glaucoma population. Clin. Ophthalmol. 2020, 14, 3381–3391. [Google Scholar] [CrossRef]
- Konopinska, J.; Saeed, E.; Lisowski, L.; Golaszewska, K.; Krasnicki, P.; Dmuchowska, D.A.; Obuchowska, I. Evaluation of the effect of the first generation iStent on corneal endothelial cell loss—A match case-control study. J. Clin. Med. 2021, 10, 4410. [Google Scholar] [CrossRef]
- Popovic, M.; Campos-Möller, X.; Saheb, H.; Ahmed, I.I. Efficacy and adverse event profile of the iStent and iStent Inject Trabecular Micro-bypass for open-angle glaucoma: A meta-analysis. J. Curr. Glaucoma Pract. 2018, 12, 67–84. [Google Scholar] [CrossRef]
- Fea, A.M.; Belda, J.I.; Rekas, M.; Junemann, A.; Chang, L.; Pablo, L.; Voskanyan, L.; Katz, L.J.; Rekas, M.; Juenemann, A.; et al. Prospective unmasked randomized evaluation of the iStent inject versus two ocular hypotensive agents in patients with primary open-angle glaucoma. Clin. Ophthalmol. 2014, 8, 875–882. [Google Scholar]
- Samuelson, T.W.; Sarkisian, S.R.; Lubeck, D.M.; Stiles, M.C.; Duh, Y.J.; Romo, E.A.; Giamporcaro, J.E.; Hornbeak, D.M.; Katz, L.J.; Bartlett, W.; et al. Prospective, randomized, controlled pivotal trial of an ab intern implanted trabecular micro-bypass in primary open-angle glaucoma and cataract: Two-year results. Ophthalmology 2019, 126, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Seixas, R.C.; Balbino, M.; Neto, A.B.; de Alcantara Almeida Costa, A.; da Silva Jordao, M.L.; Russ, H.H. Mid-term evaluation of iStent Inject trabecular micro-bypass stent implantation with or without phacoemulsification: A retrospective study. Clin. Ophthalmol. 2020, 14, 4403–4413. [Google Scholar] [CrossRef]
- Al Habash, A.; Otaif, W. Surgical outcomes of combined 2nd-generation trabecular microbypass (iStent Inject) and cataract surgery for the treatment of primary open-angle glaucoma in the Saudi population. Ophthalmol. Ther. 2021, 10, 9223–9233. [Google Scholar] [CrossRef] [PubMed]
- Berdahl, J.; Voskanyan, L.; Myers, J.S.; Hornbeak, D.M.; Giamporcaro, J.E.; Katz, L.J.; Samuelson, T.W. Implantation of two second-generation trabecular micro-bypass stents and topical travoprost in open-angle glaucoma not controlled on two preoperative medications: 18-month follow-up. Clin. Exp. Ophthalmol. 2017, 45, 797–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clement, C.; Howes, F.; Ioannidis, A.S.; Shiu, M.; Manning, D.; Lusthaus, J.; Lim, R. Two-year multicenter outcomes of iStent Inject trabecular micro-bypass stents combined with phacoemulsification in various types of glaucoma and ocular hypotension. Clin. Ophthalmol. 2020, 14, 3507–3517. [Google Scholar] [CrossRef] [PubMed]
- Hengerer, F.H.; Auffarth, G.U.; Riffel, C.; Conrad-Hengerer, I. Second-generation trabecular micro-bypass stents as standalone treatment for glaucoma: A 36-month prospective study. Adv. Ther. 2019, 36, 1606–1617. [Google Scholar] [CrossRef] [PubMed]
- Salimi, A.; Lapointe, J.; Harasymowycz, P. One-year outcomes of second-generation trabecular micro-bypass stents (iStent Inject) implantation with cataract surgery in different glaucoma subtypes and severities. Ophthalmol. Ther. 2019, 8, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, W.S.; Lam, S.S.; Arbabi, A.; Myers, J.S.; Moster, M.R.; Kolomeyer, N.N.; Razeghinejad, R.; Shukla, A.; Hussein, T.; Eid, T.; et al. iStent versus iStent Inject implantation combined with phacoemulsification in open angle glaucoma. Indian. J. Ophthalmol. 2021, 69, 2488–2495. [Google Scholar] [CrossRef]
- Johnstone, M.; Saheb, H.; Ahmed, I.I.; Samuelson, T.W.; Schieber, A.T.; Toris, C.B. Effects of a Schlemm canal scaffold on collector channel ostia in human anterior segments. Exp. Eye Res. 2014, 119, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, N.; Garcia-Feijoo, J.; Martinez-de-la-Casa, J.M.; Larrosa, J.M.; Fea, A.; Lemij, H.; Gandolfi, S.; Schwenn, O.; Lorenz, K. A randomised trial of a Schlemm’s canal microstent with phacoemulsification for reducing intraocular pressure in open-angle glaucoma. Ophthalmology 2015, 122, 1283–1293. [Google Scholar] [CrossRef]
- Ahmed, I.I.; Rhee, D.J.; Jones, J.; Singh, I.P.; Radcliffe, N.; Gazzard, G.; Samuelson, T.W.; Ong, J.; Singh, K. Three-year findings of the HORIZON trial: A Schlemm canal microstent for pressure reduction in primary open angle glaucoma and cataract. Ophthalmology 2021, 128, 857–865. [Google Scholar] [CrossRef]
- Fea, A.M.; Ahmed, I.I.; Lavia, C.; Mittica, P.; Consolandi, G.; Motolese, I.; Pignata, G.; Motolese, E.; Rolle, T.; Frezzotti, P. Hydrus microstent compared to selective laser trabeculoplasty in primary open angle glaucoma: One year results. Clin. Exp. Ophthalmol. 2017, 45, 120–127. [Google Scholar] [CrossRef]
- Lee, G.A.; Porter, A.J.; Vincent, R.A.; Makk, J.; Vincent, S.J. Combined phacoemulsification and microinvasive glaucoma surgery in comparison to phacoemulsification alone for open angle glaucoma. Eye 2020, 24, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Meer, E.; Liu, T.; Hua, P.; Ying, G.; Miller, E.; Lehman, A. Outcomes of resident performed Hydrus, iStent, and Kahook glaucoma procedures in a predominantly African American population. J. Glaucoma 2022, 31, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Falkenberry, S.; Singh, I.P.; Crane, C.J.; Haider, M.A.; Morgan, M.G.; Grenier, C.P.; Brubaker, J.W. Excisional goniotomy vs trabecular microbypass stent implantation: A prospective randomised clinical trial in eyes with mild to moderate open-angle glaucoma. J. Cataract Refract. Surg. 2020, 46, 1165–1171. [Google Scholar] [CrossRef] [PubMed]
- Ventura-Abreu, N.; Garcia-Feijoo, J.; Pazos, M.; Biarnes, M.; Morales-Fernandez, L.; Martinez-de-la-Casa, J.M. Twelve-month results of ab inferno trabeculectomy with Kahook Dual Blade: An interventional, randomised, controlled clinical study. Graef. Arch. Clin. Exp. 2021, 259, 2771–2781. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, K.; Takamura, Y.; Orii, Y.; Arimura, S.; Inatani, M. Performances of glaucoma operations with Kahook Dual Blade or iStent combined with phacoemulsification in Japanese open angle glaucoma patients. Int. J. Ophthalmic. 2020, 13, 941–945. [Google Scholar] [CrossRef]
- ElMallah, M.K.; Seibold, L.K.; Kahook, M.Y.; Williamson, B.K.; Singh, I.P.; Dorairaj, S.K. 12-month retrospective comparison of Kahook Dual Blade excisional goniotomy with iStent trabecular bypass device implantation in glaucomatous eyes at the time of cataract surgery. Adv. Ther. 2019, 36, 2515–2527. [Google Scholar] [CrossRef] [Green Version]
- Salinas, L.; Chaudhary, A.; Berdahl, J.P.; Lazcano-Gomez, G.S.; Williamson, B.K.; Dorairaj, S.K.; Seibold, L.K. Goniotomy using the Kahook Dual Blade in severe and refractory glaucoma: 6-month outcomes. J. Glaucoma 2018, 27, 849–855. [Google Scholar] [CrossRef]
- Arnljots, T.S.; Economou, M.A. Kahook Dual Blade Goniotomy vs iStent Inject: Long-term results in patients with open-angle glaucoma. Clin. Ophthalmol. 2021, 15, 541–550. [Google Scholar] [CrossRef]
- Berdahl, J.P.; Gallardo, M.J.; ElMallah, M.K.; Williamson, B.K.; Kahook, M.Y.; Mahootchi, A.; Rappaport, L.A.; Lazcano-Gomez, G.S.; Díaz-Robles, D.; Dorairaj, S.K. Six-month outcomes of goniotomy performed with the Kahook Dual Blade as a stand-alone glaucoma procedure. Adv. Ther. 2018, 35, 2093–2102. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; King, J.; Thomsen, S.; Hirahayashi, M.; An, J. Comparison of surgical outcomes between excision goniotomy using the Kahook Dual Blade and iStent trabecular micro-bypass stent in combination with phacoemulsification. Clin. Ophthalmol. 2019, 13, 2097–2102. [Google Scholar] [CrossRef] [Green Version]
- Tanito, M.; Sugihara, K.; Tsutsui, A.; Hara, K.; Manabe, K.; Matsuoka, Y. Midterm results of microhook ab interno trabeculotomy in initial 560 eyes with glaucoma. J. Clin. Med. 2021, 10, 814. [Google Scholar] [CrossRef] [PubMed]
- Wakil, S.M.; Birnbaum, F.; Vu, D.M.; McBurney-Lin, S.; ElMallah, M.K.; Tseng, H. Efficacy and safety of a single-use dual blade goniotomy: 18-month results. J. Cataract Refract. Surg. 2020, 46, 1408–1415. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Patel, S.; Baumrind, B.; Johnson, K.; Levinsohn, D.; Marcus, E.; Tannen, B.; Roy, M.; Bhagat, N.; Zarbin, M. Management of pseudophakic cystoid macular edema. Surv. Ophthalmol. 2015, 60, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Manabe, K.; Matsuoka, Y.; Tanito, M. Incidence of macular edema development after filtration surgery. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 1343–1345. [Google Scholar] [CrossRef]
- Ahuja, Y.; Pyi, S.M.; Maliki, M.; Hodge, D.; Sit, A.J. Clinical results of ab interno trabeculotomy using the Trabectome for open-angle glaucoma: The Mayo Clinic series in Rochester, Minnesota. Am. J. Ophthalmol. 2013, 156, 927–935. [Google Scholar] [CrossRef]
- Hu, K.; Shah, A.; Virgili, G.; Bunce, C.; Gazzard, G. Ab interno trabecular bypass surgery with Trabectome for open-angle glaucoma. Cochrane Database Syst. Rev. 2021, 2021, CD011693. [Google Scholar] [CrossRef]
- Bendel, R.E.; Patterson, M.T. Long-term effectiveness of Trabectome (ab-interno trabeculectomy) surgery. J. Curr. Glaucoma Pract. 2018, 12, 119–124. [Google Scholar] [CrossRef]
- Bussel, I.I.; Kaplowitz, K.; Schuman, J.S.; Loewen, N.A.; Trabectome Study Group. Outcomes of ab interno trabeculectomy with the Trabectome by degree of angle opening. Br. J. Ophthalmol. 2015, 99, 914–919. [Google Scholar] [CrossRef] [Green Version]
- Esfandieri, H.; Shah, P.; Torkian, P.; Conner, I.P.; Schuman, J.S.; Hassanpour, K.; Loewen, N.A. Five-year clinical outcomes of combined phacoemulsification and trabectome surgery at a single glaucoma center. Graef. Arch. Clin. Exp. 2019, 257, 357–362. [Google Scholar] [CrossRef]
- Avar, M.; Jordan, J.F.; Neuburger, M.; Engesser, D.; Lubke, J.; Anton, A.; Wecker, T. Long-term follow-up of intraocular pressure and pressure-lowering medication in patients after ab-interno trabeculectomy with the Trabectome. Graef. Arch. Clin. Exp. 2019, 257, 997–1003. [Google Scholar] [CrossRef]
- Kono, Y.; Kasahara, M.; Hirasawa, K.; Tsujisawa, T.; Kanayama, S.; Matsumara, K.; Morita, T.; Shoji, N. Long-term clinical results of trabectome surgery in patients with open-angle glaucoma. Graef. Arch. Clin. Exp. 2020, 258, 2467–2476. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, Y.; Kar, T.; Düzgün, E.; Sagdic, S.K.; Ayata, A.; Unal, M.H. Evaluation of the long-term results of trabectome surgery. Int. Ophthalmol. 2016, 36, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Kawaji, T.; Hirata, A.; Mizoguchi, T. 360-degree suture trabeculotomy ab interno to treat open-angle glaucoma: 2-year outcomes. Clin. Ophthalmol. 2018, 12, 915–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grover, D.S.; Godfrey, D.G.; Smith, O.; Feuer, W.J.; Montes de Oca, I.; Fellman, R.L. Gonioscopy-assisted transluminal trabeculotomy: Technique report and preliminary results. Ophthalmology 2014, 121, 855–861. [Google Scholar] [CrossRef]
- Rahmatnejad, K.; Pruzan, N.L.; Amanullah, S.; Shaukat, B.A.; Resende, A.F.; Waisbourd, M.; Zhan, T.; Moster, M.R. Surgical outcomes of gonioscopy-assisted transluminal trabeculotomy (GATT) in patient with open-angle glaucoma. J. Glaucoma 2017, 26, 1137–1143. [Google Scholar] [CrossRef]
- Baykara, M.; Poroy, C.; Erseven, C. Surgical outcomes of combined gonioscopy-assisted transluminal trabeculotomy and cataract surgery. Indian J. Ophthalmol. 2019, 67, 505–508. [Google Scholar] [CrossRef]
- Hamze, H.; Mohite, A.A.; Pandey, P.; Sung, V.C.T.; Masood, I. Comparison of 1-year surgical outcomes of combined cataract surgery and gonioscopy-assisted transluminal trabeculotomy (GATT) versus cataract surgery and iStent Inject. Graef. Arch. Clin. Exp. 2021, 259, 3035–3044. [Google Scholar] [CrossRef]
- Boese, E.A.; Shah, M. Gonioscopy assisted transluminal trabeculotomy (GATT) is an effective procedure for steroid-induced glaucoma. J. Glaucoma 2019, 28, 803–807. [Google Scholar] [CrossRef]
- Salimi, A.; Nithianandan, H.; Al Farsi, H.; Harasymowicz, P.; Saheb, H. Gonioscopy-assisted transluminal trabeculotomy in younger to middle-aged adults: One-year outcomes. Ophthalmol. Glaucoma 2021, 4, 162–172. [Google Scholar] [CrossRef]
- Loayza-Gamboa, W.; Martel-Ramirez, V.; Inga-Condezo, V.; Valderrama-Albino, V.; Alvarado-Villacorta, R.; Valera-Cornejo, D. Outcomes of combined prolene gonioscopy assisted transluminal trabeculotomy with phacoemulsification in open-angle glaucoma. Clin. Ophthalmol. 2020, 14, 3009–3016. [Google Scholar] [CrossRef]
- Olgun, A.; Aktas, Z.; Ucgul, A.Y. XEN gel implant versus gonioscopy-assisted transluminal trabeculotomy for the treatment of open-angle glaucoma. Int. Ophthalmol. 2020, 40, 1085–1093. [Google Scholar] [CrossRef]
- Sharkawi, E.; Lindegger, D.J.; Artes, P.H.; Lehmann-Clarke, L.; El Wardani, M.; Misteli, M.; Pasquier, J.; Guarnieri, A. Outcomes of gonioscopy-assisted transluminal trabeculotomy in pseudoexfoliative glaucoma: 24-month follow-up. Br. J. Ophthalmol. 2021, 105, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Sarkisian, S.R.; Mathews, B.; Ding, K.; Patel, A.; Nicek, Z. 360° ab-interno trabeculotomy in refractory primary open-angle glaucoma. Clin. Ophthalmol. 2019, 13, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Tracer, N.; Dickerson, J.E., Jr.; Radcliffe, N.M. Circumferential viscodilatation ab interno combined with phacoemulsification for treatment of open-angle glaucoma: 12-month outcomes. Clin. Ophthalmol. 2020, 14, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Ondrejka, S.; Korber, N. 360° ab-interno Schlemm’s canal viscodilation in primary open-angle glaucoma. Clin. Ophthalmol. 2019, 13, 1235–1246. [Google Scholar] [CrossRef] [Green Version]
- Heersink, M.; Dovich, J.A. Ab interno canaloplasty combined with trabecular bypass stunting in eyes with primary open-angle glaucoma. Clin. Ophthalmol. 2019, 13, 1533–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toneatto, G.; Zeppieri, M.; Papa, V.; Rizzi, L.; Salati, C.; Gabai, A.; Brusini, P. 360° ab-interno Schlemm’s canal viscodilation with OMNI viscosurgical systems for open-angle glaucoma—Midterm results. J. Clin. Med. 2022, 11, 259. [Google Scholar] [CrossRef]
- Vold, S.D.; Williamson, B.K.; Hirsch, L.; Aminlari, A.E.; Cho, A.S.; Nelson, C.; Dickerson, J.E. Canaloplasty and trabeculotomy with the OMNI system in pseudophakic patients with open-angle glaucoma: The ROMEO study. Ophthalmol. Glaucoma 2021, 4, 173–181. [Google Scholar] [CrossRef]
- Hirsch, L.; Cotliar, J.; Vold, S.; Selvadurai, D.; Campbell, A.; Ferreira, G.; Aminlari, A. Canaloplasty and trabeculotomy ab interno with the OMNI system combined with cataract surgery in open-angle glaucoma: 12-month outcomes from the ROMEO study. J. Cataract Refract. Surg. 2021, 47, 907–915. [Google Scholar] [CrossRef]
- Davids, A.M.; Pahlitzsch, M.; Boeker, A.; Winterhalter, S.; Maier-Wenzel, A.K.; Klamann, M. Ab interno canaloplasty (ABiC)—12-month results of a new minimally invasive glaucoma surgery (MIGS). Graef. Arch. Clin. Exp. 2019, 257, 1947–1953. [Google Scholar] [CrossRef]
- Kazerounian, S.; Zimbelmann, M.; Lortscher, M.; Hommayda, S.; Tsirkinidou, I.; Muller, M. Canaloplasty ab interno (ABiC)—2-year-results of a novel minimally invasive glaucoma surgery (MIGS) technique. Klin. Monatsbl. Augenh. 2021, 238, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, M.J. 24-month efficacy of viscodilation of Schlemm’s canal and the distal outflow system with iTrack ab-interno canaloplasty for the treatment of primary open-angle glaucoma. Clin. Ophthalmol. 2021, 15, 1591–1599. [Google Scholar] [CrossRef] [PubMed]
- Gillmann, K.; Aref, A.; Niegowski, L.J.; Baumgartner, J.M. Combined ab interno viscocanaloplasty (ABiC) in open-angle glaucoma: 12-month outcomes. Int. Ophthalmol. 2021, 41, 3295–3301. [Google Scholar] [CrossRef] [PubMed]
- Al Habash, A.; Alrushoud, M.; Al Abdulsalam, O.; Al Somali, A.I.; Aljindan, M.; Al Ahmadi, A.S. Combined gonioscopy-assisted transluminal trabeculotomy (GATT) with ab interno canaloplasty (ABiC) in conjunction with phacoemulsification: 12-month outcomes. Clin. Ophthalmol. 2020, 14, 2491–2496. [Google Scholar] [CrossRef] [PubMed]
- Gabbay, I.E.; Ruben, S. CyPass Micro-Stent safety and efficacy at one year: What have we learned? J. Curr. Glaucoma Pract. 2019, 13, 99–103. [Google Scholar] [CrossRef]
- Garcia-Feijoo, J.; Hoh, H.; Uzunov, R.; Dickerson, J.E. Supraciliary microstent in refractory open-angle glaucoma: Two-year outcomes from the DUETTE trial. J. Ocul. Pharmacol. Ther. 2018, 34, 538–542. [Google Scholar] [CrossRef]
- Grisanti, S.; Grisanti, S.; Garcia-Feijoo, J.; Dick, H.B.; Munoz-Negrete, F.J.; Arrondo, E.; Ianchulev, T. Supraciliary microstent implantation for open-angle glaucoma: Multicentre 3-year outcomes. BMJ Open Ophthalmol. 2018, 3, e000183. [Google Scholar] [CrossRef] [Green Version]
- Hoeh, H.; Vold, S.D.; Ahmed, I.K.; Anton, A.; Rau, M.; Singh, K.; Chang, D.F.; Shingleton, B.J.; Ianchulev, T. Initial clinical experience with the CyPass Micro-Stent: Safety and surgical outcomes of a novel supraciliary micro-stent. J. Glaucoma 2016, 25, 106–112. [Google Scholar] [CrossRef]
- Vold, S.; Ahmed, I.I.; Craven, E.R.; Mattox, C.; Stamper, R.; Packer, M.; Brown, R.H.; Ianchulev, T. Two-year COMPASS trial results: Supraciliary microstenting with phacoemulsification in patients with open-angle glaucoma and cataracts. Ophthalmology 2016, 123, 2103–2112. [Google Scholar] [CrossRef] [Green Version]
- Reiss, G.; Clifford, B.; Vold, S.; He, J.; Hamilton, C.; Dickerson, J.; Lane, S. Safety and efficacy of CyPass Supraciliary Micro-Stent in primary open-angle glaucoma: 5-year results from the COMPASS XT study. Am. J. Ophthalmol. 2019, 208, 219–225. [Google Scholar] [CrossRef]
- Lass, J.; Benetz, B.A.; He, J.; Hamilton, C.; Von Tress, M.; Dickerson, J.; Lane, S. Corneal endothelial cell loss and morphometric changes 5 years after phacoemulsification with or without CyPass Micro-Stent. Am. J. Ophthalmol. 2019, 208, 211–218. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration (US). Potential Eye Damage from Alcon CyPass Micro-Stent Used to Treat Open-Angle Glaucoma: FDA Safety Communication [Internet]. Available online: https://www.navao.org/wp-content/uploads/2018/10/FDA-Cypass.pdf (accessed on 20 January 2022).
- NCT01461278; A Prospective, Randomized, Single-Masked, Controlled, Parallel Groups, Multicenter Investigation of the Glaukos Suprachoroidal Stent Model G3 In Conjunction with Cataract Surgery. Available online: clinicaltrials.gov/ct2/show/NCT01461278 (accessed on 28 October 2021).
- Myers, J.S.; Masood, I.; Hornbeak, D.M.; Belda, J.I.; Auffarth, G.; Junemann, A.; Giamporcaro, J.E.; Martinez-De-La-Casa, J.M.; Ahmed, I.I.K.; Voskanyan, L.; et al. Prospective evaluation of two iStent trabecular stents, one iStent Supra suprachoroidal stent, and postoperative prostaglandin in refractory glaucoma: 4-year outcomes. Adv. Ther. 2018, 35, 395–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, A.J.; Shah, A.; Nikita, E.; Hu, K.; Mulvaney, C.A.; Stead, R.; Azuara-Blanco, A. Subconjunctival draining minimally-invasive glaucoma devices for medically uncontrolled glaucoma. Cochrane Database Syst. Rev. 2018, 12, CD012742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widder, R.A.; Dietlein, T.S.; Dinslage, S.; Kuhnrich, P.; Rennings, C.; Rossler, G. The XEN45 Gel Stent as a minimally invasive procedure in glaucoma surgery: Success rates, risk profile, and rates of re-surgery after 261 surgeries. Graefes Arch Clin. Exp. Ophthalmol. 2018, 256, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Grover, D.S.; Flynn, W.J.; Bashford, K.P.; Lewis, R.A.; Duh, Y.J.; Nangia, R.S.; Niksch, B. Performance and safety of a new ab interno gelatin stent in refractory glaucoma at 12 months. Am. J. Ophthalmol. 2017, 183, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Reitsamer, H.; Vera, V.; Ruben, S.; Au, L.; Vila-Arteaga, J.; Teus, M.; Lenzhofer, M.; Shirlaw, A.; Bai, Z.; Balaram, M.; et al. Three-year effectiveness and safety of the XEN gel stent as a solo procedure or in combination with phacoemulsification in open-angle glaucoma: A multicentre study. Acta Ophthalmol. 2022, 100, e233–e245. [Google Scholar] [CrossRef] [PubMed]
- Baser, E.F.; Seymenoglu, R.G. Results of fluorouracil-augmented Xen45 implantation in primary open-angle and pseudoexfoliation glaucoma. Int. Ophthalmol. 2021, 41, 945–955. [Google Scholar] [CrossRef]
- Karimi, A.; Lindfield, D.; Turnbull, A.; Dimitriou, C.; Bhatia, B.; Radwan, M.; Gouws, P.; Hanifudin, A.; Amerasinghe, N.; Jacob, A. A multi-centre interventional case series of 259 ab-interno Xen gel implants for glaucoma, with and without combined cataract surgery. Eye 2019, 33, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Busch, T.; Skiljic, D.; Rudolph, T.; Bergstrom, A.; Zetterberg, M. Learning curve and one-year outcome of XEN 45 Gel Stent implantation in a Swedish population. Clin. Ophthalmol. 2020, 14, 3719–3733. [Google Scholar] [CrossRef]
- Hengerer, F.H.; Auffarth, G.U.; Yildirim, T.M.; Conrad-Hengerer, I. Ab interno gel implant in patients with primary open angle glaucoma and pseudoexfoliation glaucoma. BMC Ophthalmol. 2018, 18, 339. [Google Scholar] [CrossRef] [Green Version]
- Heidinger, A.; Schwab, C.; Lindner, E.; Riedl, R.; Mossbock, G. A retrospective study of 199 XEN45 Stent implantations from 2014 to 2016. J. Glaucoma 2019, 28, 75–79. [Google Scholar] [CrossRef]
- Gillmann, K.; Bravetti, G.E.; Mermoud, A.; Rao, H.L.; Mansouri, K. XEN Gel stent in pseudoexfoliative glaucoma: 2-year results of a prospective evaluation. J. Glaucoma 2019, 28, 676–684. [Google Scholar] [CrossRef]
- Theillac, V.; Blumen-Ohana, E.; Akesbi, J.; Hamard, P.; Sellam, A.; Brasnu, E.; Baudouin, C.; Labbe, A.; Nordmann, J.-P. Cataract and glaucoma combined surgery: XEN gel stent versus nonpenetrating deep sclerectomy, a pilot study. BMC Ophthalmol. 2020, 20, 231. [Google Scholar] [CrossRef] [PubMed]
- Beckers, H.J.; Aptel, F.; Webers, C.A.; Bluwol, E.; Martinez-de-la-Casa, J.M.; Garcia-Feijoo, J.; Lachkar, Y.; Méndez-Hernández, C.D.; Riss, I.; Shao, H.; et al. Safety and effectiveness of the Preserflo MicroShunt in primary open-angle glaucoma: Results from a 2-year multicenter study. Ophthalmol. Glaucoma 2022, 5, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.D.; Barnebey, H.S.; Moster, M.R.; Stiles, M.C.; Vold, S.D.; Khatana, A.K.; Flowers, B.E.; Grover, D.S.; Strouthidis, N.G.; Panarelli, J.F.; et al. Ab-externo MicroShunt versus trabeculectomy in primary open-angle glaucoma: One-year results from a 2-year randomized, multicenter study. Ophthalmology 2021, 128, 1710–1721. [Google Scholar] [CrossRef] [PubMed]
- Batlle, J.F.; Corona, A.; Albuquerque, R. Long-term results of the Preserflo MicroShunt in patients with primary open-angle glaucoma from a single-center nonrandomized study. J. Glaucoma 2021, 30, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Durr, G.M.; Schlenker, M.B.; Samet, S.; Ahmed, I.I. One-year outcomes of stand-alone ab externo SIBS microshunt implantation in refractory glaucoma. Br. J. Ophthalmol 2022, 106, 71–79. [Google Scholar] [CrossRef]
- Quaranta, L.; Micheletti, E.; Carassa, R.; Bruttini, C.; Fausto, R.; Katsanos, A.; Riva, I. Efficacy and safety of PreserFlo MicroShunt after a failed trabeculectomy in eyes with primary open-angle glaucoma: A retrospective study. Adv. Ther. 2021, 38, 4403–4412. [Google Scholar] [CrossRef]
- Scheres, L.M.; Kujovic-Aleksov, S.; Ramdas, W.D.; deCrom, R.M.; Roelofs, L.C.; Berendschot, T.T.; Webers, C.A.; Beckers, H.J. XEN Gel Stent compared to PRESERFLO MicroShunt implantation for primary open-angle glaucoma: Two-year results. Acta Ophthalmol. 2021, 99, e433–e440. [Google Scholar] [CrossRef]
- Schlenker, M.B.; Durr, G.M.; Michaelov, E.; Ahmed, I.I. Intermediate outcomes of a novel standalone ab externo SIBS microshunt with mitomycin c. Am. J. Ophthalmol. 2020, 215, 141–153. [Google Scholar] [CrossRef]
- Tanner, A.; Haddad, F.; Fajardo-Sanchez, J.; Nguyen, E.; Thong, K.X.; Ah-Moye, S.; Perl, N.; Abu-Bakra, M.; Kulkarni, A.; Trikha, S.; et al. One-year surgical outcomes of the PreserFlo MicroShunt in glaucoma: A multicentre analysis. Br. J. Ophthalmol. 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Honjo, M.; Sakata, R.; Fujishiro, T.; Shirato, S.; Aihara, M. Long-term results of the safety and effectiveness of a novel microshunt in Japanese patients with primary open-angle glaucoma. Jpn. J. Ophthalmol. 2022, 66, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Batlle, J.F.; Fantes, F.; Riss, I.; Pinchuk, L.; Albuquerque, R.; Kato, Y.P. Three-year follow-up of a novel aqueous humor MicroShunt. J. Glaucoma 2016, 25, e58–e65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-de-la-Casa, J.M.; Saenz-Frances, F.; Morales-Fernandez, L.; Perucho, L.; Mendez, C.; Fernandez-Vidal, A.; Garcia-Saenz, S.; Sanchez-Jean, R.; García-Feijoo, J. Clinical outcomes of combined Preserflo Microshunt implantation and cataract surgery in open-angle glaucoma patients. Sci. Rep. 2021, 11, 15600. [Google Scholar] [CrossRef]
- Bunod, R.; Robin, M.; Buffault, J.; Keilani, C.; Labbe, A.; Baudouin, C. PreserFlo MicroShunt exposure: A case series. BMC Ophthalmol. 2021, 21, 273. [Google Scholar] [CrossRef]
- Stangos, A.; Sunaric-Megevand, G. Sub-conjunctival microshunt (PRESERFLO) vs Canaloplasty for open-angle glaucoma: Comparison of short-term complication and revision rates. Investig. Ophthalmol. Vis. Sci. 2020, 61, 3130. [Google Scholar]
- Izquierdo, J.C.; Agudelo, N.; Rubio, B.; Camargo, J.; Ruiz-Montenegro, K.; Gajardo, C.; Rincon, M. Combined phacoemulsification and 360-degree endocyclophotocoagulation with and without a Kahook Dual Blade in patients with primary open-angle glaucoma. Clin. Ophthalmol. 2021, 15, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Lai, I.S.; Chan, N.C.; Ling, A.; Baig, N.B.; Chan, P.P.; Wang, Y.M.; Tham, C.C. Combined phacoemulsification-endoscopic cyclophotocoagulation versus phacoemulsification alone in primary angle-closure glaucoma: A pilot randomized controlled trial. Ophthalmol. Glaucoma 2021, 4, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Tóth, M.; Shah, A.; Hu, K.; Bunce, C.; Gazzard, G. Endoscopic cyclophotocoagulation (ECP) for open angle glaucoma and primary angle closure. Cochrane Database Syst. Rev. 2019, 2, CD012741. [Google Scholar] [CrossRef] [Green Version]
- Koduri, V.A.; Reddy, A.K.; Patna, J.L.; Palestine, A.G.; Lynch, A.M.; Pantcheva, M.B. Endoscopic cyclophotocoagulation combined with phacoemulsification increases risk of persistent anterior uveitis compared to phacoemulsification surgery alone. Clin. Ophthalmol. 2021, 15, 437–443. [Google Scholar] [CrossRef]
iStent | iStent Inject | Hydrus | KDB | Trabectome | GATT | TRAB360 | VISCO360 | OMNI System | ABiC | CyPass | iStent Supra | XEN | PreserFlo | ECP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IOP spike | 1.8–22.2 | 1.06–18.6 | 1.9–6.45 | 1.0–18.2 | 2.06–28.9 | 0–18.7 | 1.2 | 0.9–1.1 | 3.7 | 0–22.2 | 0.5–28.1 | 0 | 2.6–21.5 | 25.3–40.7 | 31.81 |
Hyphaema | 1.85–11.4 | 0–5 | 1.92–6.45 | 0–34.9 | 4.72–95 | 0.97–38 | 50.6 | 1–13.1 | 3.7 | 1.9–20 | 1.3–3.1 | 0 | 0–9.6 | 2.5–20 | 0 |
Corneal oedema | 2.1–8.97 | 0–10 | 0–3.23 | 1.0–15.5 | 0 | 0 | 6.2 | 0 | 4.9 | 0 | 0.8–3.5 | 0 | 0–2.8 | 1.0–17.4 | 18.18 |
Bleb needling | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 22.1–43.4 | 5.9–150 | N/A |
Device obstruction | 0–13.2 | 0–6.2 | 0–6.2 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 2.1–10.2 | 0 | 3.9–8.8 | 0–5.7 | N/A |
SCH | 1.8–2.27 | 0 | 0 | 0 | 1.47 | 0 | 0 | 1 | 0 | 0 | 1.6 | 0 | 0 | 2.5–20 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rowson, A.C.; Hogarty, D.T.; Maher, D.; Liu, L. Minimally Invasive Glaucoma Surgery: Safety of Individual Devices. J. Clin. Med. 2022, 11, 6833. https://doi.org/10.3390/jcm11226833
Rowson AC, Hogarty DT, Maher D, Liu L. Minimally Invasive Glaucoma Surgery: Safety of Individual Devices. Journal of Clinical Medicine. 2022; 11(22):6833. https://doi.org/10.3390/jcm11226833
Chicago/Turabian StyleRowson, Antonia C., Daniel T. Hogarty, Dominic Maher, and Lei Liu. 2022. "Minimally Invasive Glaucoma Surgery: Safety of Individual Devices" Journal of Clinical Medicine 11, no. 22: 6833. https://doi.org/10.3390/jcm11226833
APA StyleRowson, A. C., Hogarty, D. T., Maher, D., & Liu, L. (2022). Minimally Invasive Glaucoma Surgery: Safety of Individual Devices. Journal of Clinical Medicine, 11(22), 6833. https://doi.org/10.3390/jcm11226833