Effects of Intraoperative Magnesium and Ketorolac on Catheter-Related Bladder Discomfort after Transurethral Bladder Tumor Resection: A Prospective Randomized Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Population and Randomization
2.3. Study Protocol
2.4. Study Outcomes
2.5. Clinical Variables
2.6. Sample Size and Statistical Analyses
3. Results
3.1. Comparisons of Preoperative Findings between the Control and Experimental Groups
3.2. Comparisons of Intraoperative Findings between the Control and Experimental Groups
3.3. Comparisons of the Incidence and Grade of Catheter-Related Bladder Discomfort after Surgery between the Control and Experimental Groups
3.4. Comparisons of Postoperative Recovery Findings between the Control and Experimental Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pakzad, R.; Mohammadian-Hafshejani, A.; Mohammadian, M.; Pakzad, I.; Safiri, S.; Khazaei, S.; Salehiniya, H. Incidence and Mortality of Bladder Cancer and their Relationship with Development in Asia. Asian Pac. J. Cancer Prev. 2015, 16, 7365–7374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burger, M.; Catto, J.W.; Dalbagni, G.; Grossman, H.B.; Herr, H.; Karakiewicz, P.; Kassouf, W.; Kiemeney, L.A.; La Vecchia, C.; Shariat, S.; et al. Epidemiology and risk factors of urothelial bladder cancer. Eur. Urol. 2013, 63, 234–241. [Google Scholar] [CrossRef] [PubMed]
- di Meo, N.A.; Loizzo, D.; Pandolfo, S.D.; Autorino, R.; Ferro, M.; Porta, C.; Stella, A.; Bizzoca, C.; Vincenti, L.; Crocetto, F.; et al. Metabolomic Approaches for Detection and Identification of Biomarkers and Altered Pathways in Bladder Cancer. Int. J. Mol. Sci. 2022, 23, 4173. [Google Scholar] [CrossRef] [PubMed]
- Crocetto, F.; Pandolfo, S.D.; Aveta, A.; Martino, R.; Trama, F.; Caputo, V.F.; Barone, B.; Abate, M.; Sicignano, E.; Cilio, S.; et al. A Comparative Study of the Triglycerides/HDL Ratio and Pseudocholinesterase Levels in Patients with Bladder Cancer. Diagnostics 2022, 12, 431. [Google Scholar] [CrossRef]
- Babjuk, M.; Oosterlinck, W.; Sylvester, R.; Kaasinen, E.; Böhle, A.; Palou-Redorta, J. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder. Eur. Urol. 2008, 54, 303–314. [Google Scholar] [CrossRef]
- Park, J.Y.; Hong, J.H.; Kim, D.H.; Yu, J.; Hwang, J.H.; Kim, Y.K. Magnesium and Bladder Discomfort after Transurethral Resection of Bladder Tumor: A Randomized, Double-blind, Placebo-controlled Study. Anesthesiology 2020, 133, 64–77. [Google Scholar] [CrossRef]
- Li, S.Y.; Song, L.P.; Ma, Y.S.; Lin, X.M. Predictors of catheter-related bladder discomfort after gynaecological surgery. BMC Anesthesiol. 2020, 20, 97. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, X.; Li, X.; Pu, C.; Yuan, H.; Tang, Y.; Li, J.; Wei, Q.; Han, P. Management of Catheter-Related Bladder Discomfort in Patients Who Underwent Elective Surgery. J. Endourol. 2015, 29, 640–649. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.A.; Huh, I.; Lee, S.J.; Sung, T.Y.; Ku, G.W.; Cho, C.K.; Jee, Y.S. Effects of dexamethasone on catheter-related bladder discomfort and emergence agitation: A prospective, randomized, controlled trial. Korean J. Anesthesiol. 2022, 75, 71–78. [Google Scholar] [CrossRef]
- Hu, B.; Li, C.; Pan, M.; Zhong, M.; Cao, Y.; Zhang, N.; Yuan, H.; Duan, H. Strategies for the prevention of catheter-related bladder discomfort: A PRISMA-compliant systematic review and meta-analysis of randomized controlled trials. Medicine 2016, 95, e4859. [Google Scholar] [CrossRef]
- Ergenoglu, P.; Akin, S.; Yalcin Cok, O.; Eker, E.; Kuzgunbay, B.; Turunc, T.; Aribogan, A. Effect of intraoperative paracetamol on catheter-related bladder discomfort: A prospective, randomized, double-blind study. Curr. Ther. Res. 2012, 73, 186–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.Y.; Hong, J.H.; Yu, J.; Kim, D.H.; Koh, G.H.; Lee, S.A.; Hwang, J.H.; Kong, Y.G.; Kim, Y.K. Effect of Ketorolac on the Prevention of Postoperative Catheter-Related Bladder Discomfort in Patients Undergoing Robot-Assisted Laparoscopic Radical Prostatectomy: A Randomized, Double-Blinded, Placebo-Controlled Study. J. Clin. Med. 2019, 8, 759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.C.; Lim, S.M.; Seo, H.; Park, H.P. Effect of glycopyrrolate versus atropine coadministered with neostigmine for reversal of rocuronium on postoperative catheter-related bladder discomfort in patients undergoing transurethral resection of bladder tumor: A prospective randomized study. J. Anesth. 2015, 29, 831–835. [Google Scholar] [CrossRef] [PubMed]
- Şahiner, Y.; Yağan, Ö.; Akdağlı Ekici, A.; Ekici, M.; Demir, E. The effect of atropine in preventing catheter-related pain and discomfort in patients undergoing transurethral resection due to bladder tumor; prospective randomized, controlled study. Korean J. Pain 2020, 33, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in Prevention and Therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaye, A.D.; Urman, R.D.; Rappaport, Y.; Siddaiah, H.; Cornett, E.M.; Belani, K.; Salinas, O.J.; Fox, C.J. Multimodal analgesia as an essential part of enhanced recovery protocols in the ambulatory settings. J. Anaesthesiol. Clin. Pharmacol. 2019, 35, S40–S45. [Google Scholar] [CrossRef]
- Agarwal, A.; Yadav, G.; Gupta, D.; Singh, P.K.; Singh, U. Evaluation of intra-operative tramadol for prevention of catheter-related bladder discomfort: A prospective, randomized, double-blind study. Br. J. Anaesth. 2008, 101, 506–510. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.P.; Chen, C.; Brugger, A.M. Interpretation of visual analog scale ratings and change scores: A reanalysis of two clinical trials of postoperative pain. J. Pain 2003, 4, 407–414. [Google Scholar] [CrossRef]
- Covotta, M.; Claroni, C.; Costantini, M.; Torregiani, G.; Pelagalli, L.; Zinilli, A.; Forastiere, E. The Effects of Ultrasound-Guided Transversus Abdominis Plane Block on Acute and Chronic Postsurgical Pain After Robotic Partial Nephrectomy: A Prospective Randomized Clinical Trial. Pain Med. 2020, 21, 378–386. [Google Scholar] [CrossRef]
- Vukovic, N.; Dinic, L. Enhanced Recovery After Surgery Protocols in Major Urologic Surgery. Front. Med. 2018, 5, 93. [Google Scholar] [CrossRef]
- Kim, H.C.; Kim, E.; Jeon, Y.T.; Hwang, J.W.; Lim, Y.J.; Seo, J.H.; Park, H.P. Postanaesthetic emergence agitation in adult patients after general anaesthesia for urological surgery. J. Int. Med. Res. 2015, 43, 226–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lepousé, C.; Lautner, C.A.; Liu, L.; Gomis, P.; Leon, A. Emergence delirium in adults in the post-anaesthesia care unit. Br. J. Anaesth. 2006, 96, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Wick, E.C.; Grant, M.C.; Wu, C.L. Postoperative Multimodal Analgesia Pain Management with Nonopioid Analgesics and Techniques: A Review. JAMA Surg. 2017, 152, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.W.; Ko, J.; Bae, J.H.; Park, J.; Lee, H.M.; Kim, Y.S.; Moon, Y.E.; Hong, S.H.; Chae, M.S. Pre-emptive multimodal analgesic bundle with transversus abdominis plane block enhances early recovery after laparoscopic cholecystectomy. Asian J. Surg. 2022, 45, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Law, L.S.-C.; Gan, T.J. Optimizing pain management to facilitate Enhanced Recovery After Surgery pathways. Can. J. Anesth. 2015, 62, 203–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustafsson, U.O.; Scott, M.J.; Hubner, M.; Nygren, J.; Demartines, N.; Francis, N.; Rockall, T.A.; Young-Fadok, T.M.; Hill, A.G.; Soop, M.; et al. Guidelines for Perioperative Care in Elective Colorectal Surgery: Enhanced Recovery After Surgery (ERAS®) Society Recommendations: 2018. World J. Surg. 2019, 43, 659–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.C.; Lee, Y.H.; Jeon, Y.T.; Hwang, J.W.; Lim, Y.J.; Park, J.E.; Park, H.P. The effect of intraoperative dexmedetomidine on postoperative catheter-related bladder discomfort in patients undergoing transurethral bladder tumour resection: A double-blind randomised study. Eur. J. Anaesthesiol. 2015, 32, 596–601. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, J.Y.; Yu, J.; Lee, S.A.; Park, S.; Hwang, J.H.; Koh, G.H.; Kim, Y.K. Intravenous Lidocaine for the Prevention of Postoperative Catheter-Related Bladder Discomfort in Male Patients Undergoing Transurethral Resection of Bladder Tumors: A Randomized, Double-Blind, Controlled Trial. Anesth. Analg. 2020, 131, 220–227. [Google Scholar] [CrossRef]
- Chattopadhyay, U.; Mallik, S.; Ghosh, S.; Bhattacharya, S.; Bisai, S.; Biswas, H. Comparison between propofol and dexmedetomidine on depth of anesthesia: A prospective randomized trial. J. Anaesthesiol. Clin. Pharmacol. 2014, 30, 550–554. [Google Scholar] [CrossRef]
- Andersson, K.E.; Olshansky, B. Treating patients with overactive bladder syndrome with antimuscarinics: Heart rate considerations. BJU Int. 2007, 100, 1007–1014. [Google Scholar] [CrossRef]
Control Group | Experimental Group | p Value | |
---|---|---|---|
(n = 50) | (n = 48) | ||
Sex (male) | 40 (80.0%) | 35 (72.9%) | 0.408 |
Age (years) | 66 (54–73) | 68 (59–73) | 0.325 |
Body mass index (kg/m2) | 24.4 (22.3–25.9) | 24.0 (22.3–26.6) | 0.977 |
ASA classification | 0.909 | ||
I/II | 6/44 | 6/42 | |
Comorbidity | |||
Hypertension | 19 (38.0%) | 18 (37.5%) | 0.959 |
Diabetes mellitus | 8 (16.0%) | 14 (29.2%) | 0.118 |
Hepatitis B | 4 (8.0%) | 4 (8.3%) | >0.999 |
Tuberculosis | 1 (2.0%) | 4 (8.3%) | 0.200 |
Laboratory variables | |||
White blood cell count (×109/L) | 6.7 (5.3–7.6) | 6.3 (4.7–7.3) | 0.320 |
Hemoglobin (g/dL) | 14.3 (13.6–15.3) | 14.0 (13.2–14.8) | 0.091 |
Platelet count (×109/L) | 233 (192–284) | 227 (190–289) | 0.997 |
eGFR (mL/min/1.73 m2) | 86.5 (75.6–101.3) | 90.0 (78.9–102.4) | 0.500 |
Calcium (mg/dL) | 9.1 (8.8–9.4) | 9.1 (8.8–9.5) | 0.705 |
Magnesium (mg/dL) | 2.2 (2.0–2.3) | 2.1 (2.0–2.2) | 0.440 |
Control Group | Experimental Group | p Value | |
---|---|---|---|
(n = 50) | (n = 48) | ||
Total case length (min) | 30 (25–38) | 30 (25–39) | 0.605 |
Remifentanil dose (mg) | 0.1 (0.1–0.2) | 0.1 (0.1–0.2) | 0.624 |
IV fluids input (mL) | 100 (50–100) | 100 (50–100) | 0.829 |
Estimated blood loss (mL) | 10 (5–10) | 5 (3–10) | 0.021 |
Tumor multiplicity | 0.430 | ||
single/multiple | 20/30 | 23/25 | |
Tumor size | 0.877 | ||
<1 cm | 10 (20.0%) | 11 (22.9%) | |
1–3 cm | 37 (74.0%) | 35 (72.9%) | |
>3 cm | 3 (6.0%) | 2 (4.2%) | |
Tumor shape | 0.795 | ||
Papillary | 38 (76.0%) | 38 (79.2%) | |
Sessile | 7 (14.0%) | 7 (14.6%) | |
Atypical | 5 (10.0%) | 3 (6.3%) | |
Tumor location | |||
Dome | 18 (36.0%) | 15 (31.3%) | 0.619 |
Anterior | 10 (20.0%) | 10 (20.8%) | 0.918 |
Posterior | 10 (20.0%) | 13 (27.1%) | 0.408 |
Right | 11 (22.0%) | 18 (37.5%) | 0.093 |
Left | 24 (48.0%) | 15 (31.3%) | 0.090 |
Trigon | 6 (12.0%) | 7 (14.6%) | 0.706 |
Neck | 8 (16.0%) | 12 (25.0%) | 0.269 |
Urethra | 1 (2.0%) | 1 (2.1%) | >0.999 |
Control Group | Experimental Group | p Value | |
---|---|---|---|
(n = 50) | (n = 48) | ||
Postoperative hour 0 | 0.137 | ||
None | 24 (48.0%) | 33 (68.8%) | |
Mild | 15 (30.0%) | 10 (20.8%) | |
Moderate | 9 (18.0%) | 5 (10.4%) | |
Severe | 2 (4.0%) | 0 (0.0%) | |
Postoperative hour 1 | 0.180 | ||
None | 13 (26.0%) | 22 (45.8%) | |
Mild | 29 (58.0%) | 21 (43.8%) | |
Moderate | 7 (14.0%) | 5 (10.4%) | |
Severe | 1 (2.0%) | 0 (0.0%) | |
Postoperative hour 6 | 0.175 | ||
None | 28 (56.0%) | 32 (66.7%) | |
Mild | 19 (38.0%) | 16 (33.3%) | |
Moderate | 3 (6.0%) | 0 (0.0%) | |
Severe | 0 (0.0%) | 0 (0.0%) |
Control Group | Experimental Group | p Value | |
---|---|---|---|
(n = 50) | (n = 48) | ||
Postoperative pain score, Visual Analogue Scale | |||
Postoperative 0 h | 2 (2–4) | 2 (2–3) | 0.361 |
Postoperative 1 h | 2 (2–3) | 2 (2–3) | 0.452 |
Postoperative 6 h | 2 (1–3) | 2 (1–3) | 0.669 |
Rescue analgesic use in PACU (%) | 10 (20.0%) | 4 (8.3%) | 0.099 |
Rescue analgesic use in Ward (%) | 6 (12.0%) | 7 (14.6%) | 0.706 |
Postoperative nausea/vomiting (%) | 3 (6.0%) | 3 (6.3%) | >0.999 |
Hospital stay, days | 2 (2–2) | 2 (2–2) | 0.660 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, J.-W.; Cha, S.; Moon, H.W.; Moon, Y.E. Effects of Intraoperative Magnesium and Ketorolac on Catheter-Related Bladder Discomfort after Transurethral Bladder Tumor Resection: A Prospective Randomized Study. J. Clin. Med. 2022, 11, 6359. https://doi.org/10.3390/jcm11216359
Shim J-W, Cha S, Moon HW, Moon YE. Effects of Intraoperative Magnesium and Ketorolac on Catheter-Related Bladder Discomfort after Transurethral Bladder Tumor Resection: A Prospective Randomized Study. Journal of Clinical Medicine. 2022; 11(21):6359. https://doi.org/10.3390/jcm11216359
Chicago/Turabian StyleShim, Jung-Woo, Seunghee Cha, Hyong Woo Moon, and Young Eun Moon. 2022. "Effects of Intraoperative Magnesium and Ketorolac on Catheter-Related Bladder Discomfort after Transurethral Bladder Tumor Resection: A Prospective Randomized Study" Journal of Clinical Medicine 11, no. 21: 6359. https://doi.org/10.3390/jcm11216359
APA StyleShim, J.-W., Cha, S., Moon, H. W., & Moon, Y. E. (2022). Effects of Intraoperative Magnesium and Ketorolac on Catheter-Related Bladder Discomfort after Transurethral Bladder Tumor Resection: A Prospective Randomized Study. Journal of Clinical Medicine, 11(21), 6359. https://doi.org/10.3390/jcm11216359