Long-Term Effects of Extracorporeal Shock Wave Therapy on Breast Cancer-Related Lymphedema
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Methods
2.3. Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Warren, A.G.; Brorson, H.; Borud, L.J.; Slavin, S.A. Lymphedema: A comprehensive review. Ann. Plast. Surg. 2007, 59, 464–472. [Google Scholar] [PubMed]
- DiSipio, T.; Rye, S.; Newman, B.; Hayes, S. Incidence of unilateral arm lymphoedema after breast cancer: A systematic review and meta-analysis. Lancet Oncol. 2013, 14, 500–515. [Google Scholar] [PubMed]
- Committee, E. The diagnosis and treatment of peripheral lymphedema: 2016 consensus document of the International Society of Lymphology. Lymphology 2016, 49, 170–184. [Google Scholar]
- Ko, D.S.; Lerner, R.; Klose, G.; Cosimi, A.B. Effective treatment of lymphedema of the extremities. Arch. Surg. 1998, 133, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Smile, T.D.; Tendulkar, R.; Schwarz, G.; Arthur, D.; Grobmyer, S.; Valente, S.; Vicini, F.; Shah, C. A review of treatment for breast cancer-related lymphedema. Am. J. Clin. Oncol. 2018, 41, 178–190. [Google Scholar] [CrossRef]
- Yamamoto, R.; Yamamoto, T. Effectiveness of the treatment-phase of two-phase complex decongestive physiotherapy for the treatment of extremity lymphedema. Int. J. Clin. Oncol. 2007, 12, 463–468. [Google Scholar] [CrossRef]
- Mayrovitz, H.N. The standard of care for lymphedema: Current concepts and physiological considerations. Lymphat. Res. Biol. 2009, 7, 101–108. [Google Scholar] [CrossRef]
- Hwang, J.M.; Hwang, J.H.; Kim, T.W.; Lee, S.Y.; Chang, H.J.; Chu, I.H. Long-term effects of complex decongestive therapy in breast cancer patients with arm lymphedema after axillary dissection. Ann. Rehabil. Med. 2013, 37, 690. [Google Scholar]
- Simplicio, C.L.; Purita, J.; Murrell, W.; Santos, G.S.; Dos Santos, R.G.; Lana, J.F.S.D. Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine. J. Clin. Orthop. Trauma 2020, 11, S309–S318. [Google Scholar] [CrossRef]
- Mariotto, S.; Cavalieri, E.; Amelio, E.; Ciampa, A.R.; de Prati, A.C.; Marlinghaus, E.; Russo, S.; Suzuki, H. Extracorporeal shock waves: From lithotripsy to anti-inflammatory action by NO production. Nitric Oxide 2005, 12, 89–96. [Google Scholar]
- Yan, X.; Zeng, B.; Chai, Y.; Luo, C.; Li, X. Improvement of blood flow, expression of nitric oxide, and vascular endothelial growth factor by low-energy shockwave therapy in random-pattern skin flap model. Ann. Plast. Surg. 2008, 61, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Tinazzi, E.; Amelio, E.; Marangoni, E.; Guerra, C.; Puccetti, A.; Codella, O.M.; Simeoni, S.; Cavalieri, E.; Montagnana, M.; Adani, R. Effects of shock wave therapy in the skin of patients with progressive systemic sclerosis: A pilot study. Rheumatol. Int. 2011, 31, 651–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, M.; Li, T.-S.; Kamota, T.; Ohshima, M.; Shirasawa, B.; Hamano, K. Extracorporeal shock wave therapy ameliorates secondary lymphedema by promoting lymphangiogenesis. J. Vasc. Surg. 2010, 52, 429–434. [Google Scholar] [PubMed]
- Bae, H.; Kim, H.J. Clinical outcomes of extracorporeal shock wave therapy in patients with secondary lymphedema: A pilot study. Ann. Rehabil. Med. 2013, 37, 229. [Google Scholar] [PubMed]
- Thabet, A.A.; Mahran, H.G. Extracorporeal Shockwave Therapy for Post-Menopausal Patients with Breast Cancer-Related Lymphedema. Int. J. Cancer Res. 2015, 49, 1618–1625. [Google Scholar]
- Lee, K.W.; Kim, S.B.; Lee, J.H.; Kim, Y.S. Effects of extracorporeal shockwave therapy on improvements in lymphedema, quality of life, and fibrous tissue in breast cancer-related lymphedema. Ann. Rehabil. Med. 2020, 44, 386. [Google Scholar] [CrossRef]
- Kim, W.-J.; Jo, G.-Y.; Park, J.-H.; Do, H.-K. Feasibility of segmental bioelectrical impedance analysis for mild-to moderate-degree breast cancer-related lymphedema: Correlation with circumferential volume measurement and phase angle. Medicine 2021, 100, e23722. [Google Scholar] [CrossRef]
- Gummesson, C.; Ward, M.M.; Atroshi, I. The shortened disabilities of the arm, shoulder and hand questionnaire (Quick DASH): Validity and reliability based on responses within the full-length DASH. BMC Musculoskelet. Disord. 2006, 7, 44. [Google Scholar]
- Korpan, M.I.; Crevenna, R.; Fialka-Moser, V. Lymphedema: A therapeutic approach in the treatment and rehabilitation of cancer patients. Am. J. Phys. Med. Rehabil. 2011, 90, S69–S75. [Google Scholar]
- Koul, R.; Dufan, T.; Russell, C.; Guenther, W.; Nugent, Z.; Sun, X.; Cooke, A.L. Efficacy of complete decongestive therapy and manual lymphatic drainage on treatment-related lymphedema in breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 841–846. [Google Scholar]
- Szuba, A.; Achalu, R.; Rockson, S.G. Decongestive lymphatic therapy for patients with breast carcinoma-associated lymphedema: A randomized, prospective study of a role for adjunctive intermittent pneumatic compression. Cancer: Interdiscip. Int. J. Am. Cancer Soc. 2002, 95, 2260–2267. [Google Scholar] [CrossRef] [PubMed]
- Leduc, O.; Leduc, A.; Bourgeois, P.; Belgrado, J.P. The physical treatment of upper limb edema. Cancer: Interdiscip. Int. J. Am. Cancer Soc. 1998, 83, 2835–2839. [Google Scholar]
- Tiwari, P.; Coriddi, M.; Salani, R.; Povoski, S.P. Breast and gynecologic cancer-related extremity lymphedema: A review of diagnostic modalities and management options. World J. Surg. Oncol. 2013, 11, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezzo, J.; Manheimer, E.; McNeely, M.L.; Howell, D.M.; Weiss, R.; Johansson, K.I.; Bao, T.; Bily, L.; Tuppo, C.M.; Williams, A.F. Manual lymphatic drainage for lymphedema following breast cancer treatment. Cochrane Database Syst. Rev. 2015, 5, CD003475. [Google Scholar] [CrossRef] [Green Version]
- Serizawa, F.; Ito, K.; Matsubara, M.; Sato, A.; Shimokawa, H.; Satomi, S. Extracorporeal shock wave therapy induces therapeutic lymphangiogenesis in a rat model of secondary lymphoedema. Eur. J. Vasc. Endovasc. Surg. 2011, 42, 254–260. [Google Scholar] [PubMed] [Green Version]
- Christ, C.; Brenke, R.; Sattler, G.; Siems, W.; Novak, P.; Daser, A. Improvement in skin elasticity in the treatment of cellulite and connective tissue weakness by means of extracorporeal pulse activation therapy. Aesthetic Surg. J. 2008, 28, 538–544. [Google Scholar]
- Cebicci, M.A.; Sutbeyaz, S.T.; Goksu, S.S.; Hocaoglu, S.; Oguz, A.; Atilabey, A. Extracorporeal shock wave therapy for breast cancer–related lymphedema: A pilot study. Arch. Phys. Med. Rehabil. 2016, 97, 1520–1525. [Google Scholar]
- El-Shazly, M.; Borhan, W.H.; Thabet, W.N.; Hassan, A. Response of post-mastectomy lymphedema to extracorporeal shockwave therapy. J. Surg. 2016, 4, 14–20. [Google Scholar]
- Aykac Cebicci, M.; Dizdar, M. A comparison of the effectiveness of complex decongestive therapy and extracorporeal shock wave therapy in the treatment of lymphedema secondary to breast cancer. Indian J. Surg. 2021, 83, 749–753. [Google Scholar] [CrossRef]
- Tsai, Y.L.; I, T.J.; Chuang, Y.C.; Cheng, Y.Y.; Lee, Y.C. Extracorporeal Shock Wave Therapy Combined with Complex Decongestive Therapy in Patients with Breast Cancer-Related Lymphedema: A Systemic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 5970. [Google Scholar] [CrossRef]
- Cornish, B.; Chapman, M.; Hirst, C.; Mirolo, B.; Bunce, I.; Ward, L.; Thomas, B. Early diagnosis of lymphedema using multiple frequency bioimpedance. Lymphology 2001, 34, 2–11. [Google Scholar] [PubMed]
- Ward, L.; Dylke, E.; Czerniec, S.; Isenring, E.; Kilbreath, S. Confirmation of the reference impedance ratios used for assessment of breast cancer-related lymphedema by bioelectrical impedance spectroscopy. Lymphat. Res. Biol. 2011, 9, 47–51. [Google Scholar] [PubMed]
- Ward, L.C. Bioelectrical impedance analysis: Proven utility in lymphedema risk assessment and therapeutic monitoring. Lymphat. Res. Biol. 2006, 4, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Gerdesmeyer, L.; Henne, M.; Göbel, M.; Diehl, P. Physical principles and generation of shockwaves. In Extracorporeal Shockwave Therapy; Data Trace Publishing Company: Towson, MD, USA, 2007; pp. 11–20. [Google Scholar]
- Gerdesmeyer, L.; Maier, M.; Haake, M.; Schmitz, C. Physical-technical principles of extracorporeal shockwave therapy (ESWT). Der Orthop. 2002, 31, 610–617. [Google Scholar] [CrossRef]
- Rompe, J.D.; Furia, J.; Weil, L.; Maffulli, N. Shock wave therapy for chronic plantar fasciopathy. Br. Med. Bull. 2007, 81, 183–208. [Google Scholar] [CrossRef]
- El-Shazly, M.; Borhan, W.H.; Thabet, W.N.; Ashraaf, H. Response of Skin Thickness in Cases of Post-Mastectomy Lymphedema to Extracorporeal Shockwave Therapy. Med. J. Cairo. Univ. 2016, 84, 459–463. [Google Scholar]
- Abdelhalim, N.; Samhan, A. Comparison of extracorporeal shock waves therapy versus intermittent pneumatic compression therapy in breast cancer-related lymphedema. Int. J. Cancer Res. 2018, 14, 77–85. [Google Scholar]
- Joos, E.; Vultureanu, I.; Nonneman, T.; Adriaenssens, N.; Hamdi, M.; Zeltzer, A. Low-Energy Extracorporeal Shockwave Therapy as a Therapeutic Option for Patients with a Secondary Late-Stage Fibro-Lymphedema after Breast Cancer Therapy: A Pilot Study. Lymphat. Res. Biol. 2021, 19, 175–180. [Google Scholar] [CrossRef]
ESWT Group (n = 14) | Control (n = 14) | p-Value | |
---|---|---|---|
Age (yr) | 57.51 ± 11.24 | 53.15 ± 8.59 | 0.59 |
Female | 14 | 14 | - |
BMI (kg/m2) | 24.87 ± 2.98 | 26.4 ± 5.18 | 0.51 |
Lymphedema duration (mo) | 10.64 ± 5.33 | 14.5 ± 8.7 | 0.246 |
Received chemotherapy | 13 | 14 | 0.769 |
Received radiotherapy | 11 | 13 | 0.769 |
Circumference (cm) | |||
Above elbow | 28.14 ± 3.86 | 28.4 ± 3.73 | 0.91 |
Elbow | 25.89 ± 2.48 | 26.11 ± 2.97 | 0.91 |
Below elbow | 25.57 ± 2.82 | 25.71 ± 3.30 | 0.95 |
Wrist | 16.6 ± 1.28 | 16.3 ± 1.67 | 0.57 |
Metacarpophalangeal joints | 17.8 ± 1.42 | 17.9 ± 1.23 | 0.95 |
Volume (mL) | 877.86 ± 131.98 | 890 ± 154.07 | 0.91 |
Ratio of water content | 0.39 ± 0.01 | 0.38 ± 0.01 | 0.09 |
QuickDASH score | 4.29 ± 6.82 | 3.76 ± 6.35 | 0.95 |
Skin thickness (mm) | 22.26 ± 5.43 | 23.58 ± 5.76 | 0.73 |
ESWT Group | Control Group | |||||||
---|---|---|---|---|---|---|---|---|
3 Weeks | p-Value | 3 Months | p-Value | 3 Weeks | p-Value | 3 Months | p-Value | |
Circumference (cm) | ||||||||
Above elbow | 27.6 ± 3.48 | 0.027 * | 27.3 ± 3.61 | 0.001 * | 28.4 ± 3.47 | 0.185 | 28.1 ± 3.61 | 0.008 * |
Elbow | 25.5 ± 2.3 | 0.015 * | 25.4 ± 2.48 | 0.013 * | 25.9 ± 2.58 | 0.125 | 25.7 ± 2.57 | 0.034 * |
Below elbow | 23.6 ± 2.59 | 0.001 * | 21.96 ± 2.67 | 0.001 * | 25.8 ± 2.66 | 0.669 | 25.5 ± 2.85 | 0.02 * |
Wrist | 16 ± 1.3 | 0.005 * | 16.2 ± 1.27 | 0.018 * | 16 ± 1.4 | 0.458 | 15.9 ± 1.41 | 0.063 |
Metacarpophalangeal joints | 17.4 ± 1.5 | 0.034 * | 17.3 ± 1.46 | 0.022 * | 17.6 ± 1.65 | 0.252 | 17.5 ± 1.39 | 0.124 |
Volume (mL) | 845.71 ± 124.39 | 0.006 * | 832.14 ± 122.17 | 0.001 * | 875 ± 136.82 | 0.454 | 869.64 ± 125.27 | 0.563 |
Ratio of water content | 0.37 ± 0.00 | 0.001 * | 0.36 ± 0.01 | 0.001 * | 0.38 ± 0.00 | 0.067 | 0.37 ± 0.00 | 0.009 * |
QuickDASH score | 3.37 ± 5.34 | 0.028 * | 3.03 ± 4.77 | 0.028 * | 3.6 ± 5.8 | 0.485 | 3.54 ± 5.79 | 0.225 |
Skin thickness (mm) | 19.22 ± 5.22 | 0.001 * | 18.39 ± 5.31 | 0.001 * | 23.53 ± 5.83 | 0.608 | 23.45 ± 5.74 | 0.045 * |
3 Weeks | 3 Months | |||||
---|---|---|---|---|---|---|
ESWT | Control | p-Value | ESWT | Control | p-Value | |
ΔCircumference (cm) | ||||||
ΔAbove elbow | 0.5 ± 0.85 | 0.21 ± 0.80 | 0.804 | 0.81 ± 0.86 | 0.51 ± 0.53 | 0.454 |
ΔElbow | 0.36 ± 0.41 | 0.25 ± 0.64 | 0.635 | 0.49 ± 0.56 | 0.44 ± 0.64 | 0.982 |
ΔBelow elbow | 1.93 ± 0.43 | 0.11 ± 0.81 | <0.001 * | 3.61 ± 0.63 | 0.26 ± 0.73 | <0.001 * |
ΔWrist | 0.39 ± 0.35 | 0.14 ± 0.86 | 0.058 | 0.39 ± 0.50 | 0.36 ± 0.72 | 0.454 |
ΔMetacarpophalangeal joints | 0.43 ± 0.65 | 0.29 ± 0.78 | 0.874 | 0.48 ± 0.68 | 0.32 ± 0.46 | 0.635 |
ΔVolume (mL) | 32.14 ± 53.23 | 15 ± 76.74 | 0.178 | 45.71 ± 61.86 | 20.36 ± 90.27 | 0.137 |
ΔRatio of water content | 0.016 ± 0.006 | 0.002 ± 0.004 | <0.001 * | 0.03 ± 0.009 | 0.003 ± 0.003 | <0.001 * |
ΔQuickDASH score | 0.91 ± 1.83 | 0.16 ± 0.66 | 0.114 | 1.26 ± 2.52 | 0.23 ± 0.64 | 0.352 |
ΔSkin thickness (mm) * | 3.04 ± 0.5 | 0.05 ± 0.41 | <0.001 * | 3.87 ± 0.54 | 0.13 ± 0.77 | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Kim, S.-B.; Lee, K.-W.; Ha, W.-W. Long-Term Effects of Extracorporeal Shock Wave Therapy on Breast Cancer-Related Lymphedema. J. Clin. Med. 2022, 11, 6747. https://doi.org/10.3390/jcm11226747
Lee J-H, Kim S-B, Lee K-W, Ha W-W. Long-Term Effects of Extracorporeal Shock Wave Therapy on Breast Cancer-Related Lymphedema. Journal of Clinical Medicine. 2022; 11(22):6747. https://doi.org/10.3390/jcm11226747
Chicago/Turabian StyleLee, Jong-Hwa, Sang-Beom Kim, Kyeong-Woo Lee, and Won-Wook Ha. 2022. "Long-Term Effects of Extracorporeal Shock Wave Therapy on Breast Cancer-Related Lymphedema" Journal of Clinical Medicine 11, no. 22: 6747. https://doi.org/10.3390/jcm11226747
APA StyleLee, J.-H., Kim, S.-B., Lee, K.-W., & Ha, W.-W. (2022). Long-Term Effects of Extracorporeal Shock Wave Therapy on Breast Cancer-Related Lymphedema. Journal of Clinical Medicine, 11(22), 6747. https://doi.org/10.3390/jcm11226747