Impact of Obesity on Early In-Hospital Outcomes after Coronary Artery Bypass Grafting Surgery in Acute Coronary Syndrome: A Propensity Score Matching Analysis
Abstract
:1. Introduction
2. Materials and Methods
- Underweight: BMI < 18.5 kg/m2
- Normal weight BMI 18.5–24.9 kg/m2
- Pre-obesity BMI 25.0–29.9 kg/m2
- Obese class I BMI 30.0–34.9 kg/m2
- Obese class II BMI 35.0–39.9 kg/m2
- Obese class III BMI > 40.0 kg/m2
2.1. Surgical Approach
2.2. Data Collection
2.3. Outcome Analysis
2.4. Ethics
2.5. Statistical Methods
3. Results
3.1. Baseline and Preoperative Data before and after PSM
3.2. Intraoperative Data before and after PSM
3.3. Postoperative Data with Primary and Secondary Outcome Parameters before and after PSM
3.4. Primary and Secondary Outcomes by Obesity Classes (I, II, III) before and after PSM
4. Discussion
5. Conclusions
6. Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Järvinen, O.; Julkunen, J.; Tarkka, M.R. Impact of obesity on outcome and changes in quality of life after coronary artery bypass grafting. World J. Surg. 2007, 31, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.; Liu, K.; Fan, Y.; Yang, L.; Zhang, S.; Li, X.; Wu, H.; Li, M.; Mao, H.; Xu, X.; et al. The Association Between Obesity and Risk of Acute Kidney Injury After Cardiac Surgery. Front. Endocrinol. 2020, 11, 534294. [Google Scholar] [CrossRef] [PubMed]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef]
- Lahti-Koski, M.; Vartiainen, E.; Männistö, S.; Pietinen, P. Age, education and occupation as determinants of trends in body mass index in Finland from 1982 to 1997. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1669–1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahajan, R.; Stokes, M.; Elliott, A.; Munawar, D.A.; Khokhar, K.B.; Thiyagarajah, A.; Hendriks, J.; Linz, D.; Gallagher, C.; Kaye, D.; et al. Complex interaction of obesity, intentional weight loss and heart failure: A systematic review and meta-analysis. Heart 2020, 106, 58–68. [Google Scholar] [CrossRef]
- Prabhakar, G.; Haan, C.K.; Peterson, E.D.; Coombs, L.P.; Cruzzavala, J.L.; Murray, G.F. The risks of moderate and extreme obesity for coronary artery bypass grafting outcomes: A study from the Society of Thoracic Surgeons’ database. Ann. Thorac. Surg. 2002, 74, 1125–1130, discussion 1130-1121. [Google Scholar] [CrossRef]
- Orhan, G.; Biçer, Y.; Aka, S.A.; Sargin, M.; Simşek, S.; Senay, S.; Aykaç, Z.; Eren, E.E. Coronary artery bypass graft operations can be performed safely in obese patients. Eur. J. Cardiothorac. Surg. 2004, 25, 212–217. [Google Scholar] [CrossRef]
- Brandt, M.; Harder, K.; Walluscheck, K.P.; Schöttler, J.; Rahimi, A.; Möller, F.; Cremer, J. Severe obesity does not adversely affect perioperative mortality and morbidity in coronary artery bypass surgery. Eur. J. Cardiothorac. Surg. 2001, 19, 662–666. [Google Scholar] [CrossRef] [Green Version]
- Birkmeyer, N.J.; Charlesworth, D.C.; Hernandez, F.; Leavitt, B.J.; Marrin, C.A.; Morton, J.R.; Olmstead, E.M.; O’Connor, G.T. Obesity and risk of adverse outcomes associated with coronary artery bypass surgery. Northern New England Cardiovascular Disease Study Group. Circulation 1998, 97, 1689–1694. [Google Scholar] [CrossRef] [Green Version]
- Lazar, H.L. Obesity and cardiac surgery outcomes-Is bigger better? J. Card. Surg. 2018, 33, 595–596. [Google Scholar] [CrossRef]
- Vargo, P.R.; Steffen, R.J.; Bakaeen, F.G.; Navale, S.; Soltesz, E.G. The impact of obesity on cardiac surgery outcomes. J. Card. Surg. 2018, 33, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Estafanous, F.G.; Loop, F.D.; Higgins, T.L.; Tekyi-Mensah, S.; Lytle, B.W.; Cosgrove, D.M., 3rd; Roberts-Brown, M.; Starr, N.J. Increased risk and decreased morbidity of coronary artery bypass grafting between 1986 and 1994. Ann. Thorac. Surg. 1998, 65, 383–389. [Google Scholar] [CrossRef]
- Nguyen, Q.S.; Choi, C.; Khoche, S. Obesity and its implications for cardiac surgery patients. Int. Anesthesiol. Clin. 2020, 58, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Kuduvalli, M.; Grayson, A.D.; Oo, A.Y.; Fabri, B.M.; Rashid, A. The effect of obesity on mid-term survival following coronary artery bypass surgery. Eur. J. Cardiothorac. Surg. 2003, 23, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Habib, R.H.; Zacharias, A.; Schwann, T.A.; Riordan, C.J.; Durham, S.J.; Shah, A. Effects of obesity and small body size on operative and long-term outcomes of coronary artery bypass surgery: A propensity-matched analysis. Ann. Thorac. Surg. 2005, 79, 1976–1986. [Google Scholar] [CrossRef]
- Garcia, R.U.; Balakrishnan, P.L.; Aggarwal, S. Does obesity affect the short-term outcomes after cardiothoracic surgery in adolescents with congenital heart disease? Cardiol Young 2020, 30, 372–376. [Google Scholar] [CrossRef]
- Takagi, H.; Umemoto, T. "Obesity paradox" in transcatheter aortic valve implantation. J. Cardiovasc. Surg. 2017, 58, 113–120. [Google Scholar] [CrossRef]
- Järvinen, O.; Huhtala, H.; Laurikka, J.; Tarkka, M.R. Higher age predicts adverse outcome and readmission after coronary artery bypass grafting. World J. Surg. 2003, 27, 1317–1322. [Google Scholar] [CrossRef]
- Acinapura, A.J.; Jacobowitz, I.J.; Kramer, M.D.; Adkins, M.S.; Zisbrod, Z.; Cunningham, J.N., Jr. Demographic changes in coronary artery bypass surgery and its effect on mortality and morbidity. Eur. J. Cardiothorac. Surg. 1990, 4, 175–181. [Google Scholar] [CrossRef]
- Gaulton, T.G.; Neuman, M.D. Association Between Obesity, Age, and Functional Decline in Survivors of Cardiac Surgery. J. Am. Geriatr. Soc. 2018, 66, 127–132. [Google Scholar] [CrossRef]
- Oreopoulos, A.; Padwal, R.; Norris, C.M.; Mullen, J.C.; Pretorius, V.; Kalantar-Zadeh, K. Effect of obesity on short- and long-term mortality postcoronary revascularization: A meta-analysis. Obesity 2008, 16, 442–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minutello, R.M.; Chou, E.T.; Hong, M.K.; Bergman, G.; Parikh, M.; Iacovone, F.; Wong, S.C. Impact of body mass index on in-hospital outcomes following percutaneous coronary intervention (report from the New York State Angioplasty Registry). Am. J. Cardiol. 2004, 93, 1229–1232. [Google Scholar] [CrossRef] [PubMed]
- Kuduvalli, M.; Grayson, A.D.; Oo, A.Y.; Fabri, B.M.; Rashid, A. Risk of morbidity and in-hospital mortality in obese patients undergoing coronary artery bypass surgery. Eur. J. Cardiothorac. Surg. 2002, 22, 787–793. [Google Scholar] [CrossRef]
- Schwann, T.A.; Habib, R.H.; Zacharias, A.; Parenteau, G.L.; Riordan, C.J.; Durham, S.J.; Engoren, M. Effects of body size on operative, intermediate, and long-term outcomes after coronary artery bypass operation. Ann. Thorac. Surg. 2001, 71, 521–530, discussion 530-521. [Google Scholar] [CrossRef]
- Lv, M.; Gao, F.; Liu, B.; Pandey, P.; Feng, Y.; Wang, Y.; Zhang, Y.; Li, Z. The Effects of Obesity on Mortality Following Coronary Artery Bypass Graft Surgery: A Retrospective Study from a Single Center in China. Med. Sci. Monit. 2021, 27, e929912. [Google Scholar] [CrossRef]
- Lindhout, A.H.; Wouters, C.W.; Noyez, L. Influence of obesity on in-hospital and early mortality and morbidity after myocardial revascularization. Eur. J. Cardiothorac. Surg. 2004, 26, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Reeves, B.C.; Ascione, R.; Chamberlain, M.H.; Angelini, G.D. Effect of body mass index on early outcomes in patients undergoing coronary artery bypass surgery. J. Am. Coll. Cardiol. 2003, 42, 668–676. [Google Scholar] [CrossRef] [Green Version]
- El-Andari, R.; Bozso, S.J.; Kang, J.J.H.; Bedard, A.M.A.; Adams, C.; Wang, W.; Nagendran, J. Heart valve surgery and the obesity paradox: A systematic review. Clin. Obes. 2022, 12, e12506. [Google Scholar] [CrossRef]
- Akinnusi, M.E.; Pineda, L.A.; El Solh, A.A. Effect of obesity on intensive care morbidity and mortality: A meta-analysis. Crit. Care Med. 2008, 36, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Oliveros, H.; Villamor, E. Obesity and mortality in critically ill adults: A systematic review and meta-analysis. Obesity 2008, 16, 515–521. [Google Scholar] [CrossRef]
- Schetz, M.; De Jong, A.; Deane, A.M.; Druml, W.; Hemelaar, P.; Pelosi, P.; Pickkers, P.; Reintam-Blaser, A.; Roberts, J.; Sakr, Y.; et al. Obesity in the critically ill: A narrative review. Intensive Care Med. 2019, 45, 757–769. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.M., Jr.; Phillips, G.S.; Ali, N.A.; Lucarelli, M.; Marsh, C.B.; Lemeshow, S. Body mass index is independently associated with hospital mortality in mechanically ventilated adults with acute lung injury. Crit. Care Med. 2006, 34, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Hogue, C.W., Jr.; Stearns, J.D.; Colantuoni, E.; Robinson, K.A.; Stierer, T.; Mitter, N.; Pronovost, P.J.; Needham, D.M. The impact of obesity on outcomes after critical illness: A meta-analysis. Intensive Care Med. 2009, 35, 1152–1170. [Google Scholar] [CrossRef]
- Polonski, L.; Gasior, M.; Gierlotka, M.; Osadnik, T.; Kalarus, Z.; Trusz-Gluza, M.; Zembala, M.; Wilczek, K.; Lekston, A.; Zdrojewski, T.; et al. A comparison of ST elevation versus non-ST elevation myocardial infarction outcomes in a large registry database: Are non-ST myocardial infarctions associated with worse long-term prognoses? Int. J. Cardiol. 2011, 152, 70–77. [Google Scholar] [CrossRef]
- Gill, G.S.; Kanmanthareddy, A. NSTEMI Versus STEMI and Cardiogenic Shock: Are Multivessel Interventions Better in One and Not the Other? JACC Cardiovasc. Interv. 2021, 14, 1850–1851. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Padial, L.; Fernández-Pérez, C.; Bernal, J.L.; Anguita, M.; Sambola, A.; Fernández-Ortiz, A.; Elola, F.J. Differences in in-hospital mortality after STEMI versus NSTEMI by sex. Eleven-year trend in the Spanish National Health Service. Rev. Esp. Cardiol. 2021, 74, 510–517. [Google Scholar] [CrossRef]
- Neeland, I.J.; Das, S.R.; Simon, D.N.; Diercks, D.B.; Alexander, K.P.; Wang, T.Y.; de Lemos, J.A. The obesity paradox, extreme obesity, and long-term outcomes in older adults with ST-segment elevation myocardial infarction: Results from the NCDR. Eur. Heart J. Qual. Care Clin. Outcomes 2017, 3, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Abbott, J.D.; Ahmed, H.N.; Vlachos, H.A.; Selzer, F.; Williams, D.O. Comparison of outcome in patients with ST-elevation versus non-ST-elevation acute myocardial infarction treated with percutaneous coronary intervention (from the National Heart, Lung, and Blood Institute Dynamic Registry). Am. J. Cardiol. 2007, 100, 190–195. [Google Scholar] [CrossRef]
- Pieracci, F.M.; Barie, P.S.; Pomp, A. Critical care of the bariatric patient. Crit. Care Med. 2006, 34, 1796–1804. [Google Scholar] [CrossRef]
- Ebert, T.J.; Shankar, H.; Haake, R.M. Perioperative considerations for patients with morbid obesity. Anesthesiol. Clin. 2006, 24, 621–636. [Google Scholar] [CrossRef]
- Anderson, M.R.; Shashaty, M.G.S. Impact of Obesity in Critical Illness. Chest 2021, 160, 2135–2145. [Google Scholar] [CrossRef] [PubMed]
- Yawoot, N.; Govitrapong, P.; Tocharus, C.; Tocharus, J. Ischemic stroke, obesity, and the anti-inflammatory role of melatonin. Biofactors 2021, 47, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Kumral, E.; Erdoğan, C.E.; Arı, A.; Bayam, F.E.; Saruhan, G. Association of obesity with recurrent stroke and cardiovascular events. Rev. Neurol. 2021, 177, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Oesch, L.; Tatlisumak, T.; Arnold, M.; Sarikaya, H. Obesity paradox in stroke—Myth or reality? A systematic review. PLoS ONE 2017, 12, e0171334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forlivesi, S.; Cappellari, M.; Bonetti, B. Obesity paradox and stroke: A narrative review. Eat. Weight Disord. 2021, 26, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Castro, E.; Rodríguez-Yáñez, M.; Arias-Rivas, S.; Santamaría-Cadavid, M.; López-Dequidt, I.; Hervella, P.; López, M.; Campos, F.; Sobrino, T.; Castillo, J. Obesity Paradox in Ischemic Stroke: Clinical and Molecular Insights. Transl. Stroke Res. 2019, 10, 639–649. [Google Scholar] [CrossRef]
- Kim, P.J.; Kim, C.; Lee, S.H.; Shon, J.H.; Kwon, Y.; Kim, J.H.; Kim, D.K.; Yu, H.; Ahn, H.J.; Jeon, J.P.; et al. Another Look at Obesity Paradox in Acute Ischemic Stroke: Association Rule Mining. J. Pers. Med. 2021, 12, 16. [Google Scholar] [CrossRef]
- Valentijn, T.M.; Galal, W.; Tjeertes, E.K.; Hoeks, S.E.; Verhagen, H.J.; Stolker, R.J. The obesity paradox in the surgical population. Surgeon 2013, 11, 169–176. [Google Scholar] [CrossRef]
- Roth, J.; Sahota, N.; Patel, P.; Mehdi, S.F.; Wiese, M.M.; Mahboob, H.B.; Bravo, M.; Eden, D.J.; Bashir, M.A.; Kumar, A.; et al. Obesity paradox, obesity orthodox, and the metabolic syndrome: An approach to unity. Mol. Med. 2016, 22, 873–885. [Google Scholar] [CrossRef]
Before PSM | After PSM | |||||
---|---|---|---|---|---|---|
Non-Obese (n = 967) | Obese (n = 379) | p-Value | Non-Obese (n = 372) | Obese (n = 372) | p-Value | |
Age (years), mean ± SD | 67 ± 10.7 | 66 ± 10.4 | 0.819 | 67 ± 10.7 | 66 ± 10.4 | 0.724 |
Female gender, n (%) | 199 (20.6%) | 94 (24.9%) | 0.087 | 81 (21.8%) | 94 (25.3%) | 0.261 |
LV-EF (%), mean ± SD | 49 ± 15 | 51 ± 15 | 0.583 | 48 ± 14 | 51 ± 15 | 0.188 |
Triple-vessel disease, n (%) | 780 (80.8%) | 311 (82.1%) | 0.775 | 306 (82.5%) | 304 (81.7%) | 0.787 |
Unstable angina pectoris, n (%) | 119 (12.6%) | 24 (13.8%) | 0.575 | 47 (12.6%) | 52 (14.0%) | 0.579 |
NSTEMI, n (%) | 532 (55.1%) | 245 (64.6%) | <0.001 | 229 (61.6%) | 241 (64.8%) | 0.362 |
STEMI, n (%) | 316 (32.7%) | 82 (21.7%) | <0.001 | 98 (26.3%) | 79 (21.2%) | 0.102 |
Cardiogenic shock, n (%) | 167 (17.3%) | 42 (11.1%) | 0.004 | 52 (14.0%) | 40 (10.8%) | 0.181 |
Recent myocardial infarction, n (%) | 165 (17.1%) | 78 (20.6%) | 0.132 | 73 (19.7%) | 76 (20.4%) | 0.812 |
Previous PTCA, n (%) | 210 (21.8%) | 70 (18.5%) | 0.722 | 83 (22.4%) | 67 (18.0%) | 0.134 |
Previous CABG, n (%) | 9 (0.9%) | 5 (1.3%) | 0.534 | 4 (1.1%) | 5 (1.3%) | 0.502 |
Previous stroke, n (%) | 77 (8.0%) | 32 (8.5%) | 0.769 | 35 (9.4%) | 32 (8.6%) | 0.692 |
Diabetes, n (%) | 279 (28.9%) | 179 (47.7%) | <0.001 | 135 (36.2%) | 179 (48.1%) | 0.004 |
Hyperlipidaemia, n (%) | 484 (50.2%) | 292 (83.1%) | <0.001 | 214 (57.5%) | 250 (67.2%) | 0.004 |
Smoker, n (%) | 407 (42.2%) | 165 (43.7%) | 0.634 | 165 (44.7%) | 161 (43.4%) | 0.718 |
Hypertension, n (%) | 624 (83.2%) | 215 (94.2%) | 0.453 | 319 (85.8%) | 350 (94.1%) | 0.546 |
COPD, n (%) | 101 (10.5%) | 49 (13.0%) | 0.189 | 43 (11.6%) | 47 (12.7%) | 0.653 |
Atrial fibrillation, n (%) | 64 (6.6%) | 18 (4.8%) | 0.199 | 25 (6.7%) | 18 (4.9%) | 0.271 |
Dialysis, n (%) | 14 (1.4%) | 5 (1.3) | 0.868 | 5 (1.3%) | 5 (1.3%) | 0.622 |
Renal insufficiency, n (%) | 117 (12.1%) | 46 (12.2%) | 0.979 | 60 (16.2%) | 45 (12.1%) | 0.107 |
Before PSM | After PSM | |||||
---|---|---|---|---|---|---|
Non-Obese (n = 967) | Obese (n = 379) | p-Value | Non-Obese (n = 372) | Obese (n = 372) | p-Value | |
On-Pump, n (%) | 877 (90.6%) | 300 (85.4%) | 0.252 | 328 (88.9%) | 301 (82.7%) | 0.065 |
Off-Pump, n (%) | 90 (9.4%) | 51 (14.6%) | 0.129 | 44 (11.1%) | 71 (17.3%) | 0.087 |
Use of 2 ITA grafts, n (%) | 52 (5.4%) | 22 (5.9%) | 0.697 | 16 (4.3%) | 22 (6.0%) | 0.297 |
Use of left ITA graft, n (%) | 732 (94.3%) | 262 (94.6%) | 0.828 | 350 (94.9%) | 345 (94.8%) | 0.966 |
Use of right ITA graft, n (%) | 52 (5.4%) | 22 (5.9%) | 0.697 | 43 (11.7%) | 29 (8.0%) | 0.094 |
Use of radial artery graft, n (%) | 14 (1.5%) | 4 (1.1%) | 0.598 | 7 (1.9%) | 4 (1.1%) | 0.374 |
ECMO intraoperatively, n (%) | 19 (1.9%) | 11 (3.1%) | 0.241 | 7 (1.9%) | 14 (3.9%) | 0.114 |
IABP intraoperative, n (%) | 175 (18.2%) | 62 (16.8%) | 0.345 | 59 (16.0%) | 59 (16.3%) | 0.508 |
CPB time (min), mean ± SD | 91 ± 38 | 96 ± 45 | 0.084 | 91 ± 36 | 95 ± 44 | 0.254 |
Cross clamp time (min), mean ± SD | 48 ± 20 | 50 ± 23 | 0.235 | 48 ± 21 | 49 ± 22 | 0.863 |
Reperfusion time (min), mean ± SD | 33 ± 21 | 33 ± 24 | 0.746 | 32 ± 18 | 33 ± 23 | 0.705 |
Before PSM | After PSM | |||||
---|---|---|---|---|---|---|
Non-Obese (n = 967) | Obese (n = 379) | p-Value | Non-Obese (n = 372) | Obese (n = 372) | p-Value | |
TIA, n (%) | 83 (8.9%) | 25 (6.9%) | 0.077 | 28 (7.8%) | 24 (6.7%) | 0.284 |
Stroke, n (%) | 35 (3.7%) | 12 (3.3%) | 0.737 | 16 (4.4%) | 10 (2.8%) | 0.254 |
Perioperative myocardial infarction, n (%) | 40 (4.2%) | 25 (6.8%) | 0.048 | 17 (4.6%) | 23 (6.4%) | 0.299 |
CK-MB, 72 h, U/L, mean ± SD | 157 ± 144 | 145 ± 157 | 0.669 | 133 ± 121 | 145 ± 157 | 0.440 |
Duration of mechanical ventilation, hours, mean ± SD | 18 ± 12 | 23 ± 13 | 0.088 | 19 ± 12 | 23 ± 14 | 0.096 |
Respiratory failure, n (%) | 20 (2.6%) | 10 (3.5%) | 0.558 | 3 (0.8%) | 4 (1.0%) | 0.546 |
LCOS, n (%) | 144 (15.2%) | 58 (15.8%) | 0.762 | 45 (12.3%) | 56 (15.6%) | 0.204 |
Lactate 72 h, mmol/L, mean ± SD | 6.9 ± 4.9 | 4.9 ± 6.2 | 0.964 | 6.4 ± 5.0 | 4.9 ± 6.2 | 0.885 |
Dialysis, n (%) | 98 (10.3%) | 37 (10.1%) | 0.935 | 39 (10.7%) | 35 (9.7%) | 0.678 |
Bleeding requiring reoperation, n (%) | 82 (8.6%) | 40 (11.0%) | 0.183 | 27 (7.4%) | 38 (10.6%) | 0.131 |
LV-EF (%), mean ± SD | 45 ± 14 | 43 ± 15 | 0.789 | 45 ± 15 | 44 ± 15 | 0.273 |
ICU stay, days, median | 3 ± 7 | 4 ± 6 | 0.306 | 3 ± 6 | 4 ± 6 | 0.538 |
Hospital stay, days, median | 10 ± 13 | 11 ± 9 | 0.795 | 10 ± 7 | 11 ± 9 | 0.131 |
All-cause in-hospital mortality, n (%) | 54 (5.5%) | 24 (6.3%) | 0.566 | 24 (6.4%) | 23 (6.1%) | 0.780 |
Before PSM Obesity Class (n = 379) | After PSM Obesity Class (372) | |||||||
---|---|---|---|---|---|---|---|---|
I (n = 275) | II (n = 76) | III (n = 28) | p-Value | I (n = 263) | II (n = 77) | III (n = 32) | p-Value | |
Stroke, n (%) | 6 (2.2%) | 3 (3.9%) | 3 (10.7%) | 0.018 | 5 (1.9%) | 2 (2.5%) | 3 (9.3%) | 0.003 |
Perioperative myocardial infarction, n (%) | 19 (6.9%) | 4 (5.2%) | 2 (7.1%) | 0.839 | 17 (6.4%) | 4 (5.1%) | 2 (6.2%) | 0.781 |
Respiratory failure, n (%) | 18 (6.5%) | 7 (9.2%) | 2 (7.1%) | 0.655 | 18 (6.8%) | 7 (9.0%) | 2 (6.2%) | 0.602 |
LCOS, n (%) | 40 (14.5%) | 13 (17.1%) | 5 (17.8%) | 0.593 | 39 (14.8%) | 12 (15.5%) | 5 (15.6%) | 0.445 |
Dialysis, n (%) | 23 (8.3%) | 10 (13.1%) | 4 (14.2%) | 0.233 | 22 (8.3%) | 9 (11.6%) | 4 (12.5%) | 0.183 |
Bleeding requiring reoperation, n (%) | 29 (10.5%) | 7 (9.2%) | 4 (14.2%) | 0.623 | 28 (10.6%) | 6 (7.7%) | 4 (12.5%) | 0.385 |
All-cause in-hospital mortality, n (%) | 16 (5.8%) | 6 (7.8%) | 2 (7.1%) | 0.206 | 15 (5.7%) | 6 (7.7%) | 2 (6.2%) | 0.634 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasivskyi, I.; Eghbalzadeh, K.; Ivanov, B.; Gerfer, S.; Großmann, C.; Sabashnikov, A.; Kuhn, E.; Mader, N.; Djordjevic, I.; Wahlers, T. Impact of Obesity on Early In-Hospital Outcomes after Coronary Artery Bypass Grafting Surgery in Acute Coronary Syndrome: A Propensity Score Matching Analysis. J. Clin. Med. 2022, 11, 6805. https://doi.org/10.3390/jcm11226805
Krasivskyi I, Eghbalzadeh K, Ivanov B, Gerfer S, Großmann C, Sabashnikov A, Kuhn E, Mader N, Djordjevic I, Wahlers T. Impact of Obesity on Early In-Hospital Outcomes after Coronary Artery Bypass Grafting Surgery in Acute Coronary Syndrome: A Propensity Score Matching Analysis. Journal of Clinical Medicine. 2022; 11(22):6805. https://doi.org/10.3390/jcm11226805
Chicago/Turabian StyleKrasivskyi, Ihor, Kaveh Eghbalzadeh, Borko Ivanov, Stephen Gerfer, Clara Großmann, Anton Sabashnikov, Elmar Kuhn, Navid Mader, Ilija Djordjevic, and Thorsten Wahlers. 2022. "Impact of Obesity on Early In-Hospital Outcomes after Coronary Artery Bypass Grafting Surgery in Acute Coronary Syndrome: A Propensity Score Matching Analysis" Journal of Clinical Medicine 11, no. 22: 6805. https://doi.org/10.3390/jcm11226805
APA StyleKrasivskyi, I., Eghbalzadeh, K., Ivanov, B., Gerfer, S., Großmann, C., Sabashnikov, A., Kuhn, E., Mader, N., Djordjevic, I., & Wahlers, T. (2022). Impact of Obesity on Early In-Hospital Outcomes after Coronary Artery Bypass Grafting Surgery in Acute Coronary Syndrome: A Propensity Score Matching Analysis. Journal of Clinical Medicine, 11(22), 6805. https://doi.org/10.3390/jcm11226805