Serum Levels of α-Klotho, Inflammation-Related Cytokines, and Mortality in Hemodialysis Patients
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients
2.2. Cytokine Measurement in Plasma Samples
2.3. Detection of α-Klotho Alpha in Plasma Samples
2.4. Outcome Measurements
2.5. Analysis and Statistics
3. Results
3.1. Baseline Demographic, Clinical, and Laboratory Findings
3.2. Factors Associated with α-Klotho Levels
3.3. Factors Associated with Cardiovascular Events and Mortality
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuro-O, M.; Matsumura, Y.; Aizawa, H.; Kawaguchi, H.; Suga, T.; Utsugi, T.; Ohyama, Y.; Kurabayashi, M.; Kaname, T.; Kume, E.; et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997, 390, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Kuro-O, M. Klotho and aging. Biochim. Biophys. Acta 2009, 1790, 1049–1058. [Google Scholar] [CrossRef] [PubMed]
- Kurosu, H.; Ogawa, Y.; Miyoshi, M.; Yamamoto, M.; Nandi, A.; Rosenblatt, K.P.; Baum, M.G.; Schiavi, S.; Hu, M.-C.; Moe, O.W.; et al. Regulation of fibroblast growth factor-23 signaling by klotho. J. Biol. Chem. 2006, 281, 6120–6123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olauson, H.; Mencke, R.; Hillebrands, J.-L.; Larsson, T.E. Tissue expression and source of circulating αKlotho. Bone 2017, 100, 19–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumuraab, Y.; Aizawaab, H.; Iidaac, T.S.; Nagaibd, R.; Kuro-O, M.; Ichinabeshimaade, Y. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem. Biophys. Res. Commun. 1998, 242, 6260–6630. [Google Scholar] [CrossRef]
- Urakawa, I.; Yamazaki, Y.; Shimada, T.; Iijima, K.; Hasegawa, H.; Okawa, K.; Fujita, T.; Fukumoto, S.; Yamashita, T. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006, 444, 770–774. [Google Scholar] [CrossRef]
- Yamamoto, M.; Clark, J.D.; Pastor, J.V.; Gurnani, P.; Nandi, A.; Kurosu, H.; Miyoshi, M.; Ogawa, Y.; Castrillon, D.H.; Rosenblatt, K.P.; et al. Regulation of oxidative stress by the anti-aging hormone klotho. J. Biol. Chem. 2005, 280, 38029–38034. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.R.; Nam, B.Y.; Kim, D.W.; Kang, M.W.; Han, J.-H.; Lee, M.J.; Shin, D.H.; Doh, F.M.; Koo, H.M.; Ko, K.I.; et al. Circulating α-klotho levels in CKD and Circulating α-klotho levels in CKD and relationship to progression. Am. J. Kidney Dis. 2013, 61, 899–909. [Google Scholar] [CrossRef]
- Marçais, C.; Maucort-Boulch, D.; Drai, J.; Dantony, E.; Carlier, M.-C.; Blond, E.; Genet, L.; Kuentz, F.; Lataillade, D.; Legrand, E.; et al. Circulating Klotho Associates with Cardiovascular Morbidity and Mortality During Hemodialysis. J. Clin. Endocrinol. Metab. 2017, 102, 3154–3161. [Google Scholar] [CrossRef] [Green Version]
- Otani-Takei, N.; Masuda, T.; Akimoto, T.; Honma, S.; Watanabe, Y.; Shiizaki, K.; Miki, T.; Kusano, E.; Asano, Y.; Kuro-O, M.; et al. Association between Serum Soluble Klotho Levels and Mortality in Chronic Hemodialysis Patients. Int. J. Endocrinol. 2015, 2015, 406269. [Google Scholar] [CrossRef]
- Wei, H.; Li, H.; Song, X.; Du, X.; Cai, Y.; Li, C.; Dong, L.; Dong, J. Serum klotho: A potential predictor of cerebrovascular disease in hemodialysis patients. BMC Nephrol. 2019, 20, 63. [Google Scholar] [CrossRef] [Green Version]
- Himmelfarb, J.; Stenvinkel, P.; Ikizler, T.A.; Hakim, R.M. The elephant in uremia: Oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002, 62, 1524–1538. [Google Scholar] [CrossRef] [Green Version]
- Jankowska, M.; Cobo, G.; Lindholm, B.; Stenvinkel, P. Inflammation and Protein-Energy Wasting in the Uremic Milieu. Contrib. Nephrol. 2017, 191, 58–71. [Google Scholar] [CrossRef]
- Sun, J.; Axelsson, J.; Machowska, A.; Heimbürger, O.; Bárány, P.; Lindholm, B.; Lindström, K.; Stenvinkel, P.; Qureshi, A.R. Biomarkers of Cardiovascular Disease and Mortality Risk in Patients with Advanced CKD. Clin. J. Am. Soc. Nephrol. 2016, 11, 1163–1172. [Google Scholar] [CrossRef] [Green Version]
- Cobo, G.; Lindholm, B.; Stenvinkel, P. Chronic inflammation in end-stage renal disease and dialysis. Nephrol. Dial. Transplant. 2018, 33, iii35–iii40. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Banerjee, S.; Dey, N.; LeJeune, W.S.; Sarkar, P.S.; Brobey, R.; Rosenblatt, K.P.; Tilton, R.G.; Choudhary, S. Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes 2011, 60, 1907–1916. [Google Scholar] [CrossRef] [Green Version]
- Oh, H.J.; Nam, B.Y.; Lee, M.J.; Kim, C.H.; Koo, H.M.; Doh, F.M.; Han, J.H.; Kim, E.J.; Han, J.S.; Park, J.T.; et al. Decreased circulating klotho levels in patients undergoing dialysis and relationship to oxidative stress and inflammation. Perit. Dial. Int. 2015, 35, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Graham, C.; Chooniedass, R.; Stefura, W.P.; Lotoski, L.; Lopez, P.; Befus, A.D.; Becker, A.B.; HayGlass, K.T. Stability of pro- and anti-inflammatory immune biomarkers for human cohort studies. J. Transl. Med. 2017, 15, 53. [Google Scholar] [CrossRef] [Green Version]
- Verberk, I.M.; Nossent, E.J.; Bontkes, H.J.; Teunissen, C.E. Pre-analytical sample handling effects on blood cytokine levels: Quality control of a COVID-19 biobank. Biomark. Med. 2021, 15, 987–997. [Google Scholar]
- Rysz, J.; Banach, M.; Ciałkowska-Rysz, A.; Stolarek, R.; Barylski, M.; Drozdz, J.; Okonski, P. Blood serum levels of IL-2, IL-6, IL-8, TNF-alpha and IL-1beta in patients on maintenance hemodialysis. Cell. Mol. Immunol. 2006, 3, 151–154. [Google Scholar]
- Girndt, M.; Köhler, H.; Schiedhelm-Weick, E.; Schlaak, J.F.; Büschenfelde, K.-H.M.Z.; Fleischer, B. Production of interleukin-6, tumor necrosis factor alpha and interleukin-10 in vitro correlates with the clinical immune defect in chronic hemodialysis patients. Kidney Int. 1995, 47, 559–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Su, W.; Shen, Z.; Wang, R. Correlation between Soluble α-Klotho and Renal Function in Patients with Chronic Kidney Disease: A Review and Meta-Analysis. Biomed. Res. Int. 2018, 2018, 9481475. [Google Scholar] [CrossRef] [PubMed]
- Komaba, H.; Goto, S.; Fujii, H.; Hamada, Y.; Kobayashi, A.; Shibuya, K.; Tominaga, Y.; Otsuki, N.; Nibu, K.-I.; Nakagawa, K.; et al. Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int. 2010, 77, 232–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, K.; Lu, T.-S.; Molostvov, G.; Lee, C.; Lam, F.; Zehnder, D.; Hsiao, L.-L. Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation 2012, 125, 2243–2255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seiler, S.; Wen, M.; Roth, H.J.; Fehrenz, M.; Flügge, F.; Herath, E.; Weihrauch, A.; Fliser, D.; Heine, G.H. Plasma Klotho is not related to kidney function and does not predict adverse outcome in patients with chronic kidney disease. Kidney Int. 2013, 83, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, M.; Acikgoz, S.B.; Genc, A.B.; Yaylaci, S.; Dheir, H.; Sipahi, S. The levels of inflammatory biomarkers in hemodialysis and peritoneal dialysis patients. Rev. Assoc. Med. Bras. 2021, 67, 718–723. [Google Scholar] [CrossRef]
- Gamrot, Z.; Adamczyk, P.; Świętochowska, E.; Roszkowska-Bjanid, D.; Gamrot, J.; Szczepanska, M. Tumour necrosis factor alpha (TNFα) and alpha-Klotho (αKL) in children and adolescents with chronic kidney disease (CKD). Endokrynol. Pol. 2021, 72, 625–633. [Google Scholar] [CrossRef]
- Drüeke, T.B.; Massy, Z.A. Circulating Klotho levels: Clinical relevance and relationship with tissue Klotho expression. Kidney Int. 2013, 83, 13–15. [Google Scholar] [CrossRef] [Green Version]
- Buiten, M.S.; De Bie, M.K.; Krijger, A.B.-D.; Van Dam, B.; Dekker, F.; Jukema, J.W.; Rabelink, T.J.; Rotmans, J.I. Soluble Klotho is not independently associated with cardiovascular disease in a population of dialysis patients. BMC Nephrol. 2014, 15, 197. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-J.; Choi, J.-Y.; Lee, J.; Kim, D.; Min, J.-Y.; Min, K.-B. Association between serum uric acid and α-klotho protein levels in the middle-aged population. Aging 2022, 14, 2537–2547. [Google Scholar] [CrossRef]
- Wu, S.-E.; Chen, W.-L. Soluble klotho as an effective biomarker to characterize inflammatory states. Ann. Med. 2022, 54, 1520–1529. [Google Scholar] [CrossRef]
- Sugiura, H.; Yoshida, T.; Shiohira, S.; Kohei, J.; Mitobe, M.; Kurosu, H.; Kuro-O, M.; Nitta, K.; Tsuchiya, K. Reduced Klotho expression level in kidney aggravates renal interstitial fibrosis. Am. J. Physiol. Renal Physiol. 2012, 302, F1252–F1264. [Google Scholar] [CrossRef]
- Junho, C.V.C.; González-Lafuente, L.; Neres-Santos, R.S.; Navarro-García, J.A.; Rodríguez-Sánchez, E.; Ruiz-Hurtado, G.; Carneiro-Ramos, M.S. Klotho relieves inflammation and exerts a cardioprotective effect during renal ischemia/reperfusion-induced cardiorenal syndrome. Biomed. Pharmacother. 2022, 153, 113515. [Google Scholar] [CrossRef]
- Mytych, J.; Romerowicz-Misielak, M.; Koziorowski, M. Klotho protects human monocytes from LPS-induced immune impairment associated with immunosenescent-like phenotype. Mol. Cell. Endocrinol. 2018, 470, 1–13. [Google Scholar] [CrossRef]
- Maekawa, Y.; Ishikawa, K.; Yasuda, O.; Oguro, R.; Hanasaki, H.; Kida, I.; Takemura, Y.; Ohishi, M.; Katsuya, T.; Rakugi, H. Klotho suppresses TNF-alpha-induced expression of adhesion molecules in the endothelium and attenuates NF-kappaB activation. Endocrine 2009, 35, 341–346. [Google Scholar] [CrossRef]
- Martín-Núñez, E.; Donate-Correa, J.; Ferri, C.; López-Castillo, Á.; Delgado-Molinos, A.; Hernández-Carballo, C.; Pérez-Delgado, N.; Rodríguez-Ramos, S.; Cerro-López, P.; Tagua, V.G.; et al. Association between serum levels of Klotho and inflammatory cytokines in cardiovascular disease: A case-control study. Aging 2020, 12, 1952–1964. [Google Scholar] [CrossRef]
- Sester, U.; Sester, M.; Hauk, M.; Kaul, H.; Köhler, H.; Girndt, M. T-cell activation follows Th1 rather than Th2 pattern in haemodialysis patients. Nephrol. Dial. Transplant. 2000, 15, 1217–1223. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Chen, X.; Li, Y.; Wang, Y.; Cao, X.; Liu, Z.; Shen, B.; Zou, J.; Ding, X. Pro-inflammatory cytokines as potential predictors for intradialytic hypotension. Ren. Fail. 2021, 43, 198–205. [Google Scholar] [CrossRef]
- Iyer, S.S.; Cheng, G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 2012, 32, 23–63. [Google Scholar] [CrossRef] [Green Version]
- Memmos, E.; Sarafidis, P.; Pateinakis, P.; Tsiantoulas, A.; Faitatzidou, D.; Giamalis, P.; Vasilikos, V.; Papagianni, A. Soluble Klotho is associated with mortality and cardiovascular events in hemodialysis. BMC Nephrol. 2019, 20, 217. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, K.; Amin, R.; Moe, O.W.; Hu, M.-C.; Erben, R.G.; Wernerson, A.; Lanske, B.; Olauson, H.; Larsson, T.E. The kidney is the principal organ mediating klotho effects. J. Am. Soc. Nephrol. 2014, 25, 2169–2175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- German, D.C.; Khobahy, I.; Pastor, J.; Kuro-O, M.; Liu, X. Nuclear localization of Klotho in brain: An anti-aging protein. Neurobiol. Aging. 2012, 33, 1483.e25–1483.e30. [Google Scholar] [CrossRef] [PubMed]
- Semba, R.D.; Moghekar, A.R.; Hu, J.; Sun, K.; Turner, R.; Ferrucci, L.; O’Brien, R. Klotho in the cerebrospinal fluid of adults with and without Alzheimer’s disease. Neurosci. Lett. 2014, 558, 37–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, R.N.; Parfrey, P.S.; Sarnak, M.J. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis. 1998, 32, S112–S119. [Google Scholar] [CrossRef]
- Matsushita, K.; Coresh, J.; Sang, Y.; Chalmers, J.; Fox, C.; Guallar, E.; Jafar, T.; Jassal, S.K.; Landman, G.W.D.; Muntner, P.; et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: A collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol. 2015, 3, 514–525. [Google Scholar] [CrossRef] [Green Version]
- Lees, J.S.; Welsh, C.E.; Celis-Morales, C.A.; Mackay, D.; Lewsey, J.; Gray, S.R.; Lyall, D.M.; Cleland, J.G.; Gill, J.M.R.; Jhund, P.S.; et al. Glomerular filtration rate by differing measures, albuminuria and prediction of cardiovascular disease, mortality and end-stage kidney disease. Nat. Med. 2019, 25, 1753–1760. [Google Scholar] [CrossRef]
- De Lima, J.J.G.; Gowdak, L.H.W.; David-Neto, E.; Bortolotto, L.A. Diabetes, Cardiovascular Disease, and Cardiovascular Risk in Patients with Chronic Kidney Disease. High Blood Press. Cardiovasc. Prev. 2021, 28, 159–165. [Google Scholar] [CrossRef]
Healthy People (n = 19) | HD Patients (n = 67) | p Value | |
---|---|---|---|
Age (years) | 70 (37, 87) | 69 (36, 89) | 0.613 |
HD time (months) | n.a. | 28 (0.5, 169) | n.a. |
Creatinine (mg/dL) | n.a. | 6.3 (2.71, 10.38) | n.a. |
eGFR (min/mL/1.73 m2) | n.a. | 7 (4, 22) | n.a. |
Kt/V | n.a. | 1.5 (0.74, 2.37) | n.a. |
PTH (pg/mL) | n.a. | 356 (44.5, 4276) | n.a. |
Ca (mg/dL) | n.a. | 8.7 (6.5, 10.8) | n.a. |
Pi (mg/dL) | n.a. | 5.5 (2.4, 10.5) | n.a. |
IL-12p70 (pg/mL) | 2.7 (1.05, 12.74) | 2.45 (0, 108.95) | 0.737 |
TNF (pg/mL) | 2.59 (0.84, 5.22) | 2.5 (0, 127.65) | 0.568 |
IL-10 (pg/mL) | 2.65 (0.72, 6.15) | 2.8 (1.4, 21.88) | 0.104 |
IL-6 (pg/mL) | 4.08 (2.23, 22.57) | 10.3 (3.45, 805.45) | <0.001 |
IL-1β (pg/mL) | 1.83 (0, 3.33) | 1.75 (0, 18.24) | 0.844 |
IL-8 (pg/mL) | 13.56 (9.59, 911.66) | 38.8 (10.4, 5000) | 0.001 |
α-Klotho (pg/mL) | 8.74 (1.33, 60.82) | 6.96 (0.45, 127.1) | 0.451 |
Age | HD Time | Cr | eGFR | Kt/V | PTH | Ca | Pi | IL-12 | TNF | IL-10 | IL-6 | IL-1 | IL-8 | α-KL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | 1.000 | −0.186 | −0.358 | 0.192 | −0.194 | −0.253 | 0.106 | −0.330 | −0.138 | −0.076 | −0.178 | 0.047 | −0.048 | 0.053 | −0.268 |
HD time | 1.000 | 0.178 | −0.286 | 0.415 | 0.449 | 0.036 | −0.106 | −0.003 | 0.042 | 0.045 | 0.028 | −0.004 | −0.278 | −0.004 | |
Cr | 1.000 | −0.668 | 0.294 | 0.143 | −0.223 | 0.408 | −0.122 | −0.064 | −0.119 | −0.004 | −0.080 | 0.189 | −0.108 | ||
eGFR | 1.000 | −0.353 | −0.327 | 0.108 | −0.415 | 0.125 | −0.053 | 0.094 | 0.121 | −0.069 | −0.184 | 0.075 | |||
Kt/V | 1.000 | 0.228 | −0.007 | 0.064 | 0.014 | 0.083 | −0.088 | −0.125 | −0.050 | −0.020 | −0.138 | ||||
PTH | 1.000 | −0.146 | 0.242 | −0.017 | 0.165 | −0.073 | 0.024 | −0.026 | 0.081 | −0.290 | |||||
Ca | 1.000 | −0.217 | 0.113 | 0.018 | −0.038 | −0.162 | 0.140 | −0.143 | 0.117 | ||||||
Pi | 1.000 | 0.026 | 0.207 | 0.034 | 0.074 | 0.158 | 0.186 | −0.025 | |||||||
IL-12 | 1.000 | 0.384 | 0.424 | 0.235 | 0.421 | −0.028 | 0.250 | ||||||||
TNF | 1.000 | 0.286 | 0.134 | 0.179 | −0.018 | −0.191 | |||||||||
IL-10 | 1.000 | 0.386 | 0.546 | −0.022 | 0.333 | ||||||||||
IL-6 | 1.000 | 0.195 | 0.364 | 0.090 | |||||||||||
IL-1 | 1.000 | −0.110 | 0.436 | ||||||||||||
IL-8 | 1.000 | −0.123 | |||||||||||||
α-KL | 1.000 |
Variable | Estimate | Standard Error | 95% CI | p Value |
---|---|---|---|---|
Age | −0.551 | 0.271 | −1.09 to −0.00817 | 0.047 |
PTH | −0.00779 | 0.00491 | −0.0176 to 0.00202 | 0.118 |
IL-12 | −0.0647 | 0.167 | −0.399 to 0.270 | 0.700 |
IL-10 | −0.545 | 0.997 | −2.54 to 1.45 | 0.587 |
IL-1 | 1.71 | 1.15 | −0.601 to 4.01 | 0.144 |
Cardiovascular Events | Cardiovascular Mortality | All-Cause Mortality | ||||
---|---|---|---|---|---|---|
Hazard Ratio (95% CI) | p Value | Hazard Ratio (95% CI) | p Value | Hazard Ratio (95% CI) | p Value | |
Sex [male] | 0.685 (0.335–1.44) | 0.305 | 1.73 (0.407–11.7) | 0.500 | 1.00 (0.339–3.30) | 0.999 |
Age (years) | 1.03 (1.00–1.07) | 0.038 | 1.02 (0.971–1.09) | 0.396 | 1.04 (0.990–1.00) | 0.144 |
HD time (months) | 1.00 (0.994–1.01) | 0.610 | 1.00 (0.983–1.01) | 0.901 | 0.99 (0.984–1.01) | 0.909 |
Creatinine (mg/dL) | 0.726 (0.575–0.902) | 0.005 | 0.517 (0.313–0.807) | 0.006 | 0.577 (0.392–0.816) | 0.003 |
eGFR (min/mL/1.73 m2) | 1.04 (0.912–1.16) | 0.568 | 1.25 (1.07–1.46) | 0.003 | 1.20 (1.05–1.36) | 0.004 |
Kt/V | 0.560 (0.162–1.92) | 0.356 | 0.888 (0.097–8.21) | 0.916 | 0.629 (0.105–3.72) | 0.610 |
PTH (pg/mL) | 1.00 (1.00–1.00) | 0.347 | 1.00 (0.999–1.00) | 0.463 | 1.00 (0.999–1.00) | 0.711 |
Ca (mg/dL) | 1.27 (0.752–2.23) | 0.389 | 2.24 (0.814–6.00) | 0.119 | 1.62 (0.731–3.56) | 0.240 |
Pi (mg/dL) | 0.899 (0.715–1.13) | 0.357 | 0.848 (0.544–1.29) | 0.452 | 0.741 (0.512–1.05) | 0.101 |
IL-12p70 (pg/mL) | 0.987 (0.959–1.00) | 0.230 | 0.994 (0.944–1.02) | 0.712 | 0.989 (0.936–1.01) | 0.512 |
TNF (pg/mL) | 0.968 (0.882–1.00) | 0.303 | 0.948 (0.699–1.01) | 0.566 | 0.918 (0.680–1.01) | 0.415 |
IL-10 (pg/mL) | 1.01 (0.909–1.08) | 0.882 | 1.04 (0.860–1.16) | 0.579 | 1.01 (0.835–1.12) | 0.915 |
IL-6 (pg/mL) | 0.997 (0.985–1.00) | 0.388 | 0.999 (0.978–1.00) | 0.723 | 0.999 (0.982–1.00) | 0.681 |
IL-1β (pg/mL) | 0.976 (0.855–1.08) | 0.677 | 0.956 (0.699–1.14) | 0.708 | 0.884 (0.646–1.07) | 0.339 |
IL-8 (pg/mL) | 0.999 (0.995–1.00) | 0.281 | 0.999 (0.995–1.00) | 0.573 | 0.999 (0.996–1.00) | 0.505 |
α-Klotho (pg/mL) | 0.997 (0.983–1.01) | 0.664 | 0.996 (0.964–1.02) | 0.759 | 0.991 (0.960–1.01) | 0.438 |
Diabetes [yes] | 2.73 (1.31–6.11) | 0.009 | 3.86 (0.900–26.7) | 0.100 | 2.45 (0.802–9.10) | 0.138 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisowska, K.A.; Storoniak, H.; Soroczyńska-Cybula, M.; Maziewski, M.; Dębska-Ślizień, A. Serum Levels of α-Klotho, Inflammation-Related Cytokines, and Mortality in Hemodialysis Patients. J. Clin. Med. 2022, 11, 6518. https://doi.org/10.3390/jcm11216518
Lisowska KA, Storoniak H, Soroczyńska-Cybula M, Maziewski M, Dębska-Ślizień A. Serum Levels of α-Klotho, Inflammation-Related Cytokines, and Mortality in Hemodialysis Patients. Journal of Clinical Medicine. 2022; 11(21):6518. https://doi.org/10.3390/jcm11216518
Chicago/Turabian StyleLisowska, Katarzyna Aleksandra, Hanna Storoniak, Monika Soroczyńska-Cybula, Mateusz Maziewski, and Alicja Dębska-Ślizień. 2022. "Serum Levels of α-Klotho, Inflammation-Related Cytokines, and Mortality in Hemodialysis Patients" Journal of Clinical Medicine 11, no. 21: 6518. https://doi.org/10.3390/jcm11216518
APA StyleLisowska, K. A., Storoniak, H., Soroczyńska-Cybula, M., Maziewski, M., & Dębska-Ślizień, A. (2022). Serum Levels of α-Klotho, Inflammation-Related Cytokines, and Mortality in Hemodialysis Patients. Journal of Clinical Medicine, 11(21), 6518. https://doi.org/10.3390/jcm11216518